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ABSTRACT 
The use of digital pheromones for controlling and coordinating 
swarms of unmanned vehicles is studied under various conditions 
to determine their effectiveness in multiple military scenarios. The 
study demonstrates the effectiveness of these pheromone algo-
rithms for surveillance, target acquisition, and tracking. The algo-
rithms were demonstrated on hardware platforms and the results 
from the demonstration are reported 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – autonomous vehicles. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Swarming, multiagent, autonomous vehicles, pheromone control. 

1. INTRODUCTION  
The word “swarming” is currently in vogue to describe two dif-
ferent types of systems. Students of biological systems use it to 
describe decentralized self-organizing behavior in populations of 
(usually simple) animals [2, 4, 10]. Examples include path forma-
tion, nest sorting, food source selection, thermoregulation, task 
allocation, flocking, nest construction, and hunting behaviors in 
many species.  Military historians use it to describe a battlefield 
tactic that involves decentralized, pulsed attacks [1, 6, 8]. 

The link between these two uses of the word is not coincidental. 
Insect self-organization is robust, adaptive, and persistent, as any-
one can attest who has tried to keep ants out of the kitchen, and 
military commanders understand the advantage of being able to 
inflict the confusion, frustration, discomfort, and demoralization 
that a swarm of bees can visit on their victims.  

In spite of the military promise of swarming, little attention has 
been given to how to implement the mechanisms observed in bio-

logical communities into military systems. This paper describes 
the use of digital pheromones to produce swarming behavior in 
military systems and studies their effectiveness in performing 
various functions.  

The sequence of sections reflects the engineering process of mov-
ing from requirements, through mechanism selection, design and 
implementation, testing, and deployment. Section 2 summarizes 
the requirements for three applications of swarming derived from 
specific military scenarios. Section 3 outlines the particular 
swarming mechanism that we applied to these applications, a 
computational analog of insect pheromones. Section 4 details how 
we applied this mechanism to each of the applications. Section 5 
outlines specific experiments that were conducted to test the algo-
rithms, and Section 6 describes a physical demonstration of the 
capabilities. Section 7 concludes. 

2. IDENTIFICATION OF REQUIRED 
FUNCTIONS  
This study focused on the analysis of swarming algorithms to 
support a range of military scenarios. A suite of realistic scenarios 
was developed by military experts addressing three capability ar-
eas: (1) intelligence, surveillance and reconnaissance, (2) commu-
nications and (3) battle damage assessment.  

Analysis of these swarming scenarios identified three swarm func-
tions that were targeted for this study:  

1. Surveillance and patrol − a single or continuous sweep of 
an area by the swarming platforms to look for entities (possi-
bly mobile) of interest.  

2. Target acquisition − configuring and coordinating the align-
ment of the right sensors to determine the location, class, and 
identification of an entity in an area. 

3. Target tracking − continuously or intermittently maintain-
ing sensor contact with a moving entity to determine its loca-
tion and heading. 

In addition to these three functions, three additional functions 
were identified but were not included in the study due to time and 
cost constraints. These were, responding to human commands, 
maintaining line of sight communications among the swarm enti-
ties, and plume monitoring.  

Parunak [9] reviews the major classes of swarming algorithms 
that have been applied to the Command and Control (C2) of mul-
tiple robotic entities and compared them to Altarum’s pheromone 
approach. In this paper we report on the results of experiments 
with digital pheromones under various scenarios.  
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3. DIGITAL PHEROMONES 
Digital pheromones are a stigmergic mechanism for coordinating 
and controlling swarming vehicles.  “Stigmergy” is a term coined 
in the 1950’s by the French biologist Grassé [7] to describe a 
broad class of multi-agent coordination mechanisms that rely on 
information exchange through a shared environment. Examples 
from natural systems show that stigmergic systems can generate 
robust, complex, intelligent behavior at the system level even 
when the individual agents are simple and individually non-
intelligent. In these systems, intelligence resides not in a single 
distinguished agent (as in centralized control) nor in each individ-
ual agent (the intelligent agent model), but in the interactions 
among the agents and the shared dynamical environment.  

Stigmergic mechanisms have some attractive features.  

Simplicity.—The logic for individual agents is much simpler than 
for an individually intelligent agent. They can easily run on the 
small platforms envisioned for swarming vehicles. These agents 
are easier to program and prove correct. They can be trained with 
genetic algorithms or other weak optimization methods without 
requiring any knowledge engineering [15]. 

Scalabilty.—Stigmergic mechanisms scale well to large numbers 
of entities. In fact, stigmergy requires multiple entities, and per-
formance typically improves as the number of entities increases. 

Robustness.—Because stigmergic deployments favor large num-
bers of entities that are continuously organizing themselves, the 
system’s performance is robust against the loss of a few individu-
als. The simplicity and low expense of each individual means that 
such losses can be tolerated economically. 

Digital pheromones are modeled on the pheromone fields that 
many social insects use to coordinate their behavior. Digital 
pheromones support three primary operations, inspired by the dy-
namics of chemical pheromones. 

1. They can be deposited and withdrawn from an area. Deposits 
of a certain flavor are added to the current amount of that 
flavor of pheromone located at that place. (Information fu-
sion and aggregation).   

2. They are evaporated over time. This serves to forget old in-
formation that is not refreshed. (Truth maintenance).  

3. They propagate from a place to its neighboring places. The 
act of propagation causes pheromone gradients to be formed. 
(Information diffusion and dissemination).  

Digital pheromones are modeled as difference equations across a 
network of “places” at which agents can reside and in which they 
deposit and sense increments to scalar variables representing the 
digital pheromones. These equations are provably stable and con-
vergent [3]. They form the basis for a “pheromone infrastructure” 
that can support swarming for various functions, including path 
planning [13, 14] and coordination for unpiloted vehicles [5, 16], 
positioning multi-sensor configurations [11], and maintaining line 
of sight communications in mobile ad hoc networks [12], several 
of the functions required by the swarming scenarios. 

3.1 Digital Pheromones and Place Agents 
A digital pheromone represents information about the system. 
Different “flavors” of pheromones convey different kinds of in-
formation. Digital pheromones exist within in an artificial space 
called a pheromone map. The map is composed of an arbitrary 

graph of place agents. In principle, there are no restrictions on the 
graph of place agents. In swarming robotics where movement de-
cisions are an important function, it is convenient to have the 
place agents represent regions of the geographical space. In this 
study, we tile the physical space with squares, each representing a 
place agent with eight neighbors.  

Several options are available for implementing place agents. 
Agents can be embedded in the environment using unattended 
ground sensors (UGS) networked through wireless communica-
tions [13]. Place agents can also be distributed on Command and 
Control (C2) nodes according to area of responsibility. The 
swarming platforms only need to communicate with the local 
UGS or C2 node. Alternatively each swarming platform maintains 
a full or partial version of the pheromone map representing the 
immediate vicinity around the unit. Pheromone map updates (de-
posits and withdrawals) need only be communicated locally to 
maintain each map. Since the information content is low (8 
bytes/pheromone) and frequency of map updates is low (on the 
order of once a second), low bandwidth communications are suf-
ficient to maintain the information flow among place agents. 

3.2 Walkers and Avatars 
Two classes of agents, called walkers and avatars, wander 
through the pheromone map.  

A walker agent controls a single platform in the swarm. A walker 
deposits, withdraws, and reads pheromones in the map and uses 
that information to make movement and action decisions. The 
walker can read sensory and other telemetry from the platform 
and issue commands to control its actions.  

Avatars are used to represent the other entities in the environment. 
These can include friendly (blue), enemy (red), and neutral 
(green) entities. The avatar receives intelligence about the type, 
location, heading, speed, and possibly other identifying informa-
tion that it uses to update its location and make estimates of future 
locations when sensor information is not available. The avatar can 
also deposit, withdraw, and read pheromones in the map, which it 
uses to make estimate about where the unit may move next. 

Agents can start and stop what is called a pheromone pump. A 
pheromone pump resides in a place agent and continuously depos-
its a pheromone of a particular flavor for a specified time.  

An agent uses an interpreting equation to weight the pheromones 
that it senses in the place agents and decide where to move next. 
Some pheromones may attract the agent, while other pheromones 
may repel it. The interpreting equation assigns a scalar value 
(V(p)) to the current place agent and each of its neighbor place 
agents. The agent then makes either a deterministic move (to the 
place agent with the largest V(p)), or a probabilistic move using a 
roulette wheel weighted by each V(p).  

3.3 Pheromone Equations 
Each place agent maintains a scalar variable corresponding to 
each pheromone flavor. It performs the basic functions of aggre-
gation, evaporation, and propagation. The underlying mathematics 
of the field developed by such a network of places rests on two 
fundamental equations. The parameters governing the pheromone 
field are: 

• P ={pi} = set of place agents 
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• N: P → P  = neighbor relation between place agents. Thus the 
place agents form an asymmetric multigraph. 

• s(Φf,p,t) = strength of pheromone flavor f at place agent p and 
time t. 

• d(Φf,p,t) = sum of external deposits of pheromone flavor f 
within the interval (t-1, t] at place agent p. 

• g(Φf,p,t) = propagated input of pheromone flavor f at time t to 
place agent p. 

• Ef∈(0,1) = evaporation factor for flavor f. 

• Gf∈ [0,1) = propagation factor for flavor f. 

• Tf = threshold below which s(Φf,p,t) is set to zero. 
The first equation describes the evolution of the strength of a sin-
gle pheromone flavor at a given place agent.  

( ) ( )[ ]),,(),,()1,,(*)1(,, tpgtpdtpsGEtps ffffff Φ+Φ+−Φ−∗=Φ
Ef models evaporation of pheromone, 1 - Gf calculates the amount 
remaining after propagation to its neighbors, s(Φf,p,t-1) represents 
the amount of pheromone from the previous cycle, d(Φf,p,t) repre-
sents the total deposits made since the last update cycle (including 
pump auto-deposits) and g(Φf,p,t) represents the total pheromone 
propagated in from all the neighbors of p. Each place agent ap-
plies this equation to each pheromone flavor once during every 
update cycle. 

The second fundamental equation describes the propagation re-
ceived from the neighboring place agents: 
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This equation states that each neighbor place agent p’ propagates 
a portion of its pheromone to p each update cycle, the proportion 
depending on the parameter Gf and the total number of its 
neighbors. 

4. ALGORITHM DESCRIPTIONS 
This section describes in detail the pheromone algorithms that 
perform the functions identified earlier.  

Four pheromone flavors are used in the algorithms: Lawn (Φl), 
Visited (Φv), Tracking (Φt), and NeedsID (Φn). These are de-
scribed in greater detail below. 

Each pheromone flavor has a number of parameters that tune the 
pheromone to the task. Four different settings are available. 

1. Update cycle time – the time interval between propagation, 
pump auto-deposits, and evaporation for this flavor. 

2. Propagation factor (Gf)– The fraction of pheromone in a 
place that is distributed equally among all the neighbors. 

3. Evaporation factor (Ef)– the fraction of the pheromone that 
remains after the evaporation cycle.  

4. Minimum place agent pheromone level (Tf) – If the amount 
of pheromone in a place falls below this level then the phero-
mone level is set to zero. 

These parameters can be set by systematically experimenting with 
different values or they can be determined through optimization 
mechanisms such as genetic algorithms as described in [15]. The 

specific pheromone settings used for the experiments described 
below are available in an extended version of this paper available 
at http://www.altarum.net/~vparunak/AAMAS05SwarmingDemo. 
pdf 

4.1 Surveillance and Patrol Algorithm 
The surveillance and patrol algorithm must be able to control 
Autonomous Surveillance Vehicles (ASV’s) surveying one or 
more Areas of Interest (AOI) with a certain revisit frequency. The 
algorithm has been nicknamed the “lawn cutting” algorithm as 
certain features resemble the act of cutting a lawn. 

For this algorithm, the place agents within an AOI continually 
emit an attractive Lawn pheromone that propagates through the 
other place agents forming an attractive gradient leading to the 
AOIs (Figure 1). The interpreting equation of the Blue walkers 
controlling the ASV’s (referred to henceforth simply as the 
“ASV”) cause them to probabilistically climb the gradient towards 
the AOI containing the highest concentration of attractive phero-
mone. Once an ASV has visited a place agent within the AOI, all 
the Lawn pheromone is removed (cutting the grass) and the place 
agent stops emitting any more Lawn pheromone for a time in-
versely proportional to the desired surveillance frequency. After 
that time, the Lawn pheromone pump is turned back on and the 
attractive pheromone gradient forms again (grass re-grows).  

The ASV deposits a repulsive Visited pheromone in the next place 
agent it plans to move to. This keeps other ASV’s away from that 
same place agent to avoid duplication of effort.  

The interpreting equation for surveillance and patrol is:  

),(),()( pspspV vl Φ−Φ=  

4.2 Target Acquisition Algorithm 
The swarming algorithms for positioning sensors for data acquisi-
tion were not included in this study. These algorithms have been 
studied elsewhere [11]. For this study as long as the swarming 
entity is within sensor range of the target, then the target is de-
tected with a probability defined by an experimental parameter 
Pd. A dwell time experimental parameter was also used that de-
fined how long the sensor had to remain with the target before it 
could confirm a target’s identification. 

The only target acquisition swarming function modeled in this 
study was the requirement to cue additional sensors to confirm or 

3
1

2
4

 
Figure 1. Attractive And Repulsive Pheromones For Surveil-
lance, 1. Surveillance area deposits attractive pheromone, 2. ASV 
deposits repulsive pheromone, 3. Pheromone infrastructure propa-
gates both attractive and repulsive pheromone to form gradient, 4. 
ASV climbs net gradient, withdrawing attractive pheromone. 
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identify a target. The algorithm is described in Figure 2. There are 
two kinds of ASVs in this scenario. ASVdet has a sensor that can 
detect, but not identify targets. ASVid has a sensor that can both 
detect and identify targets. If ASVdet detects a target then it cre-
ates a Red avatar to represent the target. The Red avatar begins 
depositing NeedsID pheromone.  

ASVid is more attracted to NeedsID pheromone than to Lawn 
pheromone, so in the presence of NeedsID it will climb the   
NeedsID gradient and identify the target. Once identified, the Red 
avatar will stop pumping NeedsID pheromone. ASVid deposits a 
large amount of Visited pheromone to keep other units from being 
attracted to the remaining (decaying) NeedsID pheromone in the 
area. After identification the target is set up for tracking or ig-
nored if it is found to be harmless.  

The interpreting equation for ASVid target cueing is: 

),(102),(10),(),()( 11 psxpspspspV ntvl Φ+Φ+Φ−Φ=  

The interpreting equation for ASVdet target is: 

),(10),(),()( pspspspV tvl Φ+Φ−Φ=  

4.3 Target Tracking Algorithm 
The target tracking algorithm is designed to allow targets to be 
tracked continuously or intermittently by the ASVs. A Red avatar 
estimates the behavior of the Red target in between sensor con-
tacts. The Red avatar continually deposits Tracking pheromone. 
However the ASV deposits a large amount of Visited pheromone 
when the Red target is detected (see Figure 3). This “kicker” de-
posit is designed to cause ASVs to stay away from the Red target 
after it has been acquired. Once the kicker evaporates, or the Red 
avatar moves out from under its protective cloud, its Tracking 
pheromone will again attract ASVs to come and establish another 
contact to update its track. By varying the amount of the Visited 
kicker deposit one can vary the revisit frequency for the tracking.  

The interpreting equation is: 

),(10),(),()( pspspspV tvl Φ+Φ−Φ=  

5. EXPERIMENTS AND RESULTS 
This section describes a subset of the experiments that were con-
ducted to verify that the swarming algorithm could meet the func-
tional requirements of the military scenarios.  

5.1 Surveillance Coverage Performance 
Purpose: Determine the performance of Blue ASVs in covering 
all the places in a surveillance area.  

Setup: 30 Blue ASV units operate in a 20 km x 20 km area di-
vided into 200 x 200 place agents. Blue uses the surveillance algo-
rithm described above. A total of 100 runs were executed each 
with a different random seed. 

The coverage results are plotted in Figure 4. The plot of the fixed 
pattern search shows how a pre-programmed coverage pattern 
(where each unit is assigned an area to sweep) would perform un-
der the same circumstances. Initially it performs worse than the 
pheromones as the units move into their starting positions, but 
eventually it performs better since there is no overlap in their 
paths. The average time to reach 95% coverage by the swarming 
algorithm is about 50% longer than a programmed path. A sto-

chastic swarming algorithm will never perform as well as a pro-
grammed pattern that can be designed for minimal overlap. But 
the performance of the swarming algorithm shows some good 
characteristics: 

• It has a fairly tight bound on performance (note the narrow 
bands until coverage reaches 80%) so the algorithm behaves 
with repeatable performance. 

3

1
2

 
Figure 2. Pheromones Attracting Confirming Sensors – 1. 
ASVdet detects target and Red avatar is created, 2. Red avatar 
deposits “NeedsID” pheromone, 3. ASVid is more attracted to 
NeedsID pheromone than lawn pheromone and climbs gradient to 
ID target. 

3
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Figure 3. Pheromone Tracking Algorithm – 1. ASV acquires 
target and deposits Visited pheromone repelling other ASVs, 2. 
Red avatar estimates movement, deposits Tracking pheromone, 3. 
As avatar moves away from Visited deposit, nearby ASV is more 
attracted to its Tracking pheromone than repelled by Visited 
pheromone and climbs gradient to reacquire the target. 
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Figure 4. Surveillance Area Covered Over Time - the chart 
shows 100 runs. The fixed pattern search partitions the area 
equally the ASVs that then perform a sweep pattern search. 
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• The performance is linear in most of the region until coverage 
reaches about 80% so performance does not fall off until most 
of the area has been surveyed.  

It should be noted that when surveying for mobile targets it is not 
important to visit every point in the surveillance space. In fact a 
major advantage of a stochastic algorithm over a programmed pat-
tern is that it is unpredictable and an adversary is less likely to be 
able to determine when to remain hidden. 

Figure 5 shows a series of snapshots of the simulation as it pro-
gresses. All units begin in the bottom right corner of the grid. 
They expand out diagonally across the space sweeping back and 
forth, emergently executing loops and other maneuvers as more of 
the area is covered.  

5.2 Target Acquisition 
Purpose: Determine effectiveness of Blue ASVs in finding mo-
bile Red units. 

Setup: A 20 km x 20 km area is divided into 200 x 200 place 
agents. 10, 20, and 30 Blue ASVs with random start positions 
move at 90 kph using the surveillance algorithm. When Blue 
lands in a sector containing a moving Red, the Red is considered 
detected with probability Pd. 10 Red units start in random loca-
tions. Red picks a random point in the area and moves there at 3 
kph. When it reaches that point it rests for one hour. While at-rest 
the unit is undetectable. While moving the detection probability is 
an experimental parameter set to 0.5, 0.75, or 1.0. 81 total runs 
were executed representing 9 random seeds for the three Blue 
swarm sizes and three detection probabilities. 

Figure 6 shows the results. Increasing the number of Blue ASVs 
can have a dramatic improvement in performance. The time to 
find 10 Red units in a 40,000 cell grid was decreased from 20 
hours to 5.5 hours by increasing the number of units from 10 to 
30. The improvement is not linear. Eventually adding more ASVs 
will not significantly reduce the time to detect all the Red units. 
The effect of varying the probability of detection is roughly linear 

as would be expected. Since the average trip made by Red is ap-
proximately 10 km taking 3.3 hours and it rests and hides for one 
hour after each trip, Red is hiding on average 23% of the time. So 
the effective Pd’s for this experiment are 38%, 58%, and 77%. 

5.3 Discontiguous Area Surveillance 
Purpose: Determine how effective Blue is at distributing assets 
and covering discontiguous areas of interest (AOIs). 

Setup:  A 20 km x 20 km area is divided into 200 x 200 place 
agents. 10 AOIs, each 1 km x 1 km in size are placed randomly in 
the area. 30 Blue ASVs start in the corner and move at 90 kph us-
ing the surveillance algorithm. 13 runs were executed each with a 
different random seed. 

Figure 7 shows the average coverage of the ten AOI’s over time. 
The system converges exponentially to the asymptotic state. The 

0.5%0.5% 12.5%12.5%

50%50% 100%100%

 
Figure 5. Swarm Surveillance Coverage - 10 ASVs survey a 
200 x 200 grid. The swarm begins sweeping diagonally, eventu-
ally doing loops and other maneuvers as it seeks out remaining 
unsurveyed areas. The darker shades in the last panel are areas 
that have been visited more often. The number on each plot indi-
cates the level of coverage achieved. 
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Figure 6. Effect of number of Blue and probability of detec-
tion on detecting all 10 mobile Red units – The chart shows the 
average time to detect all 10 Red mobile units in a 40,000 grid 
area using different numbers of Blue ASVs. Each plot represents a 
different probability of detecting Red when Red is not hidden and 
a Blue ASV occupies the same cell as Red.  
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Figure 7. Coverage of the 10 AOIs Over Time (20 point mov-
ing average). 
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asymptote itself is high, maintaining coverage of nine or ten of the 
AOI’s most of the time. On average 2 ± 0.27 ASV’s are assigned 
to each AOI. The low standard deviation shows the effective allo-
cation of ASV’s over the AOI’s. On average 20 ASVs are within 
the AOIs and 10 ASVs are surveying either immediately outside 
or between the AOIs. This provides a population that is able to 
keep the AOIs covered in the case of failure.  

Figure 8 depicts the simulation as it progresses. One can see the 
units finding and then surveying the different AOIs.  

Some of the challenges in this problem include: 

• Too many ASVs remaining in AOI where all the units start 

• AOIs in upper left are not found or do not attract enough units 
for surveillance. 

The algorithm performed well on a difficult problem: trying to 
find all the AOIs and then balance the number of ASVs that were 
allocated to surveying each. None of the swarming units knew the 
number of AOIs or where they were located. Still they were able 
to self organize, find the AOIs and distribute their numbers evenly 
across them to maintain regular surveillance. 

5.4 Intermittent Tracking 
Purpose: Determine effect of number of Blue on efficiency of 
tracking Red. 

Setup: A 20 km x 20 km area is divided into 200 x 200 place 
agents. 10, 20, and 30 Blue ASVs starting in the corner move at 
90 kph using the tracking algorithm. 20 Red units start in random 
locations and move and rest randomly as described above. While 
at-rest the unit is undetectable. While moving the detection prob-
ability is 1.0. Blue must be in the same cell as Red to detect it. If 
the Red unit does not have an avatar Blue requires an additional 
600 seconds of sensor processing to identify target and a Red ava-
tar is created to track the Red unit. The Red avatar uses a linear 
extrapolation to estimate the location of the actual Red unit. If 
Blue has not revisited the Red unit within 900 seconds the Red 
avatar is removed. A total of 27 runs were executed using 9 ran-
dom seeds for each of the three Blue unit sizes. 

Figure 9 shows images from the simulation. The left pane shows 
the tracking pheromone being emitted by the 17 Red units cur-
rently being tracked. Units 11, 13, and 16 have not yet been de-
tected by Blue. The other dots are the Blue units. The right pane 
shows the Red tracks in two colors: dark sections indicate where 
Blue acquired the target and white indicates periods in between 
acquisitions. The fairly even spacing of the acquisition points 
along the track indicates that Blue is maintaining a good track on 
the vehicles.  

Figure 10 shows the percentage of the 20 Red units tracked over 
time. 30 Blue units were able to find and track 90% of the Red 
units with only a 0.5% track loss (percentage of times that a reac-
quisition failed to occur and the track was lost). 20 Blue units try-
ing to find and track 20 Red units is a fairly difficult problem 
(since the Blue units need to continue surveying when they are not 
trying to find Red again for another track). But the algorithm per-
formed well, tracking 80% of the Red units with less than 1.2% 
track loss. When the number of Blue units is reduced to 10, only 
40% of Red is tracked with a 3.8% track loss. There appear to be 
two factors contributing to the 40% figure: Blue is distracted with 
the tracking task and hence unable to continue surveying to find 
the other Red units and once they are found, they are more likely 
to lose the track. 

Other experiments demonstrated that by varying the amount of the 
“kicker” deposit made by Blue, one can fairly accurately control 

1515 3030 4545

6060 7575 9090

 
Figure 8. Surveillance of 10 AOIs - The six displays show the 
history of ASV coverage. The number elapsed minutes is shown. 
The colors indicate the number of ASV’s that have visited that 
location. By 45 minutes all AOIs are under surveillance 

 
Figure 9. Blue Tracking Result - Left pane shows the tracking 
pheromone field being emitted by 17 Red units (numbered) being 
tracked. The right pane shows the Red tracks. Dark sections on 
the track indicate where the unit was acquired by Blue and white 
is the interpolated movement in between acquisitions. 
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Figure 10. Blue Efficiency in Tracking Red Over Time 
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the time between re-acquisitions. This allows the frequency of 
how often a target is revisited to be varied based on how impor-
tant that target is.  

5.5 Target Cueing 
Purpose: Evaluate the performance of the cueing algorithms. 
Some Blue entities need to 'cue' other Blue entities to perform a 
task. Blue swarm entities are divided into two types. One type has 
a simpler sensor package that can only detect Red units, the other 
type can both detect and identify Red units. 

Setup: A 20 km x 20 km area is divided into 200 x 200 place 
agents. 10, 20, and 30 Blue ASVs starting in the corner move at 
90 kph using the tracking algorithm. 50% of the ASVs are 'AS-
Vdet' and 50% are 'ASVid'. 20 Red units start in random locations 
and move and rest randomly as described above. While at-rest the 
unit is undetectable. While moving the detection probability is 
1.0. Blue must be in the same cell as Red to detect it. If Blue de-
tects a Red unit not currently being tracked (no avatar) Blue de-
posits ‘NeedsID’ pheromone if the Blue unit is ‘ASVdet’ other-
wise Blue waits 600 seconds to complete identification. The Red 
avatar behaves as described above for the tracking experiment. A 
total of 27 runs were executed using 9 random seeds for each of 
the three Blue unit sizes. 

In this experiment only half of the Blue units have the required 
sensor to identify Red. The other Blue units can detect, but not 
identify Red. When ASVdet finds a Red unit, an ASVid must 
come over and positively identify the Red target before it can be 
placed on the tracking list. Once it has been identified, and as long 
as the track is not lost, any Blue unit can reacquire the target to 
update the track (i.e. identification is only required for a new tar-
get or an old target whose track was lost).  

Figure 11 shows the same information as Figure 10: tracking per-
formance over time. The additional requirement of the second 
sensor for identification does not appear to affect either the track-
ing percentage (90%, 80%, and 40% in both experiments) or the 
track loss percentage. The number of Blue does have a noticeable 
impact on the number of cueing requests (requests for identifying 
sensor) that were not fulfilled. With 30 units only 0.8% of the cue 
requests went unsatisfied, while with 10 Blue units 12.7% of the 

cue requests went unsatisfied. An unsatisfied cue request does not 
count as a lost track since the track was never established. But an 
unsatisfied cue request does mean that a unit previously detected, 
will now be lost again and have to be reacquired through surveil-
lance before it can be tracked. So a failure in cueing should result 
in a slightly lower percentage of total Red units being tracked. 
This effect must be small, since it does not appear in the data as 
shown. 

6. DEMONSTRATION 
In October 2004 the use of these swarming algorithms to control a 
heterogeneous population of air and ground unmanned vehicles in 
an urban combat scenario was demonstrated at Aberdeen Proving 
Grounds.  

The demonstration used four robots controlled by a co-field algo-
rithm, a mock urban area, and two Unmanned Air Vehicles 
(UAVs) controlled by the digital pheromone algorithms. The 
demonstration showed how these stigmergic swarming algorithms 
can control and coordinate the behaviors of a heterogeneous mix 
of vehicles. 

The unmanned ground vehicles were research quality robots made 
by iRobot, Inc. All four robots used short range fixed acoustic 
sensors, laser range finders for obstacle detection and avoidance, 
and commercial GPS receivers for localization.   

The air vehicles were modified Mig 117 Bravo target drones with 
a 6 ft wingspan. The basic airframe was fitted with a modern en-
gine, an autopilot by Micro-Pilot, and low light or infrared cam-
era.  The autopilot was taught to take-off, hand launch, fly, and 
land completely autonomously.   

The digital pheromone algorithms controlled and coordinated the 
flight of the two UAVs as they performed continuous surveillance 
over an urban area looking for potential adversaries. The two air 
units worked together to ensure even, thorough, and continuous 
coverage of all areas in the surveillance region while avoiding any 
collisions. They also provided patrol coverage of a mock convoy 
as it moved through the area.  

While the UAVs surveyed a broad area over the airfield, the 
ground robots surveyed and patrolled around some mock build-
ings set up for the demo. During the demonstration, one of the 
ground robots failed. The other ground robots were able to dy-
namically readjust their patrol patterns to accommodate the miss-
ing unit without any intervention by the operator. This unplanned 
event helped to demonstrate the robustness of these algorithms to 
unexpected events.  

The demonstration showed cooperative behavior between the air 
and ground units when the identity of a potential adversary de-
tected by one of the UAV’s was automatically confirmed by one 
of the ground robots with a special sensor capable of target identi-
fication.  

The actions of the vehicles were not scripted as evidenced by their 
adapting to the unplanned failure of one of the ground robots. 
Rather than specify each vehicle’s task, the operator simply gave 
a high level command to the whole swarm, such as “survey this 
area and track any identified targets” or “patrol around this con-
voy”. The vehicles autonomously configured themselves to de-
termine which vehicle would perform what task in order to ac-
complish the overall objective. The operator was free to monitor 
their behavior, receive their reports, and provide additional guid-
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Figure 11. Sensor Cueing - chart shows percentage of Red units 
tracked over time when initial identification requires a special 
sensor confirmation. Only half of Blue units have the sensor that 
can identify Red. 
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ance as needed when priorities or mission objectives changed. The 
swarm did not need any special configuration to meet a wide vari-
ety of mission requirements, respective of the operating environ-
ment or the number and type of vehicles involved. 

7. CONCLUSIONS 
At the start of this study there was concern about the whether the 
wide range of scenarios and the requirements they placed on the 
swarm would result in a large variety of algorithms being re-
quired. This study was able to demonstrate that a single phero-
mone mechanism can be used to perform all the functions re-
quired by these scenarios. The surprising versatility arising from 
such simple mechanisms is one of the more promising aspects of 
this new class of algorithm. 

The mechanism proved to be surprisingly robust to large varia-
tions in the parameter settings. Certain parameters (such as the 
Lawn evaporation and propagation factors), had a greater influ-
ence than others, but the mechanism performed well even when 
those were varied by a factor of 10 or 100.  

Adding a new function typically involved at most 

• Adding a new pheromone 

• Adding a new term to the interpreting equation 

• Conducting some experiments to get the right settings 
The stigmergic swarming algorithms appear quite promising as 

a means to control a wide variety of important behaviors for a 
swarm. They are robust against a wide variety of scenarios, do not 
require extensive tuning, and are effective in controlling both large 
and small swarms distributed over large areas. This study has laid 
the groundwork for future studies and implementation tests.  
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