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ABSTRACT
This paper introduces a multi-robot cooperation approach to solve
the �pursuit evasion� problem for mobile robots that have omni-
directional vision sensors in unknown environments. The main
characteristic of this approach is based on the robots cooperation
by sharing knowledge and making them work as a team: a com-
plete algorithm for computing robots motion strategy is presented
as well as the deliberation protocol which distributes the explo-
ration task among the team and takes the best possible outcome
from the robots resources.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence-
Coherence and coordination - Intelligent agents - Multiagent sys-
tems

General Terms
Algorithms

Keywords
Distributed robotics, coordination, pursuit-evasion problem, multi-
agent systems

1. INTRODUCTION
The domain of cooperative robotics is acquiring a prominent

interest in many applications such as drones or Unmanned Au-
tonomous Vehicles formations [22], mobile robots carrying out trans-
portation tasks [1], exploring the environment [11], interacting with
people [6] etc. Indeed, this domain is well adapted to implement
and validate cooperation approaches. To that end, many different
approaches have been proposed ranging from reactive behaviors [2]
to deliberative protocols [1].

In this paper, we consider the following problem: a group of
robots have to explore a simulated labyrinthine environment in a
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way such that, if an intruder is hidden within, necessarily it would
be found and could not escape. Such a problem has been already
studied in mainly two different aspects.

On the one hand, the �prey predators� problem has been pro-
posed for the first time by [3]: the prey and the predators (i.e.
the agents) share a common environment which is represented by
a mere grid. The hunt is simulated and the agents that are au-
tonomous processes can move horizontally or vertically all the time.
Quite obviously, the goal of the prey is to escape as long as possible
whereas the predators have to capture the prey as fast as possible.
Therefore, the �prey-predators� problem is an interesting testbed
for competing agents and coordination protocols.

Indeed, because each agent does not perceive all the environ-
ment, and can have incomplete or inconsistent knowledge about
the other agents, many challenging issues have to be tackled: which
information has to be communicated? to whom? when? how can
the predators constrain the prey movements? how can they elabo-
rate a common strategy and behave as a team? otherwise, can the
predators exclusively rely on reactive behaviors? which is the best
approach in terms of performances, implementation, communica-
tion hazards (communication bottleneck, deadlocks etc.) ? Unfor-
tunately, the environment considered in those experiments is too
simple.

On the other hand, the �pursuit-evasion� problem is based on an
environment made up of many obstacles. It is postulated that an in-
truder may be hidden within this environment, and a pursuer must
�ush it out of its hiding place. Therefore, a solution is a path en-
suring that whatever movement is realized by the intruder, finally it
will be uncovered by the pursuer. This problem has been tackled in
many ways such as game theory [16], graph theory [4, 12, 17, 18]
etc. As far as robotics are concerned, the �pursuit-evasion� prob-
lem has been introduced by [21]. Since then, several works have
been undertaken: in [15, 7], robots fitted with one detection beam
must keep watch on a grid environment with one exit; in [10, 9],
two keepers move along the borders of a labyrinthine environment
without isolated obstacles (i.e., that are not linked to a border) and
have to keep in touch constantly with their sensors. The �pursuit-
evasion� problem has also been looked at more generally in [5, 13,
14, 21]: this time, there are less restrictions on the environment (2D
polygonal or curved environment) and the pursuers are fitted with
omni-directional detection beams. More recently, [20] tackles the
�pursuit-evasion� problem in unknown polygonal environment.

However, either the environment can be explored by only one
pursuer and then the algorithm provides the path ensuring that the
intruder (its velocity can be arbitrary high) will be uncovered, or,
because of the environment topology, several pursuers are needed
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and then the algorithm provides the path that has to be followed by
one pursuer completed by other robots that must remain stationary
in their assigned observation posts. This is due to the intruder’s
ability to move under cover from a hiding place to places already
explored by the pursuer. The main inconvenient of this approach is
that many robots which may help to explore the environment and
hence their resources, are underemployed.

In order to avoid the drawbacks of the former approaches, we
present a cooperation protocol which can be applied to the robotics
that allows several pursuers to coordinate their exploration and jointly
look after the intruder: they operate like a team and the number of
pursuers is �minimized� as much as possible. In section 2, the pur-
suit evasion problem is defined. In section 3, a complete algorithm
for several pursuers based on a cooperation protocol is presented.

2. PROBLEM DEFINITION
In this paper, we assume that the pursuers manoeuvre within a

2D simulated polygonal environment; their vision is omni-directional
and they do not know the environment. A simple environment and
a possible robot motion strategy is shown in figure 1.
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Figure 1: Example of labyrinthine environment: the black dot
shows the agent position, the gray area the agent perception,
the dashed areas the obstacles and the white squares the critical
points of the environment .

The pursuers and the intruder are represented by points in the 2D
Euclidean space. Let F be the free space (obviously, the pursuers
and the intruder belong to F ). Let e(t) ∈ F be the position of the
intruder at time t ≥ 0. We suppose that

e : [0,∞[→ F

is a continuous function and that the intruder is able to move as
fast as it wants: its initial position e(0) and its trajectory e are not
known by the pursuers. Let γi(t) be the position of the ith pursuer
at time t ≥ 0. γi : [0,∞[→ F is the continuous trajectory of the
ith pursuer. Let γ be the trajectories set of the N pursuers :

γ = {γ1
, . . . , γ

N}

For all point q ∈ F , let V (q) be the set of all visible points from q in
F (i.e., all the segments joining q to a point of V (q) strictly belong
to F ). The trajectory or �watch� γ is a solution if, for all continuous
function e : [0,∞[→ F , t ∈ [0,∞[ such that e(t) ∈ V (γi(t))
(with i ∈ {1, . . . , N}) exists. This implies that the intruder cannot
escape; at a given time, necessarily, it will be uncovered.

The problem definition shows two of the main difficulties that
have to be dealt in the pursuit evasion problem. The first one is
to find a motion strategy γi(t) with i ∈ 1, . . . , N such that γi(t)
must all the time consider all the possible moves of the intruder in
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Figure 2: An intruder (white dot) can move under cover from
a hiding place to places already explored (gray area) by the
pursuer (black dot).

order that the intruder cannot move under cover from hiding places
to placed already explored by the pursuers. This difficulty is illus-
trated in figure 2. The second difficulty is to compute the minimum
number of pursuers H(F ) needed to ensure that the intruder will
be discovered. According to [8], in known environments, H(F )
computation is NP-Hard. It was proved that

H(F ) = O(
√

h + log n)

in the worst case in an environment F where n is the number of
edges and h the number of simply connected areas of F (i.e, log n

pursuers to triangulate F and
√

h pursuers to split F in simply con-
nected areas). On the contrary, we assume that the environment is
unknown. Therefore, we try first of all to solve the pursuit-evasion
problem with one pursuer. In some circumstances that we will de-
tail later, the pursuer cannot follow the exploration without assis-
tance. Then, additional pursuers are added and we make them work
as a team in order to use as best as possible the available resources
and avoid to add pursuers unnecessarily.

3. PURSUIT›EVASION ALGORITHM
The task of the pursuers is to detect the intruder in the environ-

ment, but they cannot execute this task without knowing this envi-
ronment. That is why, the pursuit algorithm interleaves two steps,
an exploring one and a pursuing one. The exploration steps build
a topological representation of F as a graph based on the possible
moves of the pursuers. During the exploration process the status of
the pursuit is also maintained for efficiency reasons. The pursuing
steps use the representation of the environment gathered during the
exploration steps so as to compute a motion strategy which guar-
antees that all the environment has been explored and the intruder
did not escape. The pursuit algorithm is based on two graphs, the
navigation graph Gn and the pursuit graph Gp.

3.1 Navigation Graph
We assume there are specific vertices of the free space F , called

critical vertices that are significant in order to solve the pursuit-
evasion problem. Those points are as follows: a vertex of F is
considered as critical if and only if the angle formed by this adja-
cent edges is superior to π. Intuitively, if we could put a pursuer
with an omni-directional vision on each critical vertex, there would
have no place where the intruder could hide in F (see figure 3).

Hereafter, we assume that the pursuers are able to detect the crit-
ical vertices of the environment, and that they move from one crit-
ical vertex to another one. Some sensing capability is required, of
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Contaminated

a critical boundary
Without crossing 

boundary
Crossing a critical

Figure 3: A critical event occurs when edges visibility changes.
A critical point is a specific point of the critical boundary.

course, to solve the problem. The pursuer is equipped with a sensor
which gives the location of discontinuities in depth information. It
is assumed that the pursuers have a kind of edge detector that can
detect each discontinuities, and returns their direction relative to
the pursuer to compute the vertices angles of the environment.

Moreover, in order to encode the different moves that pursuers
can execute into F , we describe F as a navigation graph

Gn = (Nn, En)

with Nn the set of critical vertices Vc of F and En the set of edges
that represent visibility relations between critical vertices. Initially,
the environment is entirely unknown and the visibility graph Gn is
empty.

3.2 Pursuit Graph
To solve this problem, pursuers have to know the global state of

the pursuit Sgp i.e. which parts of the environment represented
by Gn are considered as CLEAR or CONTAMINATED (when an
intruder can be hidden within) according to their current position
γ(t). Hence, a pursuit state Sp is made up of a list of critical ver-
tices Vc ∈ Nn, each of these vertices being labeled CLEAR or
CONTAMINATED.

Suppose a moment that the environment is completely known.
A complet visibility graph is shown in figure 5.a. This graph cor-
responds to the environnement shows in figure 4. It is possible to
compute a pursuit graph (see figure 5.b) that characterizes all the
different pursuit states that can be reached from Gn. Each node of
Gp is a pursuit state Sp and the edges represent the vertices where
the pursuers must go to reach the next pursuit state. As we will
present in the next section, the environment is split in subparts to
reduce the problem complexity when a pursuer does not find a so-
lution alone. Therefore, we define the global pursuit states Sgp as
the union of the different pursuit state reached by each pursuer on
each subpart of the environment.

The initial state of Gp is calculated according to the starting po-
sition p of the exploration (arbitrary chosen) and the pursuit global
state to avoid the computation of unused nodes. For each criti-
cal vertex Vc of the considered node, the CLEAR label is given if
and only if the vertex Vc is visible from p and the adjacent seg-
ments of Vc are entirely visible from p. For each possible transition
T = {t1, . . . , tn} (where n is the number of critical vertices visible
from p), a new node is generated by applying this procedure.
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Figure 4: The agents are represented by black dots, the light
gray areas show the robot perception, the white squares repre-
sent the critical points label from S1 to S5, the white areas show
the decontaminated part of the environment whereas the dark
areas show the contaminated ones.

However, when generating these new nodes, it must be verified
that the former cleared critical vertices remain cleared in the fol-
lowing node. Therefore, the following condition must be assessed:
i) for all cleared critical vertices in the current node, there do not
exist a path from a contaminated vertex to one of these vertices; ii)
if that path exists, the �threatened� vertices remain visible during
the transition ti. If those conditions are verified then the vertices
remain cleared (otherwise they become contaminated). The tran-
sition is labeled with the distance previously calculated into Gn.
This step is applied recursively on all new nodes. Thus, because
all possible transitions are explored, it is guaranteed that, if a solu-
tion exists, this solution is found by the algorithm. And, a solution
is found when a pursuit node Sp is obtained when building up Gp

such that for all Vc ∈ Sp, Vc is labeled CLEAR.

3.3 Exploration and Pursuit Algorithms
In this section we present the exploration and the pursuit process

that are interleaved. Initially, the navigation graph Gn is empty.
Thus, the goal of the exploration step is to build a partial map of
the environment on which the pursuit algorithm will be applied.

On the one hand, the exploration algorithm is as follows: The
pursuer gets the critical vertices from its initial position and ini-
tializes Gn with this position (see algorithm 1). To be sure that
an intruder will be discovered, the exploration algorithm must ex-
haustively cover the environment. Therefore, to ensure that no crit-
ical vertex will be missed by the exploration process, each node
is marked when it is visited. At each step of the exploration, the
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Figure 5: a) shows the navigation graph and b) the pursuit graph corresponding to figure 4: “N” means that the vertex is cleared;
“C” means contaminated.

Algorithm 1: Explore((edb, p, γe)
Input: : - edb the depth exploration bound.

- p the current position of the pursuer.
Output:: - p the current position updated.

- γe the exploration path.

i := 0; γe := ∅; γ�

e := ∅; N�

n := Unexplored(Gn);1
while i < edb and N�

n 6= ∅ do2
N�

n := Unexplored(Gn);3
foreach Vc ∈ N�

n do4
γ�

e := ComputeMotion(Gn, p, Vc);5
ExecuteMotion(γ�

e );6
Update(Gn, VisibleVerticesFrom(Vc));7
γe := γe + γ�

e ;8
MarkExplored(Gn, Vc);9
p := Vc;10

end11
i++ ;12

end13

pursuer explores the vertices previously discovered. Let N�

n be the
nodes of Gn that have not been visited at a given exploration step
(i.e. they have been seen but not visited) and edb the depth ex-
ploration bound. Therefore, edb allows to set to what extent the
exploration is interleaved with the pursuit.

For each Vc ∈ N�

n (i.e., the set of nodes not visited yet) the
pursuer computes the shortest path γ�

e to reach it. Once the pursuer
reached it, it gets the list of the critical vertices visible from its new
position: the navigation graph is updated with those vertices. Then,
there is two possibilities: if one of these vertices is already in Gn,
an edge is added between the current position node and this node;
otherwise, if a new critical vertex has been discovered, it is added
to the navigation graph as not visited and it is connected to the
current position node. Finally, the current position node is marked
visited. When all the node N�

n have been explored, the depth of the
exploration is incremented. The exploration algorithm ends when
the depth exploration bound is reached or if there is no more nodes
to explore. Then, the algorithm returns the exploration motion γe

which is the concatenation of each γe∗ (see algorithm 1).
On the other hand, the pursuit algorithm is as follows (see algo-

rithm 2): the pursuer is now able to seek the intruder in the pre-
viously explored part of the environment. First of all, the pursuit
process updates the pursuit graph Gp according to the exploration
path γe to know its current pursuit state. Indeed, for each vertex
crossed by γe (recall that we assume that the pursuers move from
critical vertex to critical vertex), a pursuit state is built. Then the
global pursuit state Sgp is updated. If the current state is a final
state (i.e., for all Vc ∈ Sp, Vc is labeled CLEAR), then a partial
solution is found (i.e. a solution for this part of the environment)
and the exploration process can be resumed. Practically, finding
a partial solution by following the exploration path is a particular
case.

Generally, the pursuer must build the pursuit graph Gp associ-
ated to this subpart of the environment as explained in section 3.2.
If it exists at least one final node in Gp then a partial solution is
found: the pursuer computes the pursuit motion from Gp by apply-
ing the Dijkstra algorithm and the global pursuit state Sgp is up-
dated. If no final state corresponding to the considered subpart of
the environment is found, at least one more pursuer is needed. This
additional pursuer is added in order to reduce the complexity of
the explored environment by splitting it (SPLITENVIRONMENT()).
First of all, it chooses to withdraw a node nc ∈ Gn such that the
degree of nc is the highest of Gn.

Then, the pursuer removes from the navigation graph Gn nc but
also all the visible nodes from nc. The pursuer knows that it needs
a guard staying on this node to split the environment into parts that
are represented by the different connected components of the nav-
igation graph (denoted CCGn in algorithm 2). Then, each part of
the environment can be explored independently. Indeed, leaving a
stationary pursuer on the removed node nc guarantees that an in-
truder cannot move from a part of the environment to another one.
If this method fails to share the environment into independent com-
ponents, then we obtain one connected component but the guard is
still needed on nc: the environment that remains to be explored (the
obtained connected component) is reduced. Then, the pursuit and
the splitting procedures are resumed recursively on each obtained
component (eventually the only one) until the pursuit-evasion prob-
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Figure 6: Deliberation protocol: side of the assisted robot.

lem can be solved independently on those components.
Note that the exploration (EXPLORE()) and DELIBERATION()

ares sub-procedures of the pursuit. DELIBERATION() is explained
in the next section.

3.4 Cooperation: Delegation Protocol
The cooperation is implemented through the delegation protocol:

first, a pursuer tries to solve the pursuit-evasion problem alone. The
figure 6 shows the delegation protocol side of the assisted robot
and the figure 7 shows the delegation protocol side of the assistant
robot. If it fails, other teammates are added to provide assistance.
Then the team works as follows: some pursuers are stationary in
order to split the environment while the others explore and seek
the intruder within the induced subparts of the environment. When
a subpart is cleared, the explorer and the stationary pursuers are
reallocated to another part of the environment.

This protocol is based on four different �roles� that can be played
by the pursuers while exploring the environment (these roles change
during the labyrinth exploration):

• explorer: the pursuer explores an assigned part of the envi-
ronment;

• guard: the pursuer is used to share the environment into parts
so that an intruder cannot move from one part to another one;

• idle pursuer: the pursuer is idle and it can be required for a
new task (i.e. it ended previous assigned tasks);

• stuck pursuer: this pursuer needs help to continue its explo-
ration. It cannot move without risking a recontamination of
previously explored areas.

Therefore, the first step of the deliberation protocol is to collect
the pursuers roles (see figure 6, state 1). A stuck pursuer runs this
protocol in order to estimate the team capabilities and to request
assistance. When this pursuer receives all the teammates roles, it

Algorithm 2: Pursuit(Gn, Sgp, edb)
Input: : - Gn the part of the environment to guard.

- Sgp the global status of the pursuit.
- edb the depth of exploration.

Gp := ∅; γe := ∅; γp := ∅; p := ∅; nc := ∅;1
if Gn == ∅ then2

p := InitialPosition();3
Update(Gn, VisibleVerticesFrom(p));4

end5
while ∃ Vc ∈ Gn | Vc ∈ Unexplored(Gn) do6

Explore(Gn, edb, p, γe);7
Sgp := UpdatePursuitState(Gn, γe);8
if ∀ Vc ∈ Sp, Vc == Clear then9

return ;10
end11
else12

ComputePursuitGraph(Gn, p, Sgp, Gp);13
if ∃Sp ∈ Gp | ∀Vc ∈ Sp, Vc == Clear then14

ComputePursuitGraph(Gn, p, Sgp, Gp);15
ExecuteMotion(γp);16
Sgp := UpdatePursuitState(Gn, γp);17

end18
else19

SplitEnvironment(Gn, CCGn, nc);20
Deliberation(nc);21
foreach cc ∈ CCGn do22

Pursuit(cc, Sgp, edb);23
end24

end25
end26

end27
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can assess which pursuers can help it (see figure 6, state 2). Three
cases are possible:

• if at least one pursuer is idle, the stuck pursuer informs the
idle pursuers of its need for assistance because they can be
immediately reallocated without any risk of recontamination
(see figure 6, state 4);

• if all pursuers are busy (i.e, guard or explorer) but there is
at least one guard, the stuck pursuer sends to the guards the
visible vertices it would like to be watched and the global
state of the team (see figure 6, state 3). To obtain this global
state, the stuck pursuer requests the local state of each team-
mate (i.e. the current node of their pursuit graph) and merges
all these states. With this information each guard is able to
compute all the possible moves it can do in order to assist the
stuck pursuer.

They must solve two different kinds of problems: ensure the
division of the environment and answer to the assistance re-
quests. More precisely, two possibilities must be considered:

– the guard finds that all the visible vertices from its po-
sition are cleared and thus, it becomes an idle pursuer.
Indeed, if this condition is verified, the guard is sure
that its surveillance task is finished. It has no reason
to watch vertices that are cleared because the algorithm
for one pursuer ensures that no intruder can be located
into a cleared part of the environment. Therefore, it can
leave its current position and calculate the best path to
reach a vertex from which it can carry out the requested
assistance task;

– The guard finds that at least one visible vertex from its
position is contaminated. It cannot be reallocated to
explore a sub-part of the environment. But, in some
cases, it can find a path that drives it to a vertex from
which it can carry out the requested assistance task and
fulfill its current guard task;

• if all pursuers are stuck (see figure 6, state 6), the last stuck
pursuer (that finds that all its teammate are also stuck) builds
the global state and broadcasts this information with its need
for assistance. In order to avoid a deadlock, at least one stuck
pursuer must give up its assistance request and its planned
exploration task in order to provide assistance to one of its
teammate. Thus, the areas it had previously explored must
be considered as re-contaminated.

Then, this pursuer becomes idle and provides assistance to
the last stuck pursuer. To that end, it calculates the cost
of its assistance in terms of trajectory distance and number
of re-contaminated critical vertices. Furthermore, the proto-
col must ensure that the team will not enter into an infinite
loop. For instance, assume that two areas A and B have to be
cleared: if clearing the A area implies to contaminate the B
area, it must be ensured that clearing B does not imply to re-
contaminate A. The infinite loop is avoided by recording in-
formation about the previously cleared and re-contaminated
areas. If such a loop is detected, then at least one more pur-
suer is needed.

After this step, each pursuer delivers its answer to the assis-
tance request (i.e. �refused� or �accepted� request and, in the for-
mer case, the cost of the assistance task) to the stuck pursuer that
chooses the best solution according to distance and number of re-
contaminated vertices criteria.

However, the cost of the assistance task can take into account the
pursuers’ specificities in terms of available resources. That is to say,
their ability to answer to assistance requests does not only depend
on their roles (guard, explorer, idle or stuck pursuer) but also on
their available energy etc. At this step two cases are possible:

• The deliberation converges toward one or more solutions.
The best solution is chosen according to the previously in-
troduced criteria. The chosen pursuer receives an acknowl-
edgment that informs it to start the assistance task. The other
pursuers receive a no-acknowledgment to indicate that their
solutions were not accepted.

Finally, when the assistant pursuer finishes its task, it delivers
to the stuck pursuer an �end of task� message. The former
stuck pursuer can resume its exploration task and becomes
an explorer;

• The global deliberation fails. No solution is available:

– if no solution was found even with recontamination (a
stuck pursuer abandons its exploration task), the team
fails and cannot solve the problem with the number of
pursuer involved into the environment. Necessarily, at
least one more pursuer is needed. This pursuer is added
to the team and the deliberation protocol is resume in
order to find the minimal number of pursuers needed to
converge toward a solution (see figure 6, state 7);

– if at least one pursuer is an explorer (its exploration task
is in progress but sooner or later it will become idle
or stuck), potentially it can decontaminate an area and
thus allow guards to become idle pursuers. Thus, the
failure is not effective until there is no more explorer.
Anyway, they must inform the stuck pursuer of the end
of their current tasks. Indeed, the global state may have
evolved favorably. A new round of deliberation is ini-
tiated (in the worst case, the number of additional de-
liberation rounds is equal to the number of explorers
found during the first round) and can lead to a solution
(see figure 6, state 5);

– if the team is only made up of guards and stuck pur-
suers and no solution was found by the guards, the last
stuck pursuer broadcasts to the other stuck pursuers a
deliberation request. Thus, the protocol returns to the
state 6 previously described.

4. REMARKS AND DISCUSSION

Tasks parallelization. When a pursuer is stuck, it tries to split the
environment into smaller parts to solve the problem. The
current node where the pursuer is located and all its adjacent
nodes are removed from the navigation graph. This operation
can lead to split the navigation graph in many not connected
components. If a guard stays at the current pursuer location,
the pursuer team can choose to parallelize the exploration by
introducing new pursers or available pursuers to explore each
parts of the environments (i.e. the navigation graph compo-
nents obtained after the cut). The figure 8 shows a simple
example where the parallelization is possible between two
pursuers.

Guard coordination. The role of the guards is to stay at a loca-
tion to keep a look to potential critical vertices of the envi-
ronment. Consider a guard that must stay at a location to
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Figure 7: Deliberation protocol: side of the assistant robot.

monitor some critical vertices. When a pursuer cleans a part
of the environment, the vertices that must be monitored by
the guard can become clean. These vertices must no more be
monitored by the guard. Therefore, the guard can move to
help another stuck pursuer but must always monitor the con-
taminated vertices. This case is shown by the simple example
in figure 9.

Implementation. The implementation was carried out with JAVA
language on the multi-agent platform JADE. The implemen-
tation allows to distribut agents on many hosts and shows the
motion strategies of the agents on a graphical console.

5. CONCLUSION
As presented, this cooperation protocol is adapted for an un-

known environment. The construction of the graphs can be done
iteratively: each time new critical vertices are discovered during
the exploration, they are added to the navigation and pursuit graphs
respectively. When a pursuer is stuck, the team can still run a de-
liberation about the known environment. Further deliberations are
undertaken as the known environment grows. Unlike [19] where
the algorithm provided works for only one pursuer and needs two
successive steps (environment cartography and then search for an
intruder), the simultaneous discovery and exploration of the envi-
ronment can lead to decrease the covered distances.

Furthermore, recall that when a pursuer is stuck it tries to split
the environment into smaller parts to solve the problem. When a
splitting of the environment occurs, the chosen cut node and all
its adjacent nodes are removed from the navigation graph. Indeed,
those nodes can be removed of the pursuit process because a guard
pursuer stays at the cut node position. Thus, if an intruder tries
to go over these locations it will be discovered. Of course, the
nodes not yet visited cannot be removed from the navigation graph
without risk of forgetting parts of the environment still unexplored.
The splitting of the environment is run recursively on each obtained

components until the component can be cleared by a single pursuer.
The splitting of the environment leads to distribute the algo-

rithm complexity. Suppose a moment that the whole environment
is known. The construction of the pursuit graph is O(2n) with n

the number of critical vertices of the environment. Consider now
that the pursuit algorithm split the environment into k parts, the
complexity is �reduced� to O(k2n/k). Moreover, the complex-
ity is tractable because practically the number of critical vertices
remains small. This is a fortiori verified when exploring and con-
structing the graphs simultaneously. The protocol complexity (i.e.
corresponding to the number of exchanged messages) is O(n2) in
the worst case where n is the number of pursuers.

Finally, in comparison to previous works such as [14], this co-
operation protocol allows to minimize the number of pursuers by
making them work as a team, distributing and sharing the explo-
ration among all the pursuers. It is based on a �least commitment�
strategy: indeed, extra pursuers are added if and only if coopera-
tion fails and assistance is successively sought among the least con-
strained pursuers (idle, guard, explorer and then stuck pursuers).
This leads to a better use of the pursuers’ resources, and an increase
of performances and robustness due to the parallelization.
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Figure 8: Two robots with a coordination and parallelization
tasks.
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Figure 9: A deliberation example between a stuck robot and a
guard.
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