
A Probabilistic Approach to Resource Allocation in
Distributed Fusion Systems

Jan R. J. Nunnink
Informatics Institute, Faculty of Science

University of Amsterdam

jnunnink@science.uva.nl

Gregor Pavlin
Informatics Institute, Faculty of Science

University of Amsterdam

gpavlin@science.uva.nl

ABSTRACT
In complex multi-agent fusion systems resource conflicts are very
likely to occur. We propose an algorithm that determines the opti-
mal sensing resource to fusion task assignment, based on the ex-
pected change in entropy. By exploiting the Bayesian network
framework and the structure of our agent network, the algorithm
operates in a distributed manner by combining descriptions of lo-
cal fusion models in an efficient way, which provides significant
advantages over centralized approaches.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems, Coherence and coordination; G.3 [Probability
and Statistics]: Probabilistic algorithms; H.1.1 [Models and Prin-
ciples]: Systems and Information Theory—Value of information

General Terms
Performance, Algorithms

Keywords
Bayesian networks, Distributed reasoning, Resource allocation, Mul-
tiagent systems

1. INTRODUCTION
With the recently increasing interest in large multi sensor net-

works, resource management has become an active research topic.
Often, approaches to resource management exploit information the-
oretic criteria such as Shannon entropy or Kullback-Leibler diver-
gence. Basically, they do a search over all possible sensor to task
assignments and for each combination estimate the next posterior
probability distribution over the possible states of the world, which
is then used for determination of the information gain formulated
using the change in entropy or divergence. These methods, how-
ever, usually require centralized processing and centralized knowl-
edge of the state and structure of large networks of information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

sources. Consequently, centralized approaches are inherently vul-
nerable to potential problems such as single point of failure, and
communication and computational bottlenecks. In addition, these
approaches are computationally expensive because of the search
and the estimation of the next belief state.

This paper, on the other hand, is dealing with resource allocation
in the context of diagnostic information fusion within a network
of agents. The fusion process is based on distributed Bayesian
Networks (BN), which feature tree-like topologies with a signif-
icant portion of conditionally independent branches. Information
obtained through sensory systems or other sources is inserted into
the network and fused at different levels of a hierarchy of agents in
order to update the belief in a certain hypothesis. Multiple hierar-
chical fusion structures can be active simultaneously and therefore
we will often have to deal with resource conflicts. Such conflicts
can occur when multiple agents want to access and control the same
information source with conflicting sensor parameters.

Obviously, centralized approaches to resource allocation are not
suitable for such distributed and highly dynamic fusion networks.
Therefore, we propose an efficient resource allocation method which
can cope with dynamic distributed fusion structures. It features
an allocation criterion based on the entropy change, which can be
determined in a distributed manner through collaborating agents,
without explicit knowledge of the underlying fusion structure. Ef-
ficient computation is based on parametric descriptions of the local
BNs contained in different agents, which can be seamlessly com-
bined into a fusion model that provides a mapping between nodes
located in different agents. Moreover, each resource conflict is re-
solved locally. Namely, an information source (e.g. an agent with
a direct access to sensory information) receives the estimates of in-
formation impact from each of the potential fusion structures and
provides its information to that fusion structure which will improve
the knowledge about its hypothesis the most. In other words, no
centralized knowledge of resource conflicts is required, since the
agents controling conflicting information sources decide locally by
using the knowledge of the global information impact.

The paper is organised as follows: in Section 2 we give an intro-
duction to distributed fusion systems based on probabilistic mod-
els, we discuss the resource allocation problems and propose an
approach to local resource allocation based on the impact of obser-
vations on the fusion results. In Section 3 we derive an efficient
mathematical framework for the computation of the allocation cri-
terion. Then we provide two possible algorithms for allocation us-
ing this framework in Section 4, and compare their efficiency in
Section 5. Finally, in Section 6, we experimentally confirm the
suitability of the presented approach to resource allocation, and we
end with conclusions in Section 7.

846

2. BAYESIAN FUSION
Since we deal with heterogeneous information associated with

significant uncertainties we make use of Bayesian networks (BN),
which provide a mapping between observed evidence and hidden
events. A Bayesian networkB, is defined by a tuple 〈DAG, JPD〉.
DAG is a directed acyclic graph 〈X ,L〉, whereX = {X1, . . . , Xn}
is the set of nodes and L is the set of directed edges 〈Xi, Xj〉 of
the graph. The nodes represent different events, and the links the
causal relationships between the events. JPD is the joint proba-
bility distribution, defined by

JPD(X) =
Y

X∈X

P (X|¼(X)), (1)

where P (X|¼(X)) is the conditional probability distribution (CPD)
for a node X given its parents in the network ¼(X). Thus, the com-
plete JPD can be represented by a set of CPDs, one for each node
in the dependency graph. In other words, the graph describes the
possible relationships, and the CPDs the stengths of those relation-
ships. [7, 5]

2.1 Distributed Perception Networks
We investigate the fusion of heterogeneous information in the

context of Distributed Perception Networks (DPN) [6], networks
of agents which can fuse heterogeneous information through co-
operative Distributed Problem Solving [3]. Each DPN network is a
fusion structure which updates belief in a single hypothesis through
cooperation of different agents, which in turn can roughly be clas-
sified in two types. At the lowest level there are different Sensor
agents with direct access to sensors and sensor data interpretation
capabilities while at the higher levels Fusion agents use local world
models for the information fusion. The local world models in Fu-
sion agents are encoded through Bayesian networks and represent
basic world modeling building blocks.

One of the main DPN features is that the world model required
for the fusion can be assembled and updated at runtime on an as-
needed basis. Namely, different DPN agents can organize autonomously
in complex organizations, i.e. DPN fusion structures. During such
self configuration the local world models of different agents can be
integrated into arbitrarily complex world models through appropri-
ate message passing between the cooperating agents. Each agent
updates its belief in a single event represented by a single root node
in a local BN. The fusion result, i.e. the marginal distribution over
the root node, is passed to higher level agents, which use it as an in-
put in order to update belief in events corresponding to higher level
concepts. In general, we assume that each agent can contain a local
multiply connected BN with a single root node. Furthermore, the
DPN agents form agent networks with simple tree topologies. In
other words, the BNs assembled from local BNs contained in the
agents participating in a certain DPN network feature topologies
with a significant portion of conditionally independent branches.
Note that this is not a significant limitation with respect to the fu-
sion problems we are interested in.

2.2 Resource Conflicts
In general, there can be several DPN fusion networks running

in parallel, monitoring different aspects of a certain environment.
Consequently, it can happen that more than one DPN would try to
integrate a particular sensor agent. If such sensor agents are pas-
sive, i.e. no sensing parameters are changed by the DPN, or all
fusion agents work with the same sensing parameters, then several
DPNs can share a single sensor agent without any conflict resolu-
tion. However, in advanced sensing systems, several DPNs might
want to share a sensor agent by setting different sensing parameters,

which will inevitably result in resoure allocation conflicts (see Fig-
ure 1). For example, a data stream from a pan-tilt camera might be
used by a DPN monitoring the area to the North while another DPN
would like to point the camera to the South. In order to deal with
such situations in an efficient and robust way, we allow the conflict-
ing sensor agent, i.e. the agent with a direct access to the informa-
tion source, to determine which fusion network will be granted the
rights to change the sensing parameters (e.g. observation direction)
and use the data. Such decisions are based on the estimation of
the impact the information source would have on the fusion results
of each DPN fusion structure that is interested in Sensor agent’s
information. Basically, in the case of conflicting information re-
quests from several DPN fusion structures, the information source
asks each interested fusion structure to provide an estimate of the
impact that the eventually provided information would have on its
fusion results. The sensor agent grants the access to its informa-
tion and sensing parameters to the fusion structure for which the
supplied information would have the greatest impact.

2.3 Information Impact
In conflicting situations, a choice has to be made by a sensor

agent about which fusion agent gets control over the sensor, i.e. to
which agent the sensing resource gets allocated. The DPN frame-
work places several requirements on any approach to this problem:

² It should be able to handle changes in the agent network.

² It should not be problem-specific, since it must apply to any
DPN.

² It should be able to work in a distributed manner, without
needing global knowledge.

² It should improve the quality of the fusion results.

Especially the last requirement poses some problems. After all,
what is a measure for the fusion quality, and how to compute it?

One observation we can make is that the fusion process is equiv-
alent to decreasing the uncertainty about the state of the environ-
ment. In other words, while fusing new information, we gather
evidence to change our belief in certain states. Some states will
become less likely, while others become more likely. So the more
the fusion process advances, the greater the contrast between the
beliefs will become. Therefore, this contrast can be seen as an in-
dication of the quality of the current fusion result, since it shows
how far the fusion has advanced. A common measure for the con-
trast within a vector of beliefs or a probability distribution is the
Shannon entropy [8], defined by

H(P (X)) = ¡
X

xi∈X

P (xi) log P (xi), (2)

where P (X) is a probability distribution over the variable X =
{x1, . . . , xn}. It was first proposed as a measure of information
gain in [4], and has since been used in many information theoretic
approaches to resource and sensor management. For our approach
we have therefore chosen to maximize the total absolute change in
entropy for the belief in the hypotheses of both DPNs. Since the
allocation of a sensing resource will only change the entropy of the
DPN it gets assigned to, this is equivalent to allocating the resource
to the DPN for which it causes the greatest absolute entropy change,
defined by

∆H(P (H)) = |H(P (H|E))¡H(P (H|E ∪X))| , (3)

where H is the DPN’s hypothesis variable, E is the set of all cur-
rent evidence, X is the new evidence that will be obtained through
allocation of the resource.

847

H

X

Agent 1

Agent 2

Agent n

Figure 1: Two DPNs with one mutual agent n. The trian-
gles represent the arbitrary networks within each agent. High-
lighted is a chain of agents with the hypothesis node H , over-
lapping nodes (circles), and a leaf node under consideration X ,
which represents information from sensory systems or other
sources. Agent n with the leaf node X can serve only one DPN
fusion structure at a time.

We use the absolute value of the change, because we want to
avoid biasing our policy towards a certain type of probability dis-
tribution. Namely, if we would use (3) without the absolute opera-
tor, we would be biased towards allocations that would change the
distribution towards a less uniform state, even though this change
might be very small compared to a possible change towards a more
uniform distribution. A change towards a more uniform distribu-
tion is not necessarily bad. After all, the previous evidence, which
led to the current distribution, could have been misleading.

3. COMPUTATION OF HYPOTHESIS DIS-
TRIBUTION

We define a chain of agentsA = {A1, . . . , An}, where A1 is the
highest level agent containing the root hypothesis variable H , and
An is the lowest level agent, containing the leaf variable under in-
vestigation, X . Each agent contains part of the complete Bayesian
networks, and two adjacent agents in the chain overlap with exactly
one variable (see Figure 1).

The hypothesis variable H can take the values h1, . . . , hm. We
write Rj as the overlapping variable of agents Aj−1 and Aj . This
is also the root node of agent Aj . The set of all evidence is denoted
by E , where X ∈ E .

The task is to provide the leaf agent An with knowledge of the
posterior hypothesis probability distribution, P (H|E), expressed
as a function of the variable X . Using this function it is trivial
for the agent to compute the change in entropy, ∆H(P (H)), for
different values of variable X .

Let us first consider the monolithic BN, encoded by the com-
plete chain of agents. We can compute the posterior probability as
follows, using Bayes’ rule:

P (H = hi|E) =
P (H = hi, E)Pm

j=1
P (H = hj , E)

. (4)

For the entropy of the probability distribution over H , we need
to compute (4) for each value hi of H . This requires computing
the joint probability for each value of H . Summing these joint

probabilities over all values of H then gives the denominator of
(4). In other words, agent An only needs to obtain knowledge of
the function for P (H = hi, E) in terms of X , for each value of H .

While this mapping can be easily obtained in a monolithic BN,
it is quite challenging to supply it to a leaf agent in an efficient and
robust way. Namely, each agent has only knowledge of its own
local model and it can compute only a partial mapping, namely the
function of the probability of its root P (Rj = ri, E) in terms of
its overlapping leaf node Rj+1, for each value ri of Rj . In other
words, the agents participating in a DPN fusion structure must be
able to determine a mapping between arbitrary nodes in a chain of
agents A through collaboration.

3.1 Parametric Approach
Obviously, partial world models of all relevant agents must be

combined in order to obtain mapping between the evidence and
hypothesis nodes in a chain of agents A. It turns out, that we can
provide agent An with adequate mapping P (H = hi, E) in an
efficient way by considering the fact that any joint probability of a
BN can be viewed as a linear function of any network parameter
(see [1, 2]). However, we are not interested in the function in terms
of any model parameter, but rather in terms of the input variable X .
This can be solved by treating the input node as a soft evidence node
[7]. By adding a dummy child node to the input node, and encoding
the soft evidence or likelihood into the corresponding CPD table,
we effectively make the probability vector of the input node one of
the network parameters. Therefore, we can write

P (Rj = ri, E) = c1P (Rj+1 = x1) + . . .

+ ckP (Rj+1 = xk)

= (c1, . . . , ck) ¢ ~P (Rj+1), (5)

where (c1, . . . , ck) is a vector of coefficients. See Section 3.2 about
how to compute these coefficients.

By expanding (5) to all values of Rj we get

P (Rj , E) =

0

B
@

c11 . . . c1k

...
. . .

...
cnj1 . . . cnjk

1

C
A ¢ P (Rj+1)

= C
j
j+1
¢ P (Rj+1), (6)

where nj is the number of values of node Rj .
Thus, C

j
j+1

is the local coefficients matrix of agent Aj , where
each row corresponds to a value of Rj , and each column to a value
of Rj+1. In other words, C

j
j+1

is the transformation matrix from
input to output probability vectors, and thereby encodes the local
network for one agent Aj .

We can use this equivalence for efficient computation of the map-
ping between any agents Am and An in a chain A, i.e. P (Rm =
ri, E) as a function of Rn+1. Namely, we can show that we can
compute for each agent Ai a matrix Ei

i+1 specifying a local map-
ping in such a way that the mapping C

m
n between arbitrary agents

An and Am can be computed through simple matrix multiplica-
tions C

m
n+1 = C

m
m+1 ¢E

m+1

m+2
. . . ¢En

n+1.
We show this property with the help of an example. Suppose

that we have two adjacent agents Aj and Aj+1, each supporting
local fusion. Agent Aj+1 takes soft evidence, i.e. vector w(Rj+2),
at its leaf node Rj+2 as input and transforms it to its local joint

848

distribution P (Rj+1, Rj+2) as follows:

P (Rj+1, w(Rj+2)) = P (Rj+1)
X

Π(Rj+2)

P (¼k(Rj+2)|Rj+1)

¢
X

Rj+2

P (Rj+2|¼k(Rj+2))w(Rj+2),

(7)

where ¼k(Rj+2) denotes the k-th parent node of the leaf node and
Π(Rj+2) denotes the set of all parents of Rj+2. Similarly, agent
Aj fuses soft evidence w(Rj+1)

P (Rj , w(Rj+1)) = P (Rj)
X

Π(Rj+1)

P (¼k(Rj+1)|Rj)

¢
X

Rj+1

P (Rj+1|¼k(Rj+1))w(Rj+1).

(8)

Moreover, agent Aj+1 supplies agent Aj with an input vector
which is computed as follows:

w(Rj+1) = P (Rj+1, w(Rj+2))/P (Rj+1), (9)

which is a function of w(Rj+2). By computing w(Rj+1) in this
way and plugging the result into (8) it is obvious that P (Rj , w(Rj+1))
of agent Aj is identical to P (Rj , w(Rj+2)), which would be ob-
tained if we propagated the evidence vector w(Rj+2) through a
network generated by merging the local networks of agents Aj and
Aj+1:

P (Rj , w(Rj+2)) = P (Rj)
X

Π(Rj+1)

P (¼k(Rj+1)|Rj)

¢
X

Rj+1

P (Rj+1|¼k(Rj+1))

¢
X

Π(Rj+2)

P (¼k(Rj+2)|Rj+1) (10)

¢
X

Rj+2

P (Rj+2|¼k(Rj+2))w(Rj+2).

In addition, by considering the fact that we can compute a matrix
encoding linear mapping between any pair of nodes in an arbitrary
BN [1, 2] we can write mappings which are equivalent to equations
(7), (8) and (10), respectively

P (Rj+1, w(Rj+2)) = C
j+1

j+2
¢ w(Rj+2), (11)

P (Rj , w(Rj+1)) = C
j
j+1
¢ w(Rj+1), (12)

P (Rj , w(Rj+2)) = C
j
j+2
¢ w(Rj+2), (13)

where matrix C
j
j+2

describes the mapping (10) between the evi-
dence w(Rj+2) and the hypothesis Rj in the monolithoc BN, while
matrices C

j+1

j+2
and C

j
j+1

correspond to equations (7) and (8), re-

spectively. Obviously, we can use matrix C
j+1

j+2
to obtain the mes-

sage w(Rj+1) passed between the agents Aj+1 and Aj , which is
identical to (9). We first obtain transformation matrix E

j+1

j+2
by di-

viding each row in C
j+1

j+2
, an n £m matrix, by the corresponding

component of prior vector P (Rj+1) = (P (r1

j+1), . . . , P (rm
j+1)))

(ek1, . . . , ekn) = (ck1, . . . , ckn)/P (rk
j+1)¢ (14)

With E
j+1

j+2
we can compute w(Rj+1)

w(Rj+1) = E
j+1

j+2
w(Rj+2). (15)

Furthermore, we know that the combination of (7) and (8) through
(9) is equivalent to (10). Given this equivalence and the fact that the
result of (15) is identical to (9), we can conclude that the combina-
tion of (11) and (12) through (15) is equivalent to (13) and we can
write:

C
j
j+2

w(Rj+2) = C
j
j+1

E
j+1

j+2
w(Rj+2). (16)

Obviously, we can extend this factorization approach to any chain
of N agents

C
j
j+Nw(Rj+N) = C

j
j+1

E
j+1

j+2
¢ ¢ ¢Ej+N−1

j+N w(Rj+N). (17)

3.2 Computing the Coefficients
We can compute the coefficients as follows: recall that the func-

tion for the joint probability is

P (Rj = ri, E) = (c1, . . . , ck) ¢ P (Rj+1). (18)

By choosing convenient values for the vector P (Rj+1) and doing
any standard propagation, such as Junction Tree [5], on the network
using that vector as evidence, we can compute the coefficients. For
example, by setting P (Rj+1) = (1, 0, . . . , 0)T , we get P (Rj =
ri, E) = c1, which makes c1 equal to the propagation result. In
a similar manner all the coefficients of the matrix C

j
j+1

can be
computed.

Furthermore, the coefficients depend on both the network pa-
rameters and the evidence, and since the parameters are fixed the
matrices can therefore only change if new (soft) evidence has been
obtained. So if we describe the function of a joint probability in
terms of all evidence nodes of a local network, then the coefficients
of this function only need to be computed once. If we are then re-
quired to compute the coefficients for the function in terms of only
one evidence node, we can simply fill in the last known evidence
or likelihoods for the other evidence nodes. This will significantly
decrease the computational complexity.

For example, suppose we have a local network with binary root
node R and two binary evidence nodes, A and B. Then we can
compute the transformation parameters c1, c2, c3 and c4 by solving
the following system of linear equations:

P (r, E) = c1P (a)P (b) + c2P (¹a)P (b) +

c3P (a)P (¹b) + c4P (¹a)P (¹b). (19)

In a situation where we need to compute P (r, E) as a function of
node A, we can obtain the required coefficients by filling in the
(soft) evidence about node B. In this way we obtain the following
function of A:

P (r, E) = [c1P (b) + c3P (¹b)]P (a) +

[c2P (b) + c4P (¹b)]P (¹a). (20)

4. ALGORITHMS
As soon as an agent An supplying values based on input variable

X with d possible states detects conflicting information requests
from higher level DPN agents, it needs estimates of the impact of X

on the uncertainty about the hypothesis H of each involved DPN.
The comparison and resource alocation is based on the cummu-
lative entropy change for each hypothesys

P
X

∆H(P (H)), i.e.
the sum of the entropy changes, each corresponding to a possible
instantiation (i.e. hard evidence) of node X . Namely, prior to allo-
cating the resource we do not know how the node X will be instan-
tiated; depending on whether we add X = xi or X = xj to the

849

evidence set, we will get different entropy changes. Finally, agent
An grants the access to the control parameters and its information
to the DPN fusion structure with the greatest

P
X

∆H(P (H)). In
addition,

P
X

∆H(P (H)) depends on evidence nodes that were
already instantiated when the allocation algorithm was executed.
Since the evidence E changes constantly, the allocation algorithm
should repeatedly be executed within appropriate time intervals in
order to reevaluate the potential impact of evidence X . Namely,
information impact, i.e. the allocation criterion, can change due
to new evidence from sources other than X and, consequently,
an information source must be later reallocated to another DPN
fusion structure. In other words, the presented approach to allo-
cation must adapt to the current instantiation. Clearly, repeated
source allocation requires efficient algorithms for the determina-
tion of

P
X

∆H(P (H)). We can identify two approaches to dis-
tributed computation of this quantity, both based on multi agent
collaboration. One method exploits the parametric belief mapping
described in the previous section, while another approach makes
use of a traditional belief propagation mechanism, such as for ex-
ample Junction Tree algorithm.

4.1 Algorithm 1
Using the analysis from the previous sections we can describe

an algorithm, an efficient approach to distributed computation ofP
X

∆H(P (H)), which is supplied to the conflicting agent. The
algorithm can be splitted into three phases, as can be seen on the
right.

4.2 Algorithm 2
In general, we could compute

P
X

∆H(P (H)) directly through
combining local belief propagations based on ¸ ¡ ¼ or Junction
Tree algorithms within each participating agent. Basically, given
a leaf node X in agent An that can serve only one of the sev-
eral interested higher level agents, we could gradually propagate
the evidence through a chain of agents all the way to the hypothe-
sis node for each possible instantiation of X , compute the entropy
change and return the result to An. In general, for each of the pos-
sible d states of node X we have to run local belief propagation
algorithm in agent Ai+1 separately and send the partial fusion re-
sults to a higher level agent Ai. This approach to the determination
of
P

X
∆H(P (H)) is captured by the algorithm displayed on the

right.

5. PERFORMANCE ANALYSIS
In this section we analyze and compare the performance of the

presented algorithms in the context of computational as well as
communication costs. We can show that determination of the ev-
idence impact between arbitrary nodes in a distributed BN can be
more efficient if we use the parametric method (Algorithm 1) in-
stead of Algorithm 2 based on direct belief propagation.

It turns out that Algorithm 1 is more efficient than Algorithm
2 in terms computational costs, while both methods are associated
with very similar communication costs. In order to facilitate further
analysis we assume that all input and root nodes have the same
dimension d.

5.1 Communication Effort
We define the communication costs through the number of pa-

rameters that have to be transported through inter-agent messages.
Given a chain of N agents, Algorithm 1 generates N ¡ 1 mes-

sages, each containing d£ d parameters of relative transformation
matrices C

j
j+1

or E
j
j+1

. In addition, Phase 1 requires N ¡ 1 mes-
sages propagated from the conflicting agent An all the way up to

Algorithm 1:

Preliminary Phase
If an agent is started up, compute the coefficients of the
function for its local joint probability in terms of all evidence
nodes (e.g. see (19))

Phase 1
if (a) a Sensor agent detects a conflict, or (b) a Fusion agent
receives a request for the determination of the information
impact then

if the agent has a parent agent then
Forward this request to the next agent on the path
towards the hypothesis node

else
Using the coefficients from the Preliminary Phase,
compute the local matrix C

j
j+1

by filling in the
weights for the other evidence nodes (e.g. see (20)),
and send it to the next agent on the path towards the
conflicting agent

end
end

Phase 2
if an agent receives a matrix M then

Using the coefficients from the Preliminary Phase,
compute the local matrix C

j
j+1

by filling in the weights
for the other evidence nodes (e.g. see (20))
Compute E

j
j+1

(see (14))

Compute Mnew = M ¢Ej
j+1

if the agent is not the sensor agent then
Send Mnew to the next agent on the path towards the
conflicting agent

else
Use Mnew to compute the entropy change for
different instantiations and assign the resource by
messaging the parent agents

end
end

Algorithm 2:

For each possible state of X agent An specifies hard evidence1

and computes the posterior distribution over its local root Rn.
Thus, for each of the possible d states of X we obtain a
distribution over states of Rn;
All d distributions of Rn are sent to the agents that are2

requesting information from An;
If agent Ai receives a message with d distributions of the root3

node Ri+1 from the lower level agent Ai+1, then each of these
distributions is used to compute d posterior distributions for
the root node Ri;
if Ai has a parent Ai−1 then4

All d distributions of Ri are sent via a message to Ai−1

else
Compute

P
X

∆H(P (H)) and send it back to agent An

via the chain of agents that were participating in the
gradual fusion process

end

850

the hypothesis node. Thus, the communication costs Cc
1 for Algo-

rithm 1 can be expressed as:

C
c
1 = (N ¡ 1)(d£ d + 1). (21)

In Algorithm 2, on the other hand, each agent in the chain of
N agents receives d distributions from the supplying agent, and
computes d distributions over its local root node. Thus, the inputs
as well as outputs are described through d £ d parameters. If an
agent does not have a parent, then it computes

P
X

∆H(P (H))
for each of the d distributions received from the supplier agent and
returns the result via the chain of agents to the conflicting agent.
Therefore, the communication costs Cc

2 for Algorithm 2 can be
expressed as:

C
c
2 = (N ¡ 1)(d£ d + 1), (22)

which is identical to Cc
1 .

5.2 Computational Effort
We define the computational costs through the number of multi-

plications. In Algorithm 1 agent Aj has a set of parameters which
are obtained at the initialization phase, prior to the actual fusion
process (see for example (19)). These parameters and instantia-
tions of leaf nodes of Aj are used for the computation of the local
transformation matrix E

j
j+1

. In addition, the agent must multi-

ply E
j
j+1

with d£ d matrix C
1

2 ¢ ¢ ¢E
j−1

j supplied by agent Aj−1.
This operation requires d3 multiplications. Finally, as agent with
the conflicting leaf node generates the mapping between the leaf
node and the hypothesis node C

1

2 ¢ ¢ ¢E
n−2

n−1
E

n−1

n , a d £ d matrix
which requires additional d3 multiplications. Thus, the overal com-
putational cost C

p
1

for Algorithm 1 can be expressed as:

C
p
1

=

NX

j=1

(Ma1

j + d
3), (23)

where Ma1

j denotes the number of multiplications required to com-
pute E

j
j+1

based on the current instantiation of leaf nodes that do
not belong to the path connecting the conflicting node and the hy-
pothesis node. Note that this computation is based on the coef-
ficients that were precomputed in the Preliminary Phase of Algo-
rithm 1. It can be shown that Ma1

j , is exponential in the number of
leaf nodes.

Algorithm 2, on the other hand, requires d local propagations,
i.e. computations of the root node’s distributions, in each agent.
The net computational costs can be formulated as follows:

C
p
2

=

NX

j=1

d ¢Ma2

j , (24)

where Ma2

j denotes the number of multiplications required for lo-
cal variable elimination in agent Aj .

It is well known that Ma2

j is exponential in the number of vari-
ables in the cliques of the moralized graph of the local BN. In ad-
dition, it is linear in the number of cliques. For each variable in a
BN we can find a clique, containing this variable and its parents.
Consequently, the cliques grow with the number of loops in a local
BN. In other words, Ma2

j grows exponentially with the number of
loops.

We see that the global computational cost C
p
1

can be higher than
C

p
2

if a significant portion of the local BNs feature high branch-
ing factors and few nodes with multiple parents. Conversely, C

p
1

can be smaller than C
p
2

, if in a large portion of local BNs there ex-
ist cliques whose number of variables exceeds the number of local

H1 H2

?

X

1Agent A

2Agent A 2Agent B

1Agent B

Agent C

Figure 2: Two small example DPNs with a conflict over agent
C. Shaded circles denote evidence nodes, and the dotted circles
are hypothesis nodes.

leaf nodes. Given these properties, we could improve Algorithm
1, by computing the local E

j
j+1

matrix via traditional local vari-
able elimination if an agent used a BN with high branching factors
and simple BN structure without loops. In this case, the differ-
ence of local computational costs would equal d3, corresponding
to the additional local matrix multiplication in Algorithm 1 , which
is negligible if we deal with small d.

In addition, Algorithm 1 supports further improvement of effi-
ciency if some agents do not receive any new evidence between
two subsequent computations of

P
X

∆H(P (H)). In such cases
agents which did not receive new evidence do not have to recom-
pute the local matrix E

j
j+1

. For these agents the corresponding
Ma1

j = 0, which means additional reduction of computational
costs. Algorithm 2, on the other hand, must recompute all root
distributions, irrespective of local leaf node instantiations.

Also, Algorithm 2 requires a strict sequence of local variable
eliminations throughout the chain of agents A, since the elimina-
tion at agent Aj depends on the elimination at agent Aj+1. Obvi-
ously, this can result in timing bottlenecks. In the case of Algorithm
1, on the other hand, the local matrices E

j
j+1

are computed inde-
pendently at every agent, which can speed up the determination of
the information impact significantly. Namely, the local matrices
E

j
j+1

can be computed immediately after the agents received a re-
quest for the determination of the information impact, which was
propagated from the conflicting agent An throughout the chain of
agentsA. In this way, each agent has time to compute its local ma-
trix until it receives the matrix C

1

2 ¢ ¢ ¢E
j−1

j from agent Aj−1. In
other words, a significant portion of the expensive processing steps
required for the determination of

P
X

∆H(P (H)) is carried out in
parallel.

6. EXAMPLE
In this section we show a simple example of how Algorithm 1 is

used and how it improves decision making performance compared
to a simple allocation policy. Consider Figure 2. Two DPNs are
involved, the first consisting of agents A1 and A2 and the second
of agents B1 and B2. The grey nodes are evidence nodes and the
dual headed arrows represent inter-agent communication channels.
In this particular situation both DPNs have already observed their
other evidence nodes’ values and now want to incorporate agent C

into their network. However, agent C is able to satisfy the informa-

851

Allocation Policy Correct Threshold

Entropy Based 34,3%
Random 24,6%

Table 1: Results of the experiment, showing the percentage of
times a threshold was reached using different allocation poli-
cies.

tion request of only one of the two, because they require agent C to
use its sensor with different, and conflicting, parameters. A choice
has to be made by agent C.

In this experiment we compare two allocation policies. The first
is based on the change in entropy of the hypothesis variables of both
DPNs, as computed by the algorithm explained in Section 4. The
second policy simply connects agent C permanently to whichever
DPN requested it first. Effectively, this is equivalent to a random
allocation.

We created 2000 DPNs, using the structure depicted in Figure 2,
but with random CPDs, and compared the effects of applying the
policies to the allocation problem. Since we want to have the sys-
tem make decisions based on the belief in the hypotheses, we take
as the quality criterion the percentage of times a correct threshold
was reached. Here, ‘correct’ means the threshold corresponding to
the class from which the particular data point was sampled.

The choice for this threshold is not trivial. If we set it too high,
the percentages will be so small that the randomness of the exper-
iment becomes too influential. On the other hand if we set it too
low, both policies will probably reach it easily, and the difference
will not be very clear. See Table 1 for the results. While the abso-
lute difference is only 10 %, the relative difference is almost 40 %.
Clearly, the maximum entropy change based policy outperforms
the random policy.

7. CONCLUSION
We have proposed an approach to resource allocation in a certain

class of multi agent Bayesian fusion systems, based on the impact
of the new resource on the fusion result. We use the cummula-
tive entropy change as a measure for this impact in DPN fusion
structures, and our experimental results show that this is indeed an
appropriate criterion for effective and efficient resource allocation.

In addition, we exploit the multi agent framework to compute
the evidence impact in a collaborative manner. The allocation of
information resources is carried out locally by the sensor agent that
receives conflicting information requests from fusion agents. In
other words, we avoid centralized allocation control, which results
in improved efficiency and robustness.

Also, we proposed a parametric approach to computation of the
cummulative entropy changes, which is very suitable for distributed
fusion and can be significantly more efficient than traditional evi-
dence propagation methods.

Acknowledgements
This work was done within the Combined Systems project at the
Decis Lab, Delft, and is supported by the technology program of
the Dutch Ministry of Economic Affairs.

8. REFERENCES
[1] E. Castillo, J. M. Gutiérrez, and A. S. Hadi. Sensitivity

analysis in discrete Bayesian Networks. IEEE Transactions on
Systems, Man, and Cybernetics. Part A: Systems and Humans,
27:412–423, 1997.

[2] V. M. H. Coupé and L. C. van der Gaag. Practicable
sensitivity analysis of bayesian belief networks. In Joint
Session of the 6th Prague Symposium of Asymptotic Statistics
and the 13th Prague Conference on Information Theory,
Statistical Decision Functions and Random Processes, pages
81–86, Prague, 1998.

[3] E. Durfee, V. Lesser, and D. Corkill. Trends in cooperative
distributed problem solving. IEEE Transactions on
Knowledge and Data Engineering, 1(1):63–83, 1989.

[4] K. J. Hintz and E. S. McVey. Multi-process constrained
estimation. IEEE Transactions on Systems, Man, and
Cybernetics, 21(1):237–244, 1991.

[5] F. V. Jensen. Bayesian Networks and Decision Graphs.
Springer-Verlag, New York, 2001.

[6] G. Pavlin, M. Maris, and J. Nunnink. An agent-based
approach to distributed data and information fusion. In
IEEE/WIC/ACM Joint Conference on Intelligent Agent
Technology, pages 466–470, 2004.

[7] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[8] C. E. Shannon and W. Weaver. The Mathematical Theory of
Communication. University of Illinois Press, Urbana IL, 1949.

852

