
Adaptive Sharing of Large Resources in P2P Networks

Prithviraj Dasgupta
Computer Science Department

University of Nebraska, Omaha, NE 68182, USA
E-mail: pdasgupta@mail.unomaha.edu

ABSTRACT
A peer-to-peer(P2P) system comprises a network of nodes that are
capable of sharing and exchanging resources with one another. Re-
cent studies of P2P networks show that many resources exchanged
between users are considerably large files that require significant
download times, consume the majority of the network bandwidth,
and also occupy substantial storage space on the node providing
the resource. In such a scenario, it would be inefficient for a node
to store a large resource that is rarely, or never requested by other
nodes, or, to share a large resource with a node that is already ac-
quiring the resource from another source. These inefficiences can
be mitigated if a node dynamically determines and updates its deci-
sion to store and share large resources. Here, we describe an agent
enabled adaptive strategy for a node to share large resources based
on the expected availability of the resource in the network. Experi-
mental results of our adaptive sharing strategy show that a saving of
8-12 downloads/resource, accounting for 50-70 MB of saved data
transfer/resource, can be achieved without performance deteriora-
tion in the P2P network.

Categories: I. Computing Methodologies
I.2 Artificial Intelligence
I.2.11 Distributed Artificial Intelligence
Subject Descriptor: Multiagent Systems

General Terms: Algorithms, Management, Economics.
Keywords: Peer-to-peer networks, resource management, prob-

abilistic sharing, revelation mechanism.

1. INTRODUCTION
A P2P system comprises a network of users located on nodes

which are capable of exchanging and sharing resources with each
other in a distribued manner. The decentralized nature of a P2P net-
work makes it attractive for sharing thousands of resources without
worrying about problems of scalability or load balancing. The re-
cent popularity of file-sharing networks such as Gnutella[5], Nap-
ster, and SETI@home indicate that P2P networks are emerging as a
major medium for sharing and exchanging resources between users
on the Internet. Recent studies of file-sharing P2P networks[6] have
shown that many of the resources exchanged between users are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

large files greater than 100 MB in size that require download times
in the order of days and account for 65 percent of the data trans-
ferred in the P2P network. In this paper we address the challenges
related to the sharing of such large resources in P2P networks.

In P2P networks sharing is motivated by mutual exchange of re-
sources between users[5, 10]. A user shares the resources it pos-
sesses with other users so that it can expect to receive resources in
return from those users. In such a scenario, it is counter-intuitive
for a user to share large resources that are very rarely, or, never re-
quested by other users. Sharing unrequested large resources does
not enhance the possibility of a user of receiving resources from
other users. However, the large resources still consume substantial
storage space on the user’s node.

Large resources also consume considerable data transfer band-
width when they are shared(downloaded) between nodes. It is a
challenging problem to reliably transfer large amounts of data in a
P2P network that has no central server node to implement a conges-
tion control algorithm for guaranteeing resource downloads. This
makes it inefficient for a node to commence sharing a large resource
with another node while running the risk of the download process
getting aborted before the requesting node completely acquires the
resource. Therefore, it makes sense to investigate mechanisms that
would enable users to share large resources without incurring the
overheads stemming from inefficient storage or sharing of large re-
sources.

Previous research addressing the resource sharing problem in
P2P networks uses distributed congestion control algorithms such
as controlled flooding[3], and fluid flow models[9]. However, most
of these techniques address the problems of P2P resource sharing
at the cost of decreased availability of resources in the network that
adversely affects the performance of the P2P network. In[6], data
traces reported from resource sharing in real-life P2P networks in-
dicate that it is difficult to model the number of requests for large
resources using pre-defined distributions such as the zipf distribu-
tion used to model Web page requests[4]. Instead of degrading
the network performance or modeling P2P resource sharing char-
acteristics with a pre-defined distribution, we envisage that a better
technique for sharing large resources would be to dynamically ad-
just the probability of sharing and storing a large resource based
on the demand for the resource among other nodes in the network
and the current availability of the resource in the network. In this
paper, we propose a software agent enabled mechanism that adap-
tively determines the sharing decision of a node for a large resource.
Our experimental results show that the adaptive sharing strategy
can achieve a saving of 8-12 downloads/resource, accounting for
50-70 MB of saved data transfer/resource, without performance de-
terioration in the P2P network.

839

2. CHALLENGES OF SHARING LARGE
RESOURCES IN A P2P NETWORK

A P2P network enables sharing of resources among participating
nodes in a distributed and decentralized manner. New nodes enter
the network using the node discovery protocol while sharing and
exchanging resources between the nodes is implemented through
the resource discovery protocol. We assume that the network and
resource discovery protocols are already available in our P2P net-
work. We consider an unstructured and pure(completely decen-
tralized) P2P network that does not contain a central server node
to maintain information about participating nodes and administer
resource management. In pure P2P systems, a search query for a
resource from a node is flooded across the network. This ensures
that every node in the network receives a query originated by any
node in the network.

In our proposed mechanism, we assume that users are located on
nodes of the P2P network, and each node is provided with an agent
that enables the user to determine its resource sharing decision with
other users(nodes). In the rest of the paper, we use the terms user,
node and agent interchangeably. The problems for sharing large
resources in P2P networks are the following:

• Constrained Storage Space. The nodes of a P2P network
are located on computers with finite storage capacity. The
storage capacity of a node constrains the size and number
of large resources that can be shared by the node. In a P2P
network, a node is motivated to share a resource with other
nodes because it expects to receive resources in return from
those nodes. A suitable mechanism for sharing resources
should adaptively remove from the node’s storage, large re-
sources that no other node wishes to acquire, because those
resources do not enhance the node’s chances of receiving re-
sources from others.

• Aborted Downloads. When a large resource is requested
by a node, the providing node incurs considerable transfer
bandwidth and download time for sharing the resource. Par-
tially completed downloads are inefficient for the node shar-
ing the resouce because it still expends bandwidth and down-
load time to share part of the resouce. However, the provid-
ing node does not qualify to receive resources in return be-
cause it did not provide complete resources to the requesting
nodes. The problem of aborted downloads can be mitigated
by a mechanism that avoids unnecessary downloads of a re-
source as described below.

• Redundant Downloads. In a P2P network, a node often re-
quests the same resource from multiple providing nodes to
improve its chances of acquiring the resource when down-
load completion is not guaranteed. Such a scenario can lead
to aborted partial downloads for the nodes providing the re-
source as soon as the requesting node obtains the first copy
of the resource from one of the providing nodes. Unneces-
sary downloads can be reduced by a mechanism that adapts
a node’s decision to share a resource based on the availabil-
ity of the resource among other nodes in the network and the
expected demand of the resource in the network.

In the next section, we describe a technique for sharing large re-
sources in a P2P network to address these issues using an agent
based adaptive sharing mechanism. The adaptive sharing mech-
anism requires each agent to perform local computations only to
determine its resource sharing decision so that the mechanism can
operate efficiently in a decentralized P2P environment.

3. ADAPTIVE SHARING FOR LARGE
RESOURCES

In a P2P network, a node’s agent shares a resource with other
nodes’ agents so that it can expect to acquire resources in return
from those agents. The utility received by an agent from sharing
a resource is determined by the number of agents that wish to ac-
quire the shared resource. This means that the sharing utility of a
resource should be proportional to the number of expected requests
from other agents for that resource. As the resource gets shared
between agents, the number of agents still wishing to acquire the
resource diminishes. Therefore, the sharing utility of a resource
should be dynamically updated to reflect the change in the number
of expected requests for that resource.

Resource demand data from file-sharing P2P networks show that
a resource’s demand decreases over time[6]. Newly available re-
sources are requested frequently for download while relatively older
resources are seldom requested. Following this P2P resource de-
mand characteristic we assume that an agent values a resource in
proportion to the sharing utility of that resource. When a new re-
source is introduced by an agent in the P2P network it has a certain
value that diminishes as other agents download the resource and ac-
quire copies of it. The number of expected requests for a resource
at a particular instant should be the same at all agents(nodes) across
the P2P network. Since the value of a resource to an agent is deter-
mined by the number of expected requests for the resource, there-
fore, it is intuitive for all agents possessing a particular resource to
use the same valuation function for the resource. Also, the value of
a resource to an agent ultimately becomes zero when every agent in
the network wishing to acquire the resource receives it. To model
these characteristics we have chosen the resource valuation func-
tion of an agent as a linearly decreasing function of the form:

vt = v0(1−
No. of agents possessing the resource at instant t

Total no. of agents wishing to acquire the resource
),

where vt is the valuation of a resource that was introduced in the
network t instances ago, and, v0 is the initial valuation of the re-
source by the agent that introduces it in the network. Since every
agent is rational, the probability of sharing a resource is determined
as the relative value of the resource at instant t, viz., vt/v0. There-
fore, the sharing strategy is independent of the initial resource value
v0 selected by the introducing agent.

The resource sharing function of an agent π : v × t → [0, 1]
takes the relative valuation of the resource and the duration since
the resource was introduced and returns the probability of sharing
the resource. The resource is removed from the agent’s storage
when the sharing function returns a zero probability for sharing the
resource. We now show the calculations performed by an agent
in its resource sharing function to calculate the resource sharing
probability from the parameters reported by other agents. The cal-
culations are shown for one resource. and the same calculations
can be used for every resource.

The parameters for our analytical model of the P2P network are
the following:

N No. of agents in the network wishing to acquire a resource
k Average upload capacity of agents(nodes)

in the network
χ Fraction of agents in the network that share their resources

with other agents
vt Valuation of a resource by an agent after download

round t

v0 Initial valuation of a resource by the agent that
introduces it

840

st No. of agents sharing the resource during
download round t

δt Average no. of download requests for a resource
received by an agent during download round t

ρ Rate of adding new resources in the network
πt Probability of sharing a resource during download

round t

We consider a download-round as the average time required to
download a resource. We consider one download round as the met-
ric for time in our model to remove asynchrony arising out of com-
munication delays in our calculations. Also, notice that the average
upload capacity k corresponds to the average number of agents that
can acquire the resource in each download round from one agent
sharing the resource.

Case I. Agents do not share resource after downloading. First,
we consider the case where only the agent A0 that introduces the
resource in the network shares it while agents that download the
resource from A0 do not share it. In each round k agents acquire the
resource from A0. Since none of the agents receiving the resource
share it, therefore, the value of the resource diminishes by k/N in
each download round. The value of the resource vt after download
round t is given by v0(1 − kt/N). The probability of sharing the
resource after t download rounds is then given by

πt =
vt

v0

=
v0(1− kt/N)

v0

= 1− kt/N (1)

Note that, in this scenario, the probability of sharing a resource
depends on the average download capacity of agents k. The re-
source is no longer requested by any agent after t = N/k download
rounds.

Case II. Agents share resource after downloading. Now we con-
sider the case when agents that download the resource selectively
share it with other agents in the network that request the resource.
Since each agent providing the resource can support k simultane-
ous uploads, the number of agents acquiring the resource during
download round t is given by:

dt = kst, (2)

where st is the number of agents sharing the resource during
download round t. st is given by the sum of the number of agents
were sharing the resource during the previous download round (t−
1), and, the number of agents that acquire the resource during
download round (t− 1) and also share it. Therefore, we get:

st = st−1 + χdt−1. (3)

Substituting dt−1 = kst−1 obtained from Equation 2 in Equa-
tion 3 we get:

st = st−1 + χkst−1

or,st = st−1(1 + χk) (4)

Solving the above recurrence relation with s1 = 1 (the agent(node)
that introduces the resource in the network is the only agent that
shares during download round 1) we get

st = (1 + χk)t−1 (5)

Substituting the value of st from Equation 5 in Equation 2 we
get

dt = k(1 + χk)t−1

The total number of agents that acquire the resource since the
introduction of the resource in the network until download round t

is given by

∑

t

dt =
∑

t

k(1 + χk)t−1 =
(χk + 1)t − 1

χ
(6)

In a manner similar to the derivation of Equation 1 the valua-
tion of the resource after t download rounds is given by v0(1 −
(χk+1)

t−1

Nχ
. Therefore, the probability of sharing the resource after

t download intervals is:

πt =
vt

v0

= 1 −
(χk + 1)t − 1

Nχ
(7)

The number of download rounds τ elapsed before every agent
wishing to acquire the resource receives it can be calculated by
setting (χk+1)

τ−1

χ
= N and solving for τ which yields

τ = logχk+1(χN + 1) (8)

3.1 Determining χ, k and N

An agent uses Equation 7 to determine the value of its sharing
function. However, in a decentralized P2P setting it is difficult for
a single agent to determine the values of the network-wide (global)
parameters on the r.h.s of Equation 7. We now inspect these pa-
rameters and discuss mechanisms and calculations for each agent
to detemine them locally.

• Determing the average upload capacity of nodes, k: To en-
able calculation of k, each agent in the network reports, (i.e.
broadcasts) its upload capacity ki to all other agents(nodes)
in the network. This is a valid mechanism for agents to re-
port their ki values because the node discovery protocol used
by P2P networks such as Napster and Gnutella, requires a
node to report its upload capacity when it joins the network.
Since the upload capacity of an agent(node) does not change
over time, these values have to be reported only once by each
agent when it joins the network. Each agent then locally cal-
culates k as the sum of individually reported ki-s averaged
over the number of agents reporting, i.e.,

k =
i=N
∑

i=1

ki/A,

where A is the number of agents reporting their values of
ki-s.

• Calculating the fraction of agents that share the resource, χ:
The agents that do not share the resource are those that report
a value ki = 0. The fraction of agents that share the resource
is then calculated by each agent as:

χ = 1 −
No. of agents that report ki = 0

A

whereA is the number of agents reporting their values of ki-
s. Therefore, χ can be calculated locally by an agent from
the ki values reported to it from other agents.

• Calculating the number of agents wishing to acquire the re-
source, N : As mentioned in Section 2, we consider a pure
P2P system where resource search queries are flooded across
the network and every agent in the network receives a request
for a resource initiated by a particular agent in the network.
We assume that the time to flood resource requests � time
to download a large resource. Therefore, an agent receives
all requests for sharing a resource from agents that wish to
acquire the resource but haven’t yet acquired it, before the

841

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

11

(rate of adding resources) ρ

A
v

e
ra

g
e

 t
im

e
 f

o
r

a
ll

n
o

d
e

s
to

 d
o

w
n

lo
a

d
 r

e
so

u
rc

e
s

(s
e

c.
)

)

µκ=2

µκ =4

µκ =7

N = 100

cacheSize = 3
χ = 0.5

Figure 1: Variation in the average download time for resources
with ρ for different values of µk.

agent commences a download round. Then, the total number
of agents, N , wishing to acquire a resource is given by the
sum of the number of download requests received each agent
in the network during a particular download round t and the
number of agents that already acquired the resource between
download rounds 1..(t− 1), i.e.,

N = δt +

t−1
∑

1

dt,

where t can take values between 1 and τ (τ is the no. of
download rounds elapsed before every agent wising to ac-
quire the resource receives it).

Substituting
∑

dt from Equation 6 we get:

N = δt +
(χk + 1)t−1 − 1

χ
,

Substituting this value of N in Equation 7 we get:

πt = 1 −
(χk + 1)t − 1

χδt + (χk + 1)t−1 − 1
(9)

In Equation 9, each agent is aware of the number of resource
requests, δt, it receives. t is the age of the resource since it was
first introduced in the network and is measured using the number
of download rounds. t can be easily calculated by each agent by
subtracting the date/time of creation attribute passed with the re-
source from the current time. Therefore, an agent can calculate the
value of its sharing function given by Equation 9 locally from its
values of δt, t, χ and the reports of the ki values it receives from
other agents.

4. EXPERIMENTAL RESULTS
We simulated our algorithm for adaptive resource sharing on a

P2P network with the following parameters: N = 100, ki values
for the nodes are drawn from the normal distribution N(µk, 1.0)
where µk is varied between 1 and 10 to simulate agents(nodes)
with different upload capacities. χ is varied between 0.05 and 1.0

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

A
v

g
. n

o
. o

f
d

o
w

n
lo

a
d

 r
o

u
n

d
s

p
e

r
re

so
u

rc
e

Mean upload capacity of agents(µ
k

)

Without adaptive sharing

With adaptive sharing

N = 100
χ =
ρ = 10

0.5

Figure 2: Variation in the average no. of download rounds
per resource for different values of average upload capacities
of agents(µk) with and without adaptive sharing.

to simulate different proportions of sharing agents, while ρ is var-
ied between 1 and 10 to simulate different rates of introducing new
resources in the network. The duration of 1 download round for
a resource is chosen randomly between 5-10 seconds to simulate
different download times for different resource sizes. We refer to
the storage space of a node as its cache, and, the storage capacity as
the node’s cache size. We assume that each agent(node) can hold
upto 3 resources in its cache, and, therefore, has a cache size of
3. If the cache gets full, an agent has to remove at least one re-
source it is sharing from its cache before it can download another
resource. In our simulations, the resource with the least value of the
sharing function is selected for removal when the cache gets full.
Resource removal is assumed to take a constant time of 1 sec. on
each node. In all the experiments performed, the adaptive sharing
required the same or lesser resource download completion times
as the non-adaptive mechanism. Moreover, in all the experiments,
the adaptive sharing mechanism achieved significant savings in the
number of downloads over the non-adaptive mechanism, by avoid-
ing redundant downloads.

Figure 1 shows the variation in the average download time for
a resource for different values of the resource introduction rate, ρ.
When resources are introduced rapidly, the downloading activity in
the network increases. This increases network traffic and network
latency and results in increased download time for all resources.
Therefore, as shown in Figure 1, the average time to download a
resource increases as the rate(ρ) at which new resources get added
increases. When the average upload capacity of the agents, k, in-
creases, the download time decreases because each agent can sup-
port more uploads in each round resulting in faster dissemination
of the resource in the network. Each curve in Figure 1 exhibits a
knee around ρ = 3. This happens because with an introduction
rate ρ ≤ 3, the resources in the cache do not need to be replaced
as cache size = 3. However, beyond ρ > 3, one resource needs
to be replaced from each node’s cache, for each resource added.
The delay in replacing a cache entry accounts for the increase in
download times for ρ > 3.

Figure 2 shows the variation of the average no. of download
rounds for a resource for different values of µk for ρ = 10. As the
mean upload capcity µk of agents increases, each agent can down-

842

0 5 10 15
0

50

100

150

200

250

300

Average upload capacity of agents

N
o

. o
f

d
o

w
n

lo
a

d
s

sa
v

e
d

N = 100
χ

ρ

= 0.5

 = 10

Avg. no. of rounds = 4

Avg. no. of rounds = 3

Avg. no. of rounds = 2A‘ A

B‘

B

Figure 3: No. of downloads saved with adaptive sharing vs.
average upload capacities of agents(µk) .

load more resources. Therefore, the average number of rounds to
download a resource decreases when µk increases. When adap-
tive(probabilistic) sharing is used, redundant downloads are avoided
and this accounts for between 10-35 percent reduction in the aver-
age number of download rounds for each resource.

Figure 3 shows the number of resource downloads that were
saved for different values of µk when resources are shared adap-
tively. Similar shaped curves were obtained for different values
of ρ in the range of 1 − 9. As shown in Figure 3, the number
of downloads saved illustrates a cyclic pattern. When the average
no. of rounds to download resources approaches a transition to a
lower value, the number of downloads saved drops significantly as
shown at points A and B on the curve. Just prior to these points, the
number of downloads saved has a considerably high value (points
A’ and B’ on the curve). The reason for this behavior can be at-
tributed to the fact that at points A’ and B’ only a few agents do not
have the resource in the last round as a high value of µk ensures
that most agents receive the resource before the last round. There-
fore, the downloads, if any, in the last one round (for point A’) or
two rounds (for point B’)comprise redundant downloads and are
avoided by our adaptive sharing mechanism. Overall, the adaptive
sharing strategy achieves a saving of 8-12 downloads per resource
per download round accounting for about 50-70 MB of saved data
transfer corresponding to every resource in every round.1

Figure 4 shows the variation in the average number of download
rounds per resource for different values of χ when ρ = 4 when
adaptive sharing is used. As more agents stop sharing resources
(χ gets smaller) the resource becomes less available in the network
because there are fewer ’sharing’ ndoes from which the resources
can be downloaded. For χ < 0.1, the download of the resource
is not guaranteed because with such a low value of the fraction of
sharing agents, very few agents end up sharing the resource. This
scenario illustrates a society of selfish agents that are only inter-
ested to acquire resources (if available) but do not share resources
themselves with other agents. When compared with non-adaptive
sharing, downloads are successful for lower values of χ than with
non-adaptive sharing because avoiding the redundant downloads
increases the chances of successful downloads even when very few
nodes share.

1Assuming a download bandwidth of 5 Mbps for each node and a
download time between 5-10 secs. per resource.

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

Fraction of agents sharing resources

A
v

g
. n

o
. o

f
d

o
w

n
lo

a
d

 r
o

u
n

d
s

p
e

r
cr

e
so

u
rc

e

(χ)

N = 100

ρ

µ
κ

 = 4

 = 4

Figure 4: No. of download rounds/resource vs. reported no. of
agents sharing the resource with adaptive sharing.

5. ENSURING TRUE REPORTS FROM
OTHER AGENTS

A major concern in P2P networks is the problem of free-riding[1].
Free-riders are selfish agents that acquire resources from other agents
that share resources, but themselves never share resources with
other agents. Free-riders can exploit our adaptive sharing mech-
anism by falsely understating their upload capacity, ki, when they
broadcast it. When any one agent i understates its value of ki,
the average upload capacity, k computed by each agent in the net-
work decreases, and, correspondingly the value of πt increases in
Equation 9. Therefore, if an agent i understates ki it can coerce
other agents to share the resource for a longer duration. This would
affect the mechanism proposed in Section 3 by causing agents to
share large resources even when those resources actually have no
demand. Therefore, it is crucial to ensure that each agent i does not
falsify its reported value for ki.

To ensure true reports of the ki values from agents we propose
a Vickrey-Clarkes-Grove(VCG) type revelation mechanism [8]. In
VCG mechanisms, each agent i from a setA of agents, is assumed
to have a quasi-linear utility function u : Θ → <. Each agent
i reports its value, also called the agent’s type, θi ∈ Θi, (Θi is
the set of types for agent i)to a central location. A set of alterna-
tives L is used to specify the outcome and one of these alterna-
tives is chosen by the central location using the choice function,
l : Θ1 × ...Θ|A| → L, specified by the VCG mechanism. Each
agent is then assigned the outcome determined by the choice func-
tion by the central location. The VCG mechanism also assigns a
side payment ti(θ) to each agent determined by the VCG mecha-
nism’s payment function t : Θ1× ...Θ|A| → <. The side payments
to each agent ensure that the external effects of the agent’s revealed
value are internalized, i.e., it is in the agent’s best interest to re-
veal its true type and enable the mechanism to select the alternative
corresponding to the best outcome for all agents.

We now show that using the VCG mechanism in our model, each
agent reports its true value of ki. The VCG mechanism requires ev-
ery agent to report its type to a central location that computes the
choice and payment functions. In our model, ki values are broad-
cast over the network and each agent receives the reports from all
other agents in the network. Therefore, the VCG mechanism de-
scribed below is applied | A | times in our P2P network, once for

843

each agent as the central location, to preserve the distributed nature
of the system. Alternatively, these calculations can also be per-
formed on a single trusted node, with the values calculated by the
single node being broadcast to all agents in the network.

To implement the VCG mechanism in our model, we have de-
fined the quasi-linear utility function of agent i as:

ui(θi) = vi(l, θi)− ti(θi), (10)

where, θi = ki, the revealed upload capacity of agent i, and,vi(l, θi)
is the value obtained by agent i from this revelation corresponding
to alternative l ∈ L.

The set of alternatives corresponding to the outcome are:

L =

�

1 if the resource is received by an agent
0 if the resource is not received by an agent

The valuation function of each agent i is specified using the fol-
lowing parameters:

γ Price of the resource if the agent had to purchase it
from outside the P2P network.

c Cost to acquire the resource in the P2P network.
This cost includes the search cost and the download
bandwidth cost incurred by the agent to acquire the
resource.

θi Upload capacity ki revealed by the agent.

Without loss of generality, we have assumed that the parameters
γ and c are identical for each agent. The valuation function for
agent i is then given by:

vi(l, θi) =

�

γ − c−
∑τ

t=ti
θi if l = 1,

−ε if l = 0.

The term
∑τ

t=ti
θi in the above equation gives the number of

times agent i will share the resource since acquiring it in download
round ti until the last download round τ . This summation corre-
sponds to the decrease in the resource’s value due to sharing. (The
value of τ can be calculated using Equation 8.) When l = 0, the
agent incurs a cost ε for searching the resource.

Applying the choice function of the VCG mechanism:

l
∗(θ) = arg maxl∈L

∑

i

vi(l, θi),

to this setting gives:

l
∗(θ) = arg maxl∈L{((γ − c)| A |

−

i=|A|
∑

i=1

τ
∑

t=ti

θi),−ε | A |} (11)

Therefore, the choice function returns l = 1 corresponding to
the valuation γ − c−

∑τ

t=ti
θi of each agent.

The payment function of the VCG mechanism is given by:

ti(θ) =
∑

j 6=i

vj(l
∗
−i(θ−i), θj)−

∑

j 6=i

vj(l
∗(θi, θ−i), θj),

Substituting this value of ti(θ), the utility to agent i is given from
Equation 10 we get:

ui(θi) = vi(l, θi)−
∑

j 6=i

vj(l
∗(θi, θ−i), θj)

+
∑

j 6=i

vj(l
∗
−i(θ−i), θj)

Agent i’s report of θi does not affect the last term in the above
equation, and so, it can be ignored while calculating ui(θi). Sub-
stituting the values of the first two terms in the above equation from
the valuation function under chosen alternative l = 1, we get:

ui(θi) = γ − c−
τ

∑

t=ti

θi + ((γ − c)(| A | −1)

−(
∑

j=1..i−1,i+1..|A|−1

τ
∑

t=tj

θj)) (12)

The objective of agent i is to reveal type θ̂i, that might not nec-
essarily be its true type, such that it maximizes its utility given in
Equation 12. i.e. max θ̂i∈Θi

ui(θi). However, the revealed type θ̂i

of agent i only has an effect on the choice function and the agent
can maximize Equation 12 by revealing its true type. Therefore,
agent i reports its true type θi, or, in other words, its true upload
capacity, ki to other agents by using the VCG mechanism.

6. RELATED WORK
Resource sharing mechanisms in P2P networks has been an ac-

tive research topic since the inception of P2P networks. Many
researchers [12, 13] have proposed structured overlays using dis-
tributed hash tables (DHT-s) for P2P networks to address resource
management issues. However, most of these systems address the is-
sue of improving the search latency for resource queries in P2P net-
works instead of directly addressing the problems of sharing large
resources. Several researchers [2, 7, 14] have also addressed the
problem of incentive based mechanisms for resource sharing in P2P
networks. Most of these systems use a game theoretic approach
and employ reputation and trust based mechanisms to incentivize
resource exchange between P2P users and mitigate the free-rider
problem. These research concentrate on the economic aspects of
sharing resources and do not propose solutions for sharing large
resources. The issues related to congestion control in decentral-
ized P2P networks have been addressed using distributed conges-
tion control algorithms in [3, 9]. However, it is difficult to apply
these congestion control techniques to the P2P resource sharing
protocol because they reduce the availablity of a resource and result
in a deterioration of performance in the P2P network.

A major motivation behind our research has been the data traces
resulting from resource sharing in commercially deployed file-sharing
P2P networks which are reported in [6]. The findings in these pa-
pers indicate that many resources exchanged between P2P users
are large objects that consume significant network bandwidth, and,
often require several days to download. They also indicate that,
contrary to earlier reports, the number of requests for a resource
in a P2P environment does not follow the zipf distribution that is
commonly used for Web page requests[4]. This makes it difficult
to construct an analytical model for P2P resource sharing based
on pre-defined distributions. Therefore, in this paper we have pro-
posed an adaptive mechanism to model the probability of sharing
large resources.

7. CONCLUSION AND FUTURE WORK
In this paper, we described an agent based adaptive mechanism

for probabilistically sharing large resources in a P2P environment.
Our simulation results show that such a mechanism can address the
problems of sharing large resources without performance degrada-
tion.

In the analytical model of the P2P network considered in this pa-
per, we assumed that resource search queries are flooded in the net-

844

work according to a Gnutella-like model. In the future we propose
to extend our adaptive sharing mechanism to model resource dis-
tributions when sophisticated P2P search algorithms such as DHT-
s[13] and evolutionary search mechanisms are used. Also, we as-
sumed that nodes do not frequently join and leave the P2P network
which enables us to model the set of nodes requesting a particular
resource as a constant set. However, when nodes dynamically join
and leave the network, this set can also change dynamically. We
propose to investigate the effect of these changes on the computa-
tion of the sharing probability of a resource. Finally, we plan to
investigate the effect of sharing incentives based on trust and refer-
rals on the adaptive sharing mechanism described in this paper.

8. REFERENCES
[1] E. Adar and B. Huberman, “Free Riding on Gnutella,” First

Monday.
[2] S. Braynov and T. Sandholm, “Incentive compatible

mechanism for trust revelation,” AAMAS 2002, pp. 310-311.
[3] L. Costa, M. Amorim, and S. Fdida, “Reducing Latency and

Overhead of Route Repair with Controlled Flooding,”
Wireless Networks, vol. 10, no. 4, 2004, pp. 347-358.

[4] M. Crovella, M. Taqqu, and A. Bestavro, “Heavy-tailed
probability distributions in the World Wide Web,” A
Practical Guide To Heavy Tails, eds. R. Adler, R. Feldman,
M. Taqqu, Chapman and Hall, 1998.

[5] Gnutella, URL http://www.gnutella.com
[6] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy and J.

Zahorjan, “Measurement, modeling, and analysis of a
peer-to-peer file-sharing workload,” SOSP 2003, pp.
314-329.

[7] P. Golle, K. Leyton-Brown, and I. Miranov, “Incentives for
sharing in P2P Networks,” Proceedings of the ACM
Conference on Electronic Commerce, 2001, pp. 264-267.

[8] A. Mas-Colell, M. Whinston and J. Green, “Microeconomic
Theory,” Oxford University Press, 1995.

[9] L. Massoulie, “Stability of Distributed Congestion Control
with Heterogeneous Feedback Delays,” Microsoft Research
Technical Report, 2000.

[10] Mojo Nation, URL
http://sourceforge.net/projects/mojonation

[11] The FastTrack Protocol URL http://cvs.berlios.de
[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker, “A scalable content-addressable network,”
SIGCOMM 2001, pp. 161-172.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M.
Kaashoek, F. Dabek, H. Balakrishnan, “Chord: a scalable
peer-to-peer lookup protocol for internet applications,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1,
2003, pp. 17-32.

[14] B. Yu and M. Singh, “Searching Social Networks,”
Proceedings of Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2003, pp.
65-72.

845

