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ABSTRACT
Just as POMDPs have been used to reason explicitly about
uncertainty in single-agent systems, there has been recent in-
terest in using multi-agent POMDPs to coordinate teams of
agents in the presence of uncertainty. Although multi-agent
POMDPs are known to be highly intractable, communica-
tion at every time step transforms a multi-agent POMDP
into a more tractable single-agent POMDP. In this paper,
we present an approach that generates “centralized” poli-
cies for multi-agent POMDPs at plan-time by assuming the
presence of free communication, and at run-time, handles
the problem of limited communication resources by reason-
ing about the use of communication as needed for effective
execution. This approach trades off the need to do some
computation at execution-time for the ability to generate
policies more tractably at plan-time. In our algorithm, each
agent, at run-time, models the distribution of possible joint
beliefs. Joint actions are selected over this distribution, en-
suring that agents remain synchronized. Communication is
used to integrate local observations into the team belief only
when those observations would improve team performance.
We show, both through a detailed example and with experi-
mental results, that our approach allows for effective decen-
tralized execution while avoiding unnecessary instances of
communication.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Keywords
Communication, Distributed Execution, POMDP, Robot Teams

1. INTRODUCTION

A fully cooperative team of agents is one in which the
members work to achieve a shared reward, and no agent
has individual preferences that conflict with the team goals.
In addition to domains such as robotic soccer where a co-
operative team is inherent in the problem description [17],
multi-agent teams are useful for performing tasks that would
be difficult or expensive for a single agent. For those tasks,
which are present in domains such as planetary exploration
or urban search and rescue [5, 12], multi-agent teams can
provide additional robustness to failure and may allow for
the completion of tasks that would be impossible for a single
agent. However, multi-agent teams also present additional
challenges. Because there will be instances in the problem
space of a multi-agent team where the actions of one agent
affect the optimal action choice for other team members,
in addition to reasoning about uncertainty in the state of
the world, agents must also reason about uncertainty in the
internal state of their teammates. The difficulty of reason-
ing over uncertainty in this collective state of the team is the
source of the increased intractability of policy-generation for
multi-agent teams.

Partially Observable Markov Decision Problems (POMDPs)
have been used extensively to plan over uncertainty in single-
agent systems (e.g. [8, 18, 9]). Recently, a multi-agent ex-
tension to POMDPs has been proposed as a mechanism for
coordinating teams of agents. Unfortunately, the problem of
generating optimal policies for these multi-agent POMDPs
is known to be NEXP-complete [2], making these prob-
lems highly intractable. Communication provides a valuable
tool both for improving the performance of a multi-agent
team and for improving the tractability of team coordina-
tion. Free and instantaneous communication allows for per-
fect inter-agent coordination by transforming a multi-agent
POMDP into a large single-agent POMDP [16] which has
lower computational complexity. However, in most domains,
communication is a limited resource and therefore cannot
be treated as having zero cost. When communication has
a cost, it can still be used to improve team performance by
allowing agents to share information with their teammates,
but reasoning about communication as part of the policy-
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generation process does not improve planning tractability.
In this paper, we introduce an approach that exploits the

computational complexity benefits of free communication at
policy-generation time by generating a centralized plan as if
the agents were going to communicate at every time step.
Then, at run-time, each agent maintains a distribution of
possible joint beliefs of the team and chooses to communicate
only when it perceives that communication will benefit team
performance. Section 2 of this paper gives an overview of
the multi-agent POMDP framework and discusses related
work. Sections 3 and 5 introduce our algorithm for reducing
the use of communication resources while maintaining team
coordination. Section 4 illustrates this algorithm in detail
with an example and Section 6 presents experimental results
that demonstrate the effectiveness of our approach at acting
in coordination while reducing communication.

2. BACKGROUND AND RELATED WORK

There are several equivalent multi-agent POMDP formu-
lations (i.e. DEC-POMDP [2], MTDP [16], POIPSG [14]),
all of which model cooperative multi-agent teams under col-
lective partial observability, a class of observability in which
the union of the observations of all of the teammate agents
may be insufficient to uniquely identify the current world
state. In all of these models, the agents take individual ac-
tions and receive local observations, but accumulate a joint
team reward. The multi-agent POMDP model consists of
the tuple 〈α,S ,A, T , Ω,O,R, γ〉:

• α - the number of agents in the team

• S - the set of n world states, {s1 . . . sn}
• A - the set of m possible joint actions of the team,

where each joint action, ai, is composed of α individual
actions 〈ai

1 . . . ai
α〉

• T - the transition function (T : S × A × S → �),
which depends on joint actions and gives the proba-
bility associated with starting in a particular state si

and ending in a state sj after the team has executed
the joint action ak

• Ω - the set of possible joint observations, where each
joint observation, ωi, is composed of α individual ob-
servations, 〈ωi

1 . . . ωi
α〉

• O - the observation function (O : S × A × Ω → �),
which gives the probability of observing the joint ob-
servation ωi after taking action ak and ending in state
sj

• R - the reward function (R : S × A → �), which
indicates the reward that is received when the team
starts in a state si and takes the joint action ak

While the problem of solving for the optimal policy of a
single-agent POMDP is known to be PSPACE-complete [13],
the problem of finding the optimal policy, either with or
without communication, for a multi-agent POMDP is known
to be NEXP-complete [2, 16], putting multi-agent POMDPs
in a fundamentally harder complexity class than single-agent
POMDPs. For this reason, prior approaches to working with
multi-agent POMDP models have primarily focused on find-
ing heuristic approaches to generate locally optimal policies

or on methods that may be used to speed up the computa-
tion of optimal policies. Hansen et al. recently presented a
dynamic programming algorithm for finding optimal policies
for POIPSGs [7]. Experimental results indicate that in some
domains, dynamic programming may provide a substantial
speed-up over brute-force searches, but in general, using this
method to generate optimal policies remains computation-
ally intractable. Therefore, the majority of work in the area
of multi-agent POMDPs has focused on finding heuristic al-
gorithms that may allow for the faster computation of locally
optimal multi-agent POMDP policies.

One set of approaches involves placing limiting assump-
tions on the types of domains that can be solved. Gold-
man et al. identify a range of decentralized control problem
classes and demonstrate that by varying the limiting as-
sumptions placed on the problem domains, the overall com-
plexity of the problems varies from P to NEXP [6]. One
example of a limiting assumption that affects solution com-
plexity is identified by Becker et al., who define a class of
multi-agent POMDP problems with the property of “transi-
tion independence”. This property holds in domains where
the global state can be partitioned into local states of in-
dividual agents, and each agent’s local actions affect only
its own local state and not the state transitions of its team-
mates [1]. Agents must still coordinate in this framework
because they share a team reward that is dependent on joint
actions. For domains where this assumption holds, Becker
et al. present an algorithm that allows for more tractable
policy computation.

Other heuristic approaches include a policy search method
that restricts the space of policies that can be discovered
only to those that can be expressed as finite state con-
trollers with limited memory [14], and an iterative method
that repeatedly solves for the optimal policy for a single
agent while holding the policies of its teammates fixed, ter-
minating when the policies converge to a local optimum [10].
Emery-Montemerlo et al. approximate a POIPSG with a se-
ries of smaller Bayesian games and learn a policy over this
approximate representation [4]. Their approach is able to
solve larger problems than those that could be solved ex-
actly, but is unable to guarantee strict coordination between
agents when it is needed.

Recent work has also begun to address the problem of
using communication effectively to improve performance of
multi-agent teams within the multi-agent POMDP frame-
work. The COM-MTDP framework developed by Pyna-
dath et al. provides a theoretical framework for reasoning
about communication at plan-time [16]. In practice, how-
ever, the number of different messages that agents may wish
to communicate can grow as large as the set of every pos-
sible observation history observed by an agent, since every
observation history may represent a different belief that an
agent could wish to convey. Reasoning about communica-
tion at plan time would require the enumeration of all of
these possible messages, as well as the intended effect of
each message on the team belief. One approach, Commu-
nicative JESP, addresses this problem by placing a re-
striction on the frequency at which communication takes
place, requiring agents to communicate at least every K time
steps [11]. Therefore, only messages that encode observa-
tion histories up to length K are considered. However, this
restriction creates situations in which agents communicate
not because the information is expected to increase perfor-
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mance but because the communication was needed to allow
for tractable policy computation. Other heuristics strictly
limit the allowed communications to a very small set of mes-
sages whose effect on belief can be easily encoded as part
of the model [19, 20, 4]. Our approach differs from all of
these previous approaches in that we reason about commu-
nication at execution-time. This allows us to consider as
possible messages only those observation histories that have
actually been observed, instead of all of the histories that
could potentially be seen. Additionally, our approach is ap-
plicable to all multi-agent POMDP domains, and does not
place any restrictions on the types of policies that can be
discovered.

It is known that free communication transforms a multi-
agent POMDP into a large single agent POMDP. This is
done by making each agent broadcast its local observations
to the entire team at each time step. When all of the lo-
cal observations are known to every team member, they can
be treated as a single joint observation, giving the system
the same complexity as a single-agent POMDP, PSPACE-
complete [16]. However, because communication is not gen-
erally free, it is necessary to reason about its effective use.

In this paper, we introduce an algorithm that takes as
input a single-agent POMDP policy, computed as if for a
team with free communication, and at run-time, maintains
team coordination and chooses to communicate only when
it is necessary for improving team performance. This al-
gorithm makes two trade-offs. First, it trades off the need
to reason about communication decisions at execution-time
in exchange for the ability to generate infinite-horizon poli-
cies for decentralized teams that would otherwise be highly
intractable to compute. Secondly, it minimizes communica-
tion, with the potential sacrifice of some amount of reward.

3. DEC-COMM ALGORITHM

Policies for multi-agent POMDPs are computationally dif-
ficult to generate because agents must reason not only about
their own local observations and actions but also about the
possible observations and actions of their teammates. Single-
agent POMDP policies are mappings from beliefs to actions
(π : B → A), where a belief, b ∈ B, is a probability distribu-
tion over world states. An individual agent in a multi-agent
system cannot calculate this belief because it sees only its
own local observations. Even if an agent wished to calculate
a belief based only on its own observations, it could not,
because the transition and observation functions depend on
knowing the joint action of the team.

A multi-agent POMDP can be transformed into a single-
agent POMDP by having each agent communicate its local
observation to all of its teammates at every time step. A
standard POMDP solver can then be used to generate a pol-
icy that takes as input joint observations and outputs joint
actions. The belief over which this policy operates is hence-
forth referred to as the joint belief. Creating policy over
joint beliefs is equivalent to creating a centralized controller
for the team, but executing this policy with a decentralized
team would require agents to communicate their observa-
tions at each time step. We wish to reduce the amount
of communication resources used by eliminating instances
of communication that do not improve team performance.
Therefore, in this paper, we introduce the Dec-Comm al-
gorithm that, in a decentralized fashion, selects actions for

each agent based on the possible joint beliefs of the team and
inserts instances of communication when an agent’s analysis
of its local observations indicate that sharing this informa-
tion would lead to an increase in expected team reward.

3.1 Q-POMDP: Reasoning over possible joint
beliefs

The Q-MDP heuristic is an approach for finding approx-
imate solutions to large single-agent POMDPs by first solv-
ing the underlying MDP and then, at execution-time, se-
lecting the action that maximizes expected reward over the
current belief [9]. The solution for an MDP provides a set of
value functions, V, where Va(s) is the value of taking action
a in state s and henceforth acting optimally. These value
functions are used by the Q-MDP heuristic to choose the
best action at a given belief, b, by examining the average
value of a particular action in each state, weighted by the
probability of being in that state at the current time:

Q-MDP(b) = arg max
a

X

s∈S
b(s) × Va(s) (1)

Analogously, we introduce a heuristic, Q-POMDP, which
approximates the best joint action for a multi-agent POMDP
by reasoning over the values of actions in each possible joint
belief, as provided by the solution to the underlying central-
ized POMDP. In our approach, a joint policy is generated
for the system as described above. During execution, each
agent calculates the distribution of possible joint beliefs of
the team. This distribution can be represented by tree, with
each path through the tree representing a possible joint ob-
servation history that could have been observed by the team.
We define Lt, the set of leaves of the tree at depth t, to be
the set of possible joint beliefs of the team at time t. Each
Lt

i is a tuple consisting of 〈bt, pt, �ωt〉, where �ωt is the joint
observation history that would lead to Lt

i, bt is the joint be-
lief at that observation history, and pt is the probability of
the team observing that history.

Table 1 presents the algorithm for growing a single leaf in
a tree of possible joint beliefs given a joint action. Every pos-
sible joint observation resulting from the joint action taken
at time t generates a child leaf at time t+1. Pr(ω|a, bt),
the probability of receiving an observation ω while in belief
state bt after having taken action a, is calculated for each
ω ∈ Ω. The resulting belief, bt+1, is calculated using a stan-
dard Bayesian update [8]. The child leaf associated with
this joint observation is composed of the new belief, bt+1,
the probability of reaching that belief, which is equivalent
to the probability of receiving the observation ω in Lt

i times
the probability of reaching Lt

i, and the observation history
ω. It is important to note that this algorithm does not take
into account the actual observations seen by each agent, en-
abling the agents to independently compute identical trees.

Just as Q-MDP approximates a POMDP using the the
policy for the underlying MDP, the Q-POMDP heuristic:

Q-POMDP(Lt) = arg max
a

X

Lt
i ∈Lt

p(Lt
i) ×Q(b(Li), a) (2)

approximates a DEC-POMDP using the centralized policy
generated for the underlying POMDP, selecting the joint ac-
tion that maximizes expected reward over all of the possible
joint beliefs in Lt. Because this reward is a weighted aver-
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growTree(Lt
i, a)

Lt+1 ← ∅
bt ← b(Lt

i)
for each ω ∈ Ω

bt+1 ← ∅
Pr(ω|a, bt) ←P

s′∈S O(s′, a, ω)
P

s∈S T (s, a, s′)bt(s)
for each s’ ∈ S

bt+1(s′) ← O(s′, a, ω)
P

s∈ST (s, a, s′)bt(s)

Pr(ωj|a, bt)
pt+1 ← p(Lt

i) × Pr(ω|a, bt)
�ωt+1 ← �ω(Lt

i) ◦ 〈ω〉
Lt+1 ← Lt+1 ∪ [bt+1, pt+1, �ωt+1]

return Lt+1

Table 1: Algorithm to grow the children of one leaf
in a tree of possible beliefs

age over several beliefs, there may exist domains for which
an action that is strictly dominated in any single belief, and
therefore does not appear in the policy, may be the optimal
action when there is uncertainty about the belief. We use
the one-step look-ahead Q function:

Q(bt, a) =
X

s∈S
R(s, a)bt(s) + γ

X

ω∈Ω

Pr(ω|a, bt)Vπ(bt+1) (3)

in order to take these actions into account. Whereas the
value function, Vπ(b), is only defined over those actions
which appear in the centralized policy π, the Q function
returns expected reward for any action and belief. bt+1 is
the belief that results from receiving the joint observation ω
after taking action a in belief state bt. Pr(ω|a, bt) and bt+1

are calculated as in Table 1.
By selecting an action that maximizes expected reward

over Lt, the distribution of possible joint beliefs that is main-
tained identically by all of the agents on the team, ignoring
the local observations of the agents, the Q-POMDP heuris-
tic guarantees that all of the agents will independently se-
lect the same joint action at every time step. It is clear,
however, that this joint action selection will perform unnec-
essarily conservatively, choosing an action that takes into
account all possible contingencies. In the next section, we
introduce the Dec-Comm algorithm, which utilizes commu-
nication to allow agents to integrate their true observations
into the possible joint beliefs of the team while still main-
taining team coordination.

3.2 Dec-Comm: Using communication to im-
prove performance

The Dec-Comm algorithm provides agents with a heuris-
tic for determining when communication will be beneficial
to team performance. The heuristic specifies that an agent
should only communicate when it sees that integrating its
own observation history into the joint belief of the team
would cause a change in the joint action selected by Q-
POMDP. The details of the Dec-Comm algorithm are pro-
vided in Table 2. When deciding whether or not to commu-
nicate, the agent computes aNC , the joint action selected
by Q-POMDP over Lt, the current distribution of possible
joint beliefs. It then prunes Lt, removing all beliefs that
are inconsistent with its own local observation history, to

produce a new distribution, L′. The action selected by Q-
POMDP over L′, aC , is the action that would be selected by
the team were the agent to communicate to its teammates.
If the actions differ, this indicates that communication may
cause an increase in expected team reward, and Dec-Comm
instructs the agent to broadcast its observation history to
all of its teammates. (Note that this algorithm can eas-
ily be extended to take into account communication cost by
comparing the difference in expected reward achieved by ac-
tions aNC and aC over the possible beliefs in L′ to the cost
of communication.)

Agents that receive communication from their teammates
prune their distributions of possible joint beliefs to take into
account their teammate’s observation history. Because re-
ceiving this new information may prompt an agent to de-
cide to communicate its own observation history, there may
be multiple instances of communication in each time step.
Therefore, agents must wait a fixed period of time to allow
the system to quiesce before acting.

Dec-Comm(Lt, �ωt
j)

aNC ← Q-POMDP(Lt)
L′ ← prune leafs inconsistent with �ωt

j from Lt

aC ← Q-POMDP(L′)
if aNC 
= aC

communicate �ωt
j to the other agents

return Dec-Comm(L′, ∅)
else

if communication �ωt
k was received from

another agent k
Lt ← prune leafs inconsistent with �ωt

k

from Lt

return Dec-Comm(Lt, �ωt
j)

else
take action aNC

receive observation ωt+1

j

�ωt+1

j ← �ωt
j ◦ 〈ωt+1

j 〉
Lt+1 ← ∅
for each Lt

i ∈ Lt

Lt+1 ← Lt+1 ∪ growTree(Lt
i, aNC)

return [Lt+1, �ωt+1

j ]

Table 2: One time step of the Dec-Comm algorithm
for an agent j

4. EXAMPLE

To illustrate the details of our algorithm, we present an
example in the multi-agent tiger domain introduced by Nair
et al. [10]. We use the tiger domain because while it is
small and therefore easily understood, it is still a problem
that requires coordinated behavior between the agents. The
world in the tiger problem consists of two states, SL and
SR. These states correspond to two doors, one on the left
and one on the right. Behind one door is a tiger and behind
the other is a treasure. (The state SL indicates that the
tiger is behind the left door.) The agents start out with a
uniform distribution over these two states (b(SR) = 0.5).

The goal in the tiger problem is to open the door with
the treasure behind it. To this end, there are three ac-
tions that can be performed: OpenL, which opens the left
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door, OpenR, which opens the right door, and Listen, an
information-gathering action that does not change the state
of the world but provides knowledge about the position of
the tiger. In the multi-agent tiger problem, there are two
agents acting the world, each of whom can independently
perform any of the three actions.

Rewards for the tiger problem are structured such that
agents should avoid opening the door with the tiger. The
maximum possible reward (+20) occurs when both agents
open the door with the treasure. An explicit coordination
problem is built into the domain by making it preferable for
the agents to both open the wrong door together (reward
= -50) rather than for each agent to open a different door
(reward = -100). There is a small cost of -2 if the agents
perform the joint action 〈Listen,Listen〉.

To increase their chances of opening the correct door, the
agents must increase their certainty about the position of the
tiger. At each time step, each agent receives an independent
observation. The possible observations are HearLeft (or
HL), indicating that the tiger is behind the left door, and
HearRight (HR), indicating that the tiger is behind the
right door. If either agent opens a door, the observations
received in that time step have no informative value. If both
agents perform Listen, the observations are independent
(meaning agents may hear different observations in the same
time step) and noisy, correctly identifying the position of
the tiger with 0.7 probability. This particular observation
model, a slight modification of the model presented by Nair
et al., makes it so that the optimal policy for a centralized
team would be to hear two consistent observations (e.g. a
joint observation of 〈HR, HR〉) before opening a door.

We generated a joint policy for this problem with Cas-
sandra’s POMDP solver [3], using a discount factor of γ =
0.9. Note that although there are nine possible joint actions,
all actions other than 〈OpenL, OpenL〉, 〈OpenR, OpenR〉,
and 〈Listen, Listen〉 are strictly dominated, and we do not
need to consider them.

Time Step 0:
In this example, the agents start out with a synchronized
joint belief of b(SR) = 0.5. The joint policy indicates that,
for this belief, the best action is 〈Listen, Listen〉. The
agents have no need to communicate at this point because
their local observation histories are empty.

Time Step 1:
After executing the joint action 〈Listen,Listen〉, agent 1
observes HearLeft. (Although agent 1 does not know that
this has happened, agent 2 has also observed HearLeft at
this time step.) Agent 1 must now execute growTree to
determine the possible joint beliefs. There are four possible
joint observations that could have been observed. There-
fore, L1 contains four leaves:

0.5
p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

p = 0.29
0.5

p = 0.21
0.5

p = 0.21 p = 0.29
0.155 0.845

The Q-POMDP heuristic, executed over the leaves in L1,
indicates that aNC , the joint action that would be chosen
without communication, is 〈Listen,Listen〉. To determine
if communication is necessary, agent 1 now prunes L1 to

contain only those leaves consistent with its own local ob-
servation of HL:

0.5
p = 1.0

HL HL

HL H
R

<LISTEN, LISTEN>

0.50.155
p = 0.58 p = 0.42

Running Q-POMDP on the pruned tree shows that the
best post-communication action, aC , would also be 〈Listen,
Listen〉. Because agent 1 determines that communication
would not change the joint action, it chooses not to com-
municate at this time step. It is important to note that at
this point, if both agents could somehow be forced to com-
municate their local observations, only a single joint belief
would remain, and the best action for that belief would be
〈OpenR,OpenR〉. This is an instance in which our algo-
rithm, because each agent is reasoning over the information
locally available to it and does not yet have sufficient rea-
son to believe that communication will improve expected
reward, under-performs a centralized controller or a system
in which the agents communicate at every time step.

Time Step 2:
The agents execute 〈Listen,Listen〉, and again, agent 1 ob-
serves HearLeft. (Likewise, agent 2 also observes Hear-
Left.) Agent 1 performs growTree on (the unpruned) L1

to get L2, which has 16 leaves:

p = 0.29
0.155 0.5

p = 0.21

0.5

HL H
R HR HL

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL HR HR

0.5
p = 0.21 p = 0.29

0.845

0.155 0.1550.033
p = 0.12 p = 0.06 p = 0.06 p = 0.04

0.5

HL HL

H
L 

H
R HR HL

HR HR

H
L

 H
L

HL H
R HR HRHR HL

p = 1.0

. . . . .0.155
p = 0.06

0.5 0.845
p = 0.06

0.5
p = 0.04 p = 0.04

The Q-POMDP heuristic determines that the best action
choice for L2 is, again, 〈Listen,Listen〉. Agent 1 reasons
about communication by pruning all of the leaves that are
not consistent with its entire observation history:

0.5

HL H
R

<LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL

0.5

0.1550.033

HL HL

H
L 

H
R

H
L

 H
L

HL H
R

p = 1.0

0.155 0.5

0.155
p = 0.58 p = 0.42

p = 0.42 p = 0.14p = 0.22 p = 0.22

For the pruned tree, the best action selected by Q-POMDP
is 〈OpenR,OpenR〉. Because it sees that the action selected
before communication differs from the action that would be
selected after communication, agent 1 chooses to communi-
cate its observation history to agent 2. Once it has commu-
nicated, agent 1’s observation history is considered part of
the shared team information, and agent 1 is able to use the
pruned tree as L2, the distribution of possible joint beliefs.

In the meantime, agent 2 has been performing identical
computations and, independently of agent 1, also decides to
communicate its observation history (which is two instances
of HL). When agent 1 receives this communication from
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agent 2, it prunes L2 to contain only those leaves that are
also consistent with agent 2’s observation history:

0.5 <LISTEN, LISTEN>

<LISTEN, LISTEN>

HL HL

0.033

HL HL

p = 1.0

0.155
p = 1.0

p = 1.0

The set of possible joint beliefs for the team now consists
of a single belief state, b(SR) = 0.033. For this belief, the
best joint action is 〈OpenR,OpenR〉.

5. PARTICLE FILTER REPRESENTATION

The above example shows a situation in which both agents
decide to communicate their observation histories after two
time steps, reducing the size of L2 to a single leaf. It is easy
to construct situations in which one agent would choose to
communicate but the other agent would not, or examples in
which neither agent would communicate, possibly for many
time steps (e.g. the agents observe alternating instances
of HL and HR). From the figures, it is clear that the tree
of possible joint beliefs grows rapidly when communication
is unnecessary. To address cases where the agents do not
communicate for a long period of time, we present a fixed-
size method for modeling the distribution of possible joint
beliefs by using a particle filter.

A particle filter is a sample-based representation used
to model an arbitrary probability distribution with a fixed
amount of memory. Particle filters have frequently been
used with single-agent POMDPs (e.g. for state estimation
during execution [15]). In applying a particle filter to the
modeling of the team’s distribution of possible joint beliefs,
we draw our inspiration from an approach that finds a pol-
icy for a continuous state-space POMDP by maximizing over
the distribution of possible belief states, which is represented
by a particle filter [18].

In our particle filter representation, each particle Lt
i in

the distribution Lt is a tuple of α observation histories,
〈�ωa . . . �ωα〉, corresponding to a possible observation history
for each of the α agents. Together, these individual observa-
tion histories form a single possible joint observation history.
Because the starting belief, b0, and the history of joint ac-
tions taken by the team, �a, are known, a joint observation
history uniquely identifies a possible joint belief. The likeli-
hood of a particular belief is indicated by the frequency of
occurrence of the particle representing that belief.

Every agent stores two particle filters, Ljoint, which rep-
resents the possible joint beliefs of the team, pruned only
by communication, and Lown, those beliefs that are consis-
tent with the agent’s own observation history. At each time
step, the beliefs represented in the particle filters are propa-
gated forward according to the algorithm presented in [18].
The possible next observations for Ljoint are sampled from
all possible joint observations, and the possible next obser-
vations for Lown are only those joint observations that are
consistent with the agent’s own local observation at that
time step.

The Dec-Comm algorithm is executed as described in Sec-
tion 3, with Ljoint used to generate aNC and Lown used to
generate aC . However, a complication arises when it comes

time to prune the particle filters as a result of communica-
tion. Unlike the tree described earlier that represents the
distribution of possible joint beliefs exactly, a particle fil-
ter can only approximate the distribution. Simply removing
those particles not consistent with the communicated obser-
vation history (equivalent to the pruning done for the tree)
and resampling (to keep the total number of particles con-
stant) may result in a significant loss of information about
the possible observation histories of agents that have not yet
communicated.

Looking at the example presented in Section 4, it is easy
to see that there is a correlation between the observation
histories of the different agents (e.g. if one agent observes
〈HL,HL〉, it is unlikely that the other agent will have ob-
served 〈HR,HR〉). To capture this correlation when prun-
ing, we define a similarity metric between two observation
histories, Table 3. When an observation history �ωt

i has been
communicated by agent i, to resample the new Ljoint, the
observation history corresponding to agent i in each parti-
cle in Ljoint is compared to �ωt

i . The comparison asks the
question, “Suppose an agent in a team that started in belief
b0 and executed the joint action history �at has observed the
individual observation history �ωt

i . What is the likelihood
that an identical agent could have observed an alternate ob-
servation history �ωt

j?” We call the value returned by this
comparison the “similarity” of the two histories, and use it
as a weight for the particle. The particles are then resampled
according to the calculated weights, and the agent i obser-
vation history for every particle in the new distribution is
replaced with �ωt

i .

similarity(�ωt
i , �ω

t
j ,�a

t)
sim ← 1
b ← b0

for t′ = 1 . . . t
for each s ∈ S

b(s) ← O(s, at′ , ωt′
i )b(s)

normalize b

sim ← sim ×Ps∈SO(s, at′ , ωt′
j )b(s)

for each s ∈ S
b(s) ←P

s′∈ST (s′, at′ , s)b(s)
normalize b

return sim

Table 3: The heuristic used to determine the sim-
ilarity between two observation histories, where �ωt

i

is the true (observed) history

6. RESULTS AND ANALYSIS

We demonstrate the performance of our approach experi-
mentally by comparing the reward achieved by a team that
communicates at every time step (i.e. a centralized con-
troller) to a team that uses the Dec-Comm algorithm to
select actions and make communication decisions. Because
we wished to demonstrate our approach on a larger problem
than the two-agent tiger domain described in Section 4, we
ran our experiment on a planetary exploration domain with
32 states. In this domain, there are two rocks, each of which
may be of either type A or type B, and two rovers that are
attempting to gather scientific data about the rocks. One
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rover is able to successfully characterize type-A rocks, and
the other can characterize B rocks. At the start of the prob-
lem, the type of each rock is unknown. To create an explicit
coordination problem between the agents, we specify that
each rover may be at the location of either rock, but that
they may not be at the same rock at the same time.

At every time step, each rover has the choice to attempt
to characterize the rock at its current location (with a cost
of -10), attempt to move to the other rock (with a cost of -3),
or do nothing. Because the agents must be at different rocks
at all times, Move only succeeds when both agents select
that action simultaneously. Characterize succeeds with
0.85 probability if the agent is attempting to characterize
the correct type of rock. A successful characterization earns
the team a reward of +30. At every time step, each agent
receives a local observation of the type of the rock at its
current location. The goal of the problem is to successfully
characterize both rocks as quickly as possible.

We ran 500 trials of this experiment, each time initial-
izing the problem to a random configuration of rock types
and rover positions, and counted the average number of time
steps until both rocks were successfully characterized. We
compared the performance of a team with full communi-
cation to teams that employed the Dec-Comm algorithm,
both with the tree and particle filter representations. The
team using a particle representation used 50 samples to rep-
resent the possible beliefs. Table 4 summarizes the results
of these trials.

µ σ µ σ
Steps Steps Comm Comm

Full 3.27 1.01 6.54 1.01
Comm.

Dec-Comm 3.40 1.00 2.34 0.63
(tree)

Dec-Comm 3.38 0.99 2.82 0.75
(particles)

Table 4: Experimental results. µSteps is the mean
number of time steps needed to characterize both
rocks. µComm is the mean number of communica-
tion instances per trial.

From these results, it can be seen that, for this domain,
there is a very small reduction in performance for teams
using the Dec-Comm algorithm compared to a centralized
team, but the reduction in communication usage is substan-
tial. Note that in the centralized team, both agents com-
municate their observation in each time step, so the num-
ber of communication instances is exactly twice the number
of time steps needed to complete the problem. The Dec-
Comm teams demonstrate that much of this communication
is extraneous, and therefore they choose to communicate
significantly less. There is also no substantial difference in
performance between a team using an exact tree representa-
tion of joint belief and a tree that approximates belief using
a particle filter. However, for other domains, the number
of particles needed to accurately model joint belief may be
larger.

7. CONCLUSION

We present in this paper an approach that enables the
application of centralized POMDP policies to distributed
multi-agent systems. We introduce the novel concept of
maintaining a distribution of possible joint beliefs of the
team, and describe a heuristic, Q-POMDP, that selects the
best joint action over the possible joint beliefs in a decen-
tralized fashion. We show both through a detailed example
and experimentally that our Dec-Comm algorithm inserts
communication actions as needed into the team execution
only when it will improve team performance, thereby re-
ducing the amount of communication needed for successful
decentralized execution of a centralized policy. We also pro-
vide a fixed-size method for maintaining the distribution of
possible joint team beliefs.

In the future, we intend to investigate factored representa-
tions that may reveal structural relationships between state
variables, allowing us to address the question of what to
communicate, as well was when to communicate. Other ar-
eas for future work include reasoning about communicating
only part of the observation history, and exploring the utility
of ask communication, in which agents request information
from their teammates, as opposed to the tell communication
employed in this paper.
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