
IOM/T: An Interaction Description Language for
Multi-Agent Systems

Takuo DOI
University of Tokyo

7-3-1, Hongo, Bunkyo-ku
Tokyo, Japan

tdoi@nii.ac.jp

Yasuyuki TAHARA
National Institute of

Informatics
2-1-2 Hitotsubashi,

Chiyoda-ku
Tokyo, Japan

tahara@nii.ac.jp

Shinichi HONIDEN
National Institute of

Informatics
2-1-2 Hitotsubashi,

Chiyoda-ku
Tokyo, Japan

honiden@nii.ac.jp

ABSTRACT
A multi-agent system is a useful approach for the complex sys-
tems. One of the important concepts of multi-agent systems is
cooperativeness, or interactions. However, existing languages for
implementing interactions lack expressiveness. This causes gaps
between design and implementation. This paper analyzes language
functionalities for implementing interactions. Furthermore, a new
interaction description language IOM/T is proposed based on the
findings. Interaction would become easy to implement based on
design using IOM/T.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms
Languages

Keywords
Multi-Agent System, Interaction, AUML

1. INTRODUCTION
In recent years, the speed of informational circulation is increas-

ing due to the expansion of networks. Software has to deal with
larger and more complex data and has to manage changes of an
environment. This suggest the need for software that possesses
human features such as autonomy and cooperativeness, since it
is difficult for a human to check everything. A multi-agent sys-
tem is one solution to this approach. One of the most important
concepts of multi-agent systems is interactions. However, existing
languages for implementing interactions lack expressiveness. This
causes gaps to occur between design and implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

We consider the design and implementation in the development
of multi-agent systems giving attention to interaction.

In the design phase, we will use AUML sequence diagrams [12]
to describe interaction since it is a standard representation for in-
teraction developed by FIPA [11]. Furthermore, AUML sequence
diagrams are based on UML which is mainstream in current soft-
ware development and many developers are familiar with it. The
design of interactions includes the following:

• Message sequence

• Constraints on messages

In the implementation phase, there are some existing languages
such as AgenTalk[15], COOL[1], COSY[3] and Q[14]. We can
use these to describe interactions. We can also use Java if we use
Java-based agent platforms such as FIPA-OS[9] and JADE[4]. The
implementation of interactions includes the following:

• Precise message format and the method for handling it

• Method for realizing constraints on messages

It may be possible to add information regarding implementa-
tion as a note to a design created with AUML sequence diagrams.
However, it is difficult to represent all the required information that
should be included in implementation in design since the descrip-
tion capability of design is limitted. We have to design message
sequences and implement interactions based on the result of design
in order to develop multi-agent systems. Existing languages lack
the ability to express message sequences. Implementation in these
languages lose the information that is clear in design phase. Thus,
the gap between design and implementation becomes larger.

We proposed an interaction description language named IOM/T
(Interaction Oriented Model by Textual representation)[7]. This
language has correspondences with AUML sequence diagrams and
enable us to implement interactions based on AUML sequence di-
agrams easily. However, the language lacks the ability to represent
all the interaction operator. We modify this language adding some
notations. In this paper, we show the new version of IOM/T and
how IOM/T corresponds to AUML sequence diagrams.

Below, this paper is structured as follows. In section 2, we con-
sider the problem of implementing interaction with existing lan-
guages. Then in section 3, we provide a specification of IOM/T
and in section 4, we verify the correspondence between IOM/T and
the AUML sequence diagrams usingπ-calculus. In section 5, we
evaluate IOM/T by comparing it with related work and some con-
clusion are presented in section 6.

778

Figure 1: An example AUML sequence diagram

2. PROBLEMS WHEN IMPLEMENTING IN-
TERACTIONS

In this section, we consider the problems that arise with exist-
ing languages when implementing interactions. In section 2.1, we
show an implementation with JADE, which is currently one of the
most available agent platforms. In section 2.2, we explain the prob-
lems in implementing interactions with existing languages referring
to the example code written with JADE.

2.1 Implementation for JADE
Interactions in JADE consist of actions that include message

transmission and reception. Therefore, we implement agent actions
of each agent that would participate in the interaction. We need
keep track of state transition of agent actions for interactions. We
have to use variables which represent the current state. Thus, a state
transition is represented as a change in their value, and an agent ac-
tion is represented as conditional branches based on their values.
An agent action is implemented as a subclass of theBehaviour
class for JADE. Theaction() method is invoked until thedone()
method returnstrue for the instance of theBehaviour class. For
example, the interaction represented in Fig.1 is implemented as
Fig.2 and Fig.3 .

2.2 Problem with Existing Languages
We can implement interactions as shown in the previous subsec-

tions. However, the implementations have following problems:

• Decreased maintainability due to dispersal of codes.

• Decreased readability due to lack of intuitive state transi-
tions.

A message exchange represented as an arrow in the AUML se-
quence diagram is implemented in the actions of the sender agent
and the receiver agent. The message transmissions and the message
reception are implemented in the definitions of different classes.
However, they actually have a strong relationship and we will have

¶ ³
1 public class Role1Behaviour
2 extends jade.core.behaviours.Behaviour {
3 int state_ = 0;
4 boolean isTerminate_ = true;
5 public void action() {
6 switch (state_) {
7 case 0:
8 if (/* is first loop continue? */) {
9 state_ = 1;

10 } else {
11 state_ = 7;
12 }
13 break;
14 case 1:
15 /* send message m1 */
16 state_ = 2;
17 break;
18 case 2:
19 /* recv message m2 or m6 */
20 if (/* is first case? */) {
21 state_ = 3;
22 } else {
23 state_ = 6;
24 }
25 break;
26 case 3:
27 if (/* is second loop continue? */) {
28 state_ = 4;
29 } else {
30 state_ = 5;
31 }
32 break;
33 case 4:
34 /* send message m3 */
35
36 // recv message m4
37 ACLMessage msg = myAgent.receive();
38 Object content = msg.getContent();
39 /* handle the content */
40
41 state_ = 3;
42 break;
43 case 5:
44 /* send message m5 */
45 break;
46 case 6:
47 state_ = 0;
48 break;
49 case 7:
50 /* send message m7 */
51 isTerminate_ = true;
52 break;
53 }
54 }
55 public boolean done() {
56 return isTerminate_;
57 }
58 }

µ ´
Figure 2: An implementation of Role1 in JADE

to modify both of them if some changes to the message exchanges
are to be applied. Thus, maintainability of interactions decreases.
We explicitly set variable values to new values that represent the
next state. However if the transitions are complex, it will not be
easy to understand all of the state transitions and to determine the
part where we should add information concerning the implementa-
tion. Suppose we have to modify the message creation on line 37
in Fig.3 . We may modify the corresponding message reception
and the way to deal with the message, which is specified on line 38
in Fig.2 . However, it is not clear whether the modification is nec-
essary since this part is described in a different class. Furthermore,
it is also not easy to determine the part which we have to modify in
Fig.2 . Furthermore, when we want to add the information which
is represented as a note in the AUML sequence diagram, we will
have to add it to the part somewhere around the line 19 in Fig.2 and
around the line 23 in Fig.3 . However, the actual location where
we have to add the required feature is not obvious.

The problems stated above are not specific to JADE. These prob-
lems hold true with AgenTalk, COOL,COSY and Q and other Java
based language. Comparison with these languages are described in
section 5.

779

¶ ³
1 public class Role2Behaviour
2 extends jade.core.behaviours.Behaviour {
3 int state_ = 0;
4 boolean isTerminate_ = true;
5 public void action() {
6 switch (state_) {
7 case 0:
8 /* recv message m1 or m7 */
9 if (/* is first loop continue? */) {

10 state_ = 1;
11 } else {
12 state_ = 7;
13 }
14 break;
15 case 1:
16 if (/* is first case? */) {
17 state_ = 2;
18 } else {
19 state_ = 6;
20 }
21 break;
22 case 2:
23 /* send message m2 */
24 state_ = 3;
25 break;
26 case 3:
27 /* recv message m3 of m5 */
28 if (/* is second loop continue? */) {
29 state_ = 4;
30 } else {
31 state_ = 5;
32 }
33 break;
34 case 4:
35 // send message m4
36 ACLMessage msg = new ACLMessage();
37 /* create the content of message */
38 msg.setContent(...);
39 myAgent.send(msg);
40
41 state_ = 3;
42 break;
43 case 5:
44 state_ = 0;
45 break;
46 case 6:
47 /* send message m6 */
48 state_ = 0;
49 break;
50 case 7:
51 isTerminate_ = true;
52 break;
53 }
54 }
55 public boolean done() {
56 return isTerminate_;
57 }
58 }

µ ´
Figure 3: An implementation of Role2 in JADE

3. IOM/T:INTERACTION ORIENTED MODEL
BY TEXTURAL REPRESENTATION

In this section, we propose an interaction description language
called IOM/T which bridges the gap between design and imple-
mentation. In section 3.1, we show the design philosophy and in
section 3.2 we provide the language specification.

3.1 Design Philosophy
The design philosophy of IOM/T is follows:

• Implementations should correspond with AUML sequence
diagrams.

• Interactions should be described in a single structure.

• IOM/T should represent explicit control structures for state
transition.

• The syntax of IOM/T should be similar to that of Java.

The aim of IOM/T is to bridge the gap between design and im-
plementation. It is important that the implementation in IOM/T
corresponds with the design in AUML sequence diagrams. IOM/T

Figure 4: Iterative Ping Protocols described as an AUML se-
quence diagrams.

should not disperse an interaction into multiple agents since AUML
sequence diagrams can represent it in a single diagram. This func-
tionality would enable us to implement and modify interactions
easily. IOM/T should have explicit control structures, which en-
able us to understand the message sequences intuitively as does the
AUML sequence diagrams. This increases readability of imple-
mentations and helps us to add information concerning the imple-
mentation based on designs. While Java lacks expressiveness, most
agent developers use this language. The syntax of IOM/T should
be similar to that of Java in order to decrease the cost of learning
IOM/T.

3.2 Specification of IOM/T
In this subsection, we present the specification of IOM/T using a

simple example interaction, Iterative Ping Protocol, which is repre-
sented in Fig.4 . In this interaction, aSender sends a ping message
to a Receiver. TheReceiver receives the message and decides
whether it should reply with an “alive” message. Then it replies
an “alive” message or aNOT UNDERSTOOD message. And
henceforth, it will continue with this communication repeatedly.
The interaction described in IOM/T is shown in Fig.5. The syntax
rule of IOM/T is provided in appendix A.

3.2.1 Definition of Interaction
In IOM/T, an interaction is represented as aninteractionstruc-

ture and has a unique identifier. In Fig.5 we defined an interaction
whose identifier isPingProtocol. An interactionstructure con-
sists of the definition of roles which participate in this interaction
and the definition of message sequences among the roles.

3.2.2 Definition of Role
We define roles usingrole structures. Therole structures have a

unique identifier within the interaction and consist of the definitions
of role functionality, the definitions of information variable and the
definitions of sub-interaction. We append an* to the role in or-
der to represent that there are multiple agents which play this role.
The definition of role functionality is specified using Java’s method
definition notation. The definition of information variable is spec-
ified using Java’s field definition notation. When we have to deal
with a large interaction, we divide it into multiple sub-interactions
and represent the entire interaction using them. The definition of
sub-interaction specifies what sub-interaction the role participates
in and what role it plays in the specified sub-interaction, using the
keywordusing.

780

¶ ³
1 interaction PingProtocol {
2 role Sender {
3 AID getTarget();
4 boolean isContinue();
5 void knowAsDead();
6 }
7 role Receiver {
8 boolean doesReply();
9 ACLMessage res;

10 }
11 protocol {
12 while (Sender.isContinue()) {
13 play Sender {
14 ACLMessage ping = new ACLMessage();
15 ping.setReceiver(getTarget());
16 ping.setContent("(ping)");
17 ping.setPerformative("QUERY_REF");
18 sendAsync(ping); //# m1
19 }
20 play Receiver {
21 ACLMessage ping = recvBlock(); //# m1
22 res = ping.createResponse();
23 }
24
25 if (Receiver.doesReply()) {
26 play Receiver {
27 res.setContent("(alive)");
28 res.setPerformative("INFORM");
29 sendAsync(res); //# m2
30 }
31 play Sender() {
32 ACLMessage msg = recvBlock(); //# m2
33 }
34 } else {
35 play Receiver {
36 res.setContent(ping.getContent());
37 res.setPerformative("NOT_UNDERSTOOD");
38 sendAsync(res); //m3
39 }
40 play Sender {
41 ACLMessage msg = recvBlock(); //# m3
42 knowAsDead();
43 }
44 }
45 }
46 play Sender {
47 ACLMessage msg = new ACLMessage();
48 msg.setReceiver(getTarget());
49 msg.setContent("(end-of-loop)");
50 msg.setPerformative("INFORM");
51 sendAsync(msg);
52 }
53 }
54 }

µ ´
Figure 5: Iterative Ping Protocol in IOM/T

In Fig.5 , we define two roles. One isSender on lines 2-6
and the other isReceiver on lines 7-10. InSender, we define
three functionalities,getTarget() which determines the target of
message,isContinue() which determines whether to continue this
interaction andknowAsDead() which is called when the target
does not reply correctly. InReceiver, we define a functionality,
doesReply() which determines whether it should reply correctly,
and an information variableres which holds the reply message.
Here, we do not define sub-interactions since this interaction is sim-
ple.

3.2.3 Definition of Message Sequences
We define message sequences using theprotocolstructure. The

protocol structure consists of role actions and control structures.
Table 1 shows the list of control structures.

In Fig.5 , theprotocol structure on lines 11-54 define the mes-
sage sequence. Role actions on lines 13-19 and 20-23 represent
role actions that are to be executed sequentially and theif -else
structure on lines 25-44 represents a conditional branch. Then the
while structure on lines 12-45 specifies that these sequences are to
be repeated.

3.2.4 Role Action

sequential the sequence of role actions represents that the role
actions are executed according to the order of the se-
quence.

loop thewhile structure represents that the contents of this
structure are to be executed repeatedly until the spec-
ified role functionality determines to continue. The
role action which notifies the end of loop to the par-
ticipants must follow this structure.

conditional branch the if-else structure represents conditional branch.
Each block represents the execution and one of the
block is executed on the basis of the specified condi-
tion.

conditional execution theif structure represents conditional execution. This
block is executed if the specified condition is ful-
filled.

parallel the parallel structure represents parallel execution.
Each block represents the execution and these actions
are executed parallel.

weak sequence the weakstructure represents weak sequence execu-
tion.

strong sequence the strongstructure represents strong sequence exe-
cution.

negative thenegativestructure represents negative execution.
critical thecritical structure represents critical region.
ignore theignorestructure represents the parts which should

be ignored.
consider the consider structure represents the parts which

should be considered.
assert theassertstructure represents the parts which should

be asserted.

Table 1: List of control structures

We define role actions usingplay structures which has one of
the role identifier. We basically describe the contents of role ac-
tions using Java. We can use some extension. First, we can use role
functionalities and information variables. Second, we can use some
functionalities for handling FIPA ACL[10]. FIPA ACL is a specifi-
cation for messages among agents and consists of several elements
includingSender, Receiver, Performative andContent. We
can use theACLMessageclass which represents ACL Messages
and has the methods for accessing these elements. We describe the
message transmission using functionssendSync()andsendAsync(),
and message reception using functionsrecvBlock()and recvNon-
block(). Then, we can control the interactions, the beginning of
sub-interactions and the termination of current interaction. The
functionbeginInteraction()represents the beginning of sub-interaction
and the functionterminateInteraction()represents the termination
of a current interaction.

In Fig.5 , the Sender determines the target by using functional-
ity getTarget() and sends a(ping) message on lines 13-19. The
Receiver receives the message on lines 20-23. The Receiver then
decides which message it send to Sender on the basis of the condi-
tion on line 25.

3.2.5 Execution of Interaction
Interactions can be implemented as described in the preceding

sections. However, it is also necessary to provide implementations
of role functionalities in a multi-agent system. We describe the
mapping of functionality to agent implementations using theplay-
ing structures which describe what methods the agent use as role
functionalities. We can usebeginInteraction()in order to begin an
interaction. Fig.6 shows an example of an agent who plays the
Sender.

781

¶ ³
1 public class MyAgent extends Agent {
2 playing PingProtocol.Sender {
3 getTarget = getPingAgent;
4 isContinue = isPingContine;
5 knowAsDead = knowAsDead;
6 }
7 AID getPingAgent() { ... }
8 boolean isPingContinue() { ... }
9 void knowAsDead() { ... }

10 }

µ ´
Figure 6: A specification of agent functionalities

4. AUML AND IOM/T
In this section, we show the equivalence of AUML sequence dia-

grams and IOM/T. We useπ-calculus to verify the equivalence.π-
calculus is a formal model for concurrent process and the processes
are described using the following syntax rules.P, Pi(i = 1, 2)
represent processes,α represents actions anda,x represents name.
x <> represents message transmission throughx, x() represents
message reception throughx. α.P represents action execution,
P1|P2 represents parallel,P1 + P2 represents selection,new a P
represents the binding of the namex in P .¶ ³

P ::= 0 | α.P | P1|P2 | P1 + P2 | new a P

α ::= τ | x <> | x()

µ ´

4.1 Formalization of AUML sequence diagrams
In this subsection, we show the formal model of AUML se-

quence diagrams usingπ-calculus. In this paper we consider only
alternative, option, loop andparallel Combined Fragment since
we deal with message sequences. For each lifeline, we formalize
the processRi(i = 1, · · · , n) as[[Ri]]E by applying the rule de-
scribed in Table 2 and Table 3 recursively. The interaction is for-
malized as follows with the message identifiermi(i = 1, · · · , p)
and end of loop identifierendi(i = 1, · · · q):¶ ³

new m1 · · ·mp end1 . . . endq([[R1]]| · · · |[[Rn]])

µ ´

4.2 Formalization of IOM/T
In this subsection, we shows the formal model of IOM/T using

π-calculus. We deal only with message exchanges since our aim
is to verify the equivalence to AUML sequence diagrams. Fur-
thermore we do not deal with the condition ofwhile structure
and if − else structure for the sake of simplicity. The corre-
spondence between transmissions and receptions are based on the
identifier specified as comment since the meaning of the receiver
field of ACLMessage class is not included in IOM/T. For each
role, we formalize the processRi(i = 1, · · · , n) as [[Ri]]E by
applying the rule described in Table 2 and Table 3 recursively.
The interaction is formalized as follows with the message identifier
mi(i = 1, · · · , p) and end of loop identifierendi(i = 1, · · · q):

Table 2: A formal model for AUML sequence diagrams and
IOM/T part 1.

¶ ³

new m1 · · ·mp end1 . . . endq([[R1]]| · · · |[[Rn]])

µ ´
4.3 Equivalence between AUML sequence di-

agrams and IOM/T
We have formalized both the AUML sequence diagrams and

IOM/T. Details of proof are not shown due to space limitations. The
loop andalternative CombinedFragments correspond towhile
structures andif − else structure. We can prove the equivalence
by structural induction. For example, ifP1 · · ·Pn, N in the alter-
native Combined Fragment are equivalent toP1 · · ·Pn, N in the
if − else structure, these representation are formalized to same
formula. Therefore, they are equivalent.

We can formalize both representation of Iterative Ping Protocol
as showed in Fig.7 .

5. DISCUSSION
In this section, we evaluate IOM/T by comparing to related work.

The interaction shown in Fig.1 can be described as shown in Fig.9
.

782

Table 3: A formal model for AUML sequence diagrams and
IOM/T part 2.

Interactions represented in IOM/T are described in a single code
and correspond with the design in AUML sequence diagrams. Thus,
the correspondence between message transmissions and message
receptions is clear. For instance, the message transmission on line
13 corresponds with the message reception on line 16. This cor-
respondence is clearer than that which is described with existing
languages. This increases maintainability of interactions. When
we have to modify the code regarding message exchanges, we can
easily find the message correspondence and parts that the modifi-
cation would affect. For example, suppose some changes occurs
on line 35 where the content of the message is created. We have
to modify the part where Role1 receives the message and handles
it. In IOM/T we can easily find that the part is on line 42. The
same applies when we add information regarding the implementa-
tion. Suppose we have to implement the information represented as
a note in Fig.1 which specifies timing constraints. Role2 should
create messages on the basis of the time it takes for creating them.
Thus, we change the method to create message on the basis of the
remaining time. We will implement this on lines 20-21 as follows:¶ ³

if (/* tight constraints */) {
msg.setContent(roughContent);

} else {
msg.setContent(preciseContent);

}

µ ´
Role1 should judge whether the constraints are fulfilled. Role1

should output error logs when the constraints are not fulfilled. Thus,
we will implement the following on line 24:

¶ ³

Sender = new done(L1|done())

L1 = new next(m1 <> .next <>

| next().(m2().done <> + m3().done <>))

| (done().L1 + done().end <> .done <>)

Receiver = new done(L2|done())

L2 = new next(m1().next <>

| next().(m2 <> .done <> + m3 <> .done <>))

| (done().L2 + done().end().done <>)

I = new m1 m2 m3 end(Sender|Receiver)

µ ´

Figure 7: A formal model of Iterative Ping Protocol.

Figure 8: An overview of implementation using IOM/T.

¶ ³
if (/* are constraints fulfilled? */) {

/* normal execution */
} else {

/* output error log */
}

µ ´
We should be able concentrate on what we have to implement

for these constraints. However, if we use existing languages, we
will be confused as to where we are supposed to implement the
constraints. In the case of IOM/T we can easily determine the part
where we are supposed to implement the constraints since we are
able to recognize that we have to implement matters regarding the
first message after the conditional branch in Fig.1 and the im-
plementation for the message is clear in Fig.9 . Furthermore, the
difference between IOM/T and existing languages become clearer
if we implement more complex interactions, especially interactions
that include parallel execution. The number of states increases ex-
ponentially in existing languages due to the number of combination
of the states in a parallel process. As a result, maintainability and
readability decreases. For IOM/T this will not be an issue since we
just implement each parallel process separately.

In this section, we mainly perform comparison with the imple-
mentation for JADE. However, it is the same for the other languages
such as AgenTalk, COOL, COSY and Q. Although these languages
have interesting characteristic of their own, we have to divide the
interaction into multiple agents in order to implement it in these
languages. Q has representation for state transitions but we have to
use explicit transitions and state transitions cannot be understood
intuitively.

The gap between design and implementation is a common prob-
lem of multi-agent systems. One solution is to enhance the design
descriptions [8, 5]. Another is to develop implementation descrip-
tion [2]. Our work belongs to the latter solution, we believe this is a
first interaction language that is designed to bridge the gap between
the AUML sequence diagrams and implementation.

Fig.8 shows an overview of the process starting from the AUML
sequence diagrams to the implementation of a multi-agent system.

783

First, we generate skeleton codes of IOM/T from AUML sequence
diagrams. Some researches have been proposed regarding this pro-
cess. M.P.Huget considers the process of generating Java code
from AUML sequence diagrams[13]. M.Dinkloh has developed
a tool which generates skeleton code for JADE from AUML se-
quence diagrams[6]. IPEditor[16] also generates skeleton code for
Bee-gent[17] from a graphical design. We do not show the way
to generate skeleton code in IOM/T due to space limitation. How-
ever, it is not difficult since IOM/T has structures that correspond
to AUML sequence diagrams. Next, we implement interaction by
adding information to the skeleton codes. We can concentrate on
what we should implement since IOM/T improve maintainability
and readability of implementation of interaction. By the way, we
will not limit the target agent-platform for multi-agent systems.
The IOM/T compiler will convert the implementation in IOM/T
and the implementation of agents for the platform into implementa-
tions of multi-agent systems for that platform. The implementation
of agents includes the methods which realize the role functional-
ities. The implementation of agents is beyond the scope of this
paper. The implementations in IOM/T include information which
the design descriptions lack. Thus, the IOM/T compiler can gener-
ate executable implementation of multi-agent system for the target
agent-platform. This allows us to reuse the implementation of in-
teractions. We have developed the IOM/T compiler for JADE.

6. CONCLUSION
In this paper, we have proposed a new interaction description

language called IOM/T. Correspondence with the design in AUML
is not considered in existing languages. IOM/T corresponds with
AUML sequence diagrams and allows us to describe without dis-
persing codes of interactions. IOM/T is capable of describing in-
tuitive state transitions. Thus, maintainability and readability of
implementations of interactions increase if we use IOM/T. Further-
more, we have provided the formal model for AUML sequence di-
agrams and IOM/T and proved the equivalence of both representa-
tions.

In the future, we will create a more precise formal model of
IOM/T and develop compilers for various agent-platforms. We also
plan to verify the effectiveness of IOM/T through demonstration
experiments.

7. ADDITIONAL AUTHORS
Additional authors: Nobukazu YOSHIOKA (National Institute

of Informatics, email:nobukazu@nii.ac.jp)

8. REFERENCES
[1] M. Barbuceanu and M. S. Fox. Cool: A language for

describing coordination in multiagent systems. In V. Lesser
and L. Gasser, editors,Proceedings of the First International
Conference oil Multi-Agent Systems (ICMAS-95), pages
17–24, San Francisco, CA, USA, 1995. AAAI Press.

[2] L. Braubach, A. Pokahr, and D. Moldt. Goal representation
for BDI agent systems. InProgramming Multiagent Systems
languages, frameworks, techniques and tools ProMAS 2004
Workshop, 2004.

[3] B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic,
configurable, cooperation protocols for multi-agent systems.
In LNAI, From Reaction to Cognition, MAAMAW 93, pages
157–171, 1993.

[4] CSELT. JADE.
http://sharon.cselt.it/projects/jade/ .

¶ ³
1 interaction Sample {
2 role Role1 {
3 boolean isFirstLoopContinue();
4 boolean isSecondLoopContinue();
5 }
6 role Role2 {
7 boolean isFirstCase();
8 }
9 protocol {

10 while (Role1.isFirstLoopContinue()) {
11 play Role1 {
12 ACLMessage msg;
13 sendAsync(msg); //# m1
14 }
15 play Role2 {
16 ACLMessag msg = recvBlock(); //# m1
17 }
18 if (Role2.isFirstCase()) {
19 play Role2 {
20 ACLMessage msg;
21 sendAsync(msg); //# m2
22 }
23 play Role1 {
24 ACLMessage msg = recvBlock(); //# m2
25 }
26 while (Role1.isSecondLoopContinue()) {
27 play Role1 {
28 ACLMessage msg;
29 sendAsync(msg); //# m3
30 }
31 play Role2 {
32 ACLMessage msg1 = recvBlock(); //# m3
33 ACLMessage msg2
34 = msg1.createResponse();
35 /* create the content of message */
36 msg.setContent(...);
37 sendAsync(msg2); //# m4
38 }
39 play Role1 {
40 ACLMessage msg = recvBlock(); //# m4
41 Object content = msg.getContent();
42 /* handle the content */
43 }
44 }
45 play Role1 {
46 ACLMessage terminateMsg;
47 sendAsync(terminateMsg);
48 }
49 } else {
50 play Role2 {
51 ACLMessage msg;
52 sendAsync(msg); //# m5
53 }
54 play Role1 {
55 ACLMessage msg = recvBlock(); //# m5
56 }
57 }
58 }
59 play Role1 {
60 ACLMessage terminateMsg;
61 sendAsync(terminateMsg);
62 }
63 }
64 }

µ ´
Figure 9: An implementation in IOM/T

[5] V. T. da Silva, R. Choren, and C. J. de Lucena. A UML based
approach for modeling and implementing multi-agent
systems. InThe Third International Joint Conference on
Autonomous Agents & Multi Agent Systems AAMAS2004,
pages 914–921, 2004.

[6] M. Dinkloh and J. Nimis. A tool for integrated design and
implementation of conversations in multi-agent systems. In
Programming Multiagent Systems languages, frameworks,
techniques and tools ProMAS 2003 Workshop, 2003.

[7] T. DOI, N. YOSHIOKA, Y. TAHARA, and S. HONIDEN.
Bridging the gap between AUML and implementation using
IOM/T. In Programming Multiagent Systems languages,
frameworks, techniques and tools ProMAS 2004 Workshop,
2004.

[8] L. Ehrler and S. Cranefield. Executing Agent UML
diagrams. InThe Third International Joint Conference on
Autonomous Agents & Multi Agent Systems AAMAS2004,

784

pages 906–913, 2004.
[9] emorphia. FIPA-OS.http:

//www.emorphia.com/research/about.htm .
[10] FIPA. FIPA ACL message structure specification.

http://www.fipa.org/specs/fipa00061/ .
[11] FIPA. The foundation for intelligent physical agents.

http://www.fipa.org .
[12] FIPA. Interaction diagrams.http://www.auml.org/

auml/documents/ID-03-07-02.pdf .
[13] M.-P. Huget. Generating code for Agent UML sequence

diagrams. Technical report, University of Liverpool
Department of Computer Science, 2002.

[14] T. Ishida. Q: A scenario description language for interactive
agents.IEEE Computer, 2002.

[15] K. Kuwabara, T. Ishida, and N. Osato. Agentalk: Describing
multiagent coordination protocols with inheritance. InProc.
7th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI ’95), 1995.

[16] Y. Tahara, A. Ohsuga, and S. Honiden. Mobile agent security
with the IPEditor development tool and the Mobile UNITY
language. InProc. of Agents 2001, pages 656–662. ACM
Press, 2001.

[17] TOSHIBA Corporation. Bee-gent.http:
//www2.toshiba.co.jp/beegent/index.htm .

APPENDIX

A. SYNTAX RULE

InteractionDef ::= interaction Id InteractionBody

InteractionBody ::= RoleDefs P rotocolDef

RoleDefs ::= RoleDef

| RoleDefs RoleDef

RoleDef ::= role ∗opt Id RoleBody

RoleBody ::= {RoleBodyDefsopt }
RoleBodyDefs ::= RoleBodyDef

| RoleBodyDefs RoleBodyDef

RoleBodyDef ::= SubP rotocolDef

| F uncDef

| InformationDef

SubP rotocolDef ::= using InteractionName.RoleName;

F uncDef ::= ReturnT ype F uncId(Argumentsopt);

InformationDef ::= InformationT ype InfomationId;

P rotocolDef ::= protocol P rotocolBody

P rotocolBody ::= {P rotocolBlocks }
P rotocolBlocks ::= P rotocolBlock

| P rotocolBlocks P rotocolBlock

P rotocolBlock ::= play RoleId ActionBlock

| LoopBlock

| AlternativeBlock

| OptionBlock

| P arallelBlock

| W eakBlock

| StrongBlock

| NegativeBlock

| CriticalBlock

| IgnoreBlock

| ConsiderBlock

| AssertBlock

LoopBlock ::= while(W hileP redicate){P rotocolBlocks }
W hileP redicate ::= RoleId.F uncId(Argsopt)

AlternativeBlock ::= IfBlock ElseIfBlocksopt ElseBlock

IfBlock ::= if(IfP redicate) {P rotocolBlocks }
ElseIfBlocks ::= ElseIfBlock

| ElseIfBlock ElseIfBlocks

ElseIfBlock ::= else if(IfP redicate) {P rotocolBlocks }
ElseBlock ::= else {P rotocolBlocks }

OptionBlock ::= if(IfP redicate) {P rotocolBlocks }
IfP redicate ::= RoleId.F uncId(Argsopt)

P arallelBlock ::= parallel { JudgeF uncs P arallelSequences }
JudgeF uncs ::= JudgeF unc

| JudgeF unc JudgeF uncs

JudgeF uc ::= RoleId:F uncId

P arallelSequences ::= P arallelSequence

| P arallelSequence P arallelSequences

P arallelSequence ::= flow {P rotocolBlock }
W eakBlock ::= weak {P rotocolBlocks }

StrongBlock ::= strong {P rotocolBlocks }
NegativeBlock ::= negative {P rotocolBlocks }
CriticalBlock ::= critical {P rotocolBlocks }

IgnoreBlock ::= ignore {P rotocolBlocks }
ConsiderBlock ::= consider {P rotocolBlocks }

AssertBlock ::= assert {P rotocolBlocks }

P layingDef ::= playing

P rotocolId.P layerId P layingDefBody

P layingDefBody ::= {F uncMappingsopt}
F uncMappings ::= F uncMapping

| F uncMappings F uncMapping

F uncMapping ::= NormalF uncMapping

| P rotocollF uncMapping

NormalF uncMapping ::= F uncId = MethodId

P rotocolF uncMapping ::= P rotocolSpecifiers.F uncId = MethodId

P rotocolSpecifiers ::= P rotocolSpecifier

| P rotocolSpecifiers P rotocolSpecifier

P rotocolSpecifier ::= P rotocolId.P layerId

785

