IOM/T: An Interaction Description Language for
Multi-Agent Systems

Takuo DOI Yasuyuki TAHARA Shinichi HONIDEN

University of Tokyo National Institute of National Institute of

7-3-1, Hongo, Bunkyo-ku Informatics Informatics
Tokyo, Japan 2-1-2 Hitotsubashi, 2-1-2 Hitotsubashi,
: “ ; Chiyoda-ku Chiyoda-ku
tdoi@nii.ac.jp Tokyo, Japan Tokyo, Japan
tahara@nii.ac.jp honiden@nii.ac.jp
ABSTRACT We consider the design and implementation in the development

A multi-agent system is a useful approach for the complex sys- f multi-agent systems giving attention to interaction.

tems. One of the important concepts of multi-agent systems is In the_des_lgn pha_se, we W'I.l use AUML sequence d|agr_ams [1.2]
cooperativeness, or interactions. However, existing languages forto des_crlbe interaction since it is a standard representation for in-
implementing interactions lack expressiveness. This causes gapderaction deve}loopedd by Flfﬂﬁ_[lﬁ]ﬁ :grther_more, AUML sequencfe
between design and implementation. This paper analyzes languag |agre:jms ?re ase 0(;‘ U V(\j’ Ic | IS malnstrfeaml_ln cu_r[]e_nt s_'lf’ht'
functionalities for implementing interactions. Furthermore, a new \évarg e\f opmer)t anc rrlla;y ﬁvefolpl)ers ar'e amiliar with it. The
interaction description language IOM/T is proposed based on the d€Sign of interactions includes the following:

ggg:ggsugl:éelrgfﬂtllc%n would become easy to implement based on e Message sequence

e Constraints on messages

Categories and Subject Descriptors In the implementation phase, there are some existing languages
such as AgenTalk[15], COOL[1], COSY[3] and Q[14]. We can
use these to describe interactions. We can also use Java if we use
Java-based agent platforms such as FIPA-OS[9] and JADE[4]. The
implementation of interactions includes the following:

D.3 [Programming Language§: Language Constructs and Fea-
tures

General Terms

e Precise message format and the method for handling it
Languages

e Method for realizing constraints on messages

Keywords It may be possible to add information regarding implementa-
tion as a note to a design created with AUML sequence diagrams.
However, it is difficult to represent all the required information that
should be included in implementation in design since the descrip-
1. INTRODUCTION tion capability of design is limitted. We have to design message
In recent years, the speed of informational circulation is increas- Séquences and implement interactions based on the result of design
ing due to the expansion of networks. Software has to deal with in order to develop multi-agent systems. Existing languages lack
larger and more complex data and has to manage changes of afhe ability to express message sequences. Implementation in these
environment. This suggest the need for software that possessedanguages lose the information that is clear in design phase. Thus,
human features such as autonomy and cooperativeness, since {€ gap between design and implementation becomes larger.
is difficult for a human to check everything. A multi-agent sys- We proposed an interaction description language named IOM/T
tem is one solution to this approach. One of the most important (Interaction Oriented Model by Textual representation)[7]. This
concepts of multi-agent systems is interactions. However, existing language has correspondences with AUML sequence diagrams and
languages for implementing interactions lack expressiveness. Thisénable us to implement interactions based on AUML sequence di-

causes gaps to occur between design and implementation. agrams easily. However, the language lacks the ability to represent
all the interaction operator. We modify this language adding some
notations. In this paper, we show the new version of IOM/T and
how IOM/T corresponds to AUML sequence diagrams.

Permission to make digital or hard copies of all or part of this work for ~Below, this paper is structured as follows. In section 2, we con-

personal or classroom use is granted without fee provided that copies aresider the problem of implementing interaction with existing lan-

not made or distributed for profit or commercial advantage and that copies guages. Then in section 3, we provide a specification of IOM/T

bear this notice and the full citation on the first page. To copy otherwise, to gnd in section 4, we verify the correspondence between IOM/T and

republish, to post on servers or to redistribute to lists, requires prior specific the AUML sequence diagrams usimgcalculus. In section 5, we

permission and/or a fee. T
AAMAS'05, July 25-29, 2005, Utrecht, Netherlands. evaluate IOM/T by comparing it with related work and some con-

Copyright 2005 ACM 1-59593-094-9/05/0007%5.00. clusion are presented in section 6.

Multi-Agent System, Interaction, AUML

778

sd:Samplelnteraction J
/ 1 public class RolelBehaviour \
2 extends jade.core.behaviours.Behaviour {
:Role1 ‘Role2 3 int state_ = 0O;
o ° 4 boolean TisTerminate_ = true;
I | 5 public void action() {
\ X AN g switch (state_) {
loop) : . [| some constraints g case (ﬁ' is firstlloop continue? */) {
N state_ = 1;
! e 10 } else T
] Zal 11 state_ = 7;
alternative J L d 12
| m2 .- [ﬁ reeilf;
| | %g 83 sénd rr12essage mi */
state = 2;
loop) | m3 | %7 bre%lf_;
| [1 ca?g recv message m2 or mé *
= m4 | 20 if (/* is first_case? */) {
= | %5 y sltate{ = 3;
1 + else
! 5 ! 23 state. = 6;
! 1 25 Lreal_(;
t = %9 ca?fe (]}' is second loop continue? */) {
1S mé | 28 state_ = 4,
- ! 29 }else T '
| | 30 state. = 5;
31
| n7 [3% reik;
[] 4 398 Sénd message m3 */
%g /I recv message m4
. . 37 ACLMessage msg = myAgent.receive();
Figure 1: An example AUML sequence diagram 38 Object content = msg.getContent();
§§ /* handle the content */
4 state = 3;
42 break;
ﬁ ca?g sse:nd message m5 */
2. PROBLEMSWHEN IMPLEMENTING IN- zﬁlg break;
case b:
state_ = 0;
TERACTIONS a7 S
In this section, we consider the problems that arise with exist- é8 Ca?’? s7e'nq message m7 */
ing languages when implementing interactions. In section 2.1, we| 21 isTerminate_ = true;
show an implementation with JADE, which is currently one of the gg ’
most available agent platforms. In section 2.2, we explain the prob- 55 %ub”c boolean done() {
lems in implementing interactions with existing languages referring g? } return isTerminate_;
to the example code written with JADE. 9 58 })
2.1 Implementation for JADE
Interactions in JADE consist of actions that include message Figure 2: An implementation of Rolel in JADE

transmission and reception. Therefore, we implement agent actions

of each agent that would participate in the interaction. We need

keep track of state transition of agent actions for interactions. We

have to use variables which represent the current state. Thus, a state

transition is represented as a change in their value, and an agent ac- . .

tion is represented as conditional branches based on their valuest® modify both of them if some changes to the message exchanges
An agent action is implemented as a subclass ofBaéaviour are to b(_e gpplled. T_hus, maintainability of interactions decreases.

class for JADE. Theaction() method is invoked until thelone() We explicitly set variable values to new values that represent the

method returngrue for the instance of thd&ehaviour class. For next state. However if the transitions are complex, it will not be
example, the interaction represented in Fig.1 is implemented as®3Sy to understand all of the state transitions and to determine the

Fig.2 and Fig.3. part where we should add information concerning the implementa-
tion. Suppose we have to modify the message creation on line 37
2.2 Problem with Existing Languages in Fig.3 . We may modify the corresponding message reception

and the way to deal with the message, which is specified on line 38
in Fig.2 . However, it is not clear whether the modification is nec-
essary since this part is described in a different class. Furthermore,
o Decreased maintainability due to dispersal of codes. itis also not easy to determine the part which we have to modify in
Fig.2 . Furthermore, when we want to add the information which
e Decreased readability due to lack of intuitive state transi- is represented as a note in the AUML sequence diagram, we will
tions. have to add it to the part somewhere around the line 19 in Fig.2 and
around the line 23 in Fig.3 . However, the actual location where
A message exchange represented as an arrow in the AUML se-we have to add the required feature is not obvious.
guence diagram is implemented in the actions of the sender agent The problems stated above are not specific to JADE. These prob-
and the receiver agent. The message transmissions and the messagems hold true with AgenTalk, COOL,COSY and Q and other Java
reception are implemented in the definitions of different classes. based language. Comparison with these languages are described in
However, they actually have a strong relationship and we will have section 5.

We can implement interactions as shown in the previous subsec-
tions. However, the implementations have following problems:

779

1 public class Role2Behaviour
2 extends jade.core.behaviours.Behaviour {
3 int state_ = 0;
4 boolean isTerminate_ = true;
5 public void action() {
6 switch (state_) {
7 ca7e 0:
8 * recv message ml or m7 */
9 if (/* is first loop continue? */) {
10 state_ = 1
11 } else T
12 state_ = 7;
13
%4 reak;
ca :
1 ?fe (/1?k is first case? */) {
17 state_ = 2;
18 }else T
19 state_ = 6;
20
2% re%k;
case 2:
3 7* send message m2 */
24 state = 3;
25 bre%k_;
case 3
%9 7* recv message m3 of m5 */
28 if (/* is second loop continue? */) {
29 state = 4;
30 } else T
31 state. = 5;
32
33 re%k;
ca :
gé ?F send message m4
36 ACLMessaﬂe msg = new ACLMessage();
37 /* create the content of message */
38 msg.setContent(...);
29 myAgent.send(msg);
4 state = 3;
42 break;
43 case 5:
44 state = 0;
ﬁs bre%k_;
case 6:
4 7* send message m6 */
48 state_ = 0O;
49 bre%k_;
ca -
g? ?g'l'ermlnate_ = true;
52 break;
53
54
55 public boolean done() {
56 return isTerminate_;
57
58 }

Figure 3: An implementation of Role2 in JADE

3. IOM/T:INTERACTION ORIENTED MODEL

BY TEXTURAL REPRESENTATION

In this section, we propose an interaction description language

called IOM/T which bridges the gap between design and imple-

sd:lterative Ping J

Sender Receiver

w [PngQUERY REF |
— =
! !
I alive:INFORM I
NOT_UNDERSTOOD
1 1
I I
end-of-loop:NOTIFY

Figure 4: Iterative Ping Protocols described as an AUML se-
guence diagrams.

should not disperse an interaction into multiple agents since AUML
sequence diagrams can represent it in a single diagram. This func-
tionality would enable us to implement and modify interactions
easily. IOM/T should have explicit control structures, which en-
able us to understand the message sequences intuitively as does the
AUML sequence diagrams. This increases readability of imple-
mentations and helps us to add information concerning the imple-
mentation based on designs. While Java lacks expressiveness, most
agent developers use this language. The syntax of IOM/T should
be similar to that of Java in order to decrease the cost of learning
IOM/T.

3.2 Specification of IOM/T

In this subsection, we present the specification of IOM/T using a
simple example interaction, Iterative Ping Protocol, which is repre-
sented in Fig.4. Inthis interaction S&nder sends a ping message
to a Receiver. The Receiver receives the message and decides
whether it should reply with an “alive” message. Then it replies
an “alive” message or ¥OT_UNDERSTOOD message. And
henceforth, it will continue with this communication repeatedly.
The interaction described in IOM/T is shown in Fig.5. The syntax
rule of IOM/T is provided in appendix A.

3.2.1 Definition of Interaction

In IOM/T, an interaction is represented asiateractionstruc-
ture and has a unique identifier. In Fig.5 we defined an interaction

mentation. In section 3.1, we show the design philosophy and in whose identifier isPingProtocol. An interactionstructure con-

section 3.2 we provide the language specification.

3.1 Design Philosophy
The design philosophy of IOM/T is follows:

e Implementations should correspond with AUML sequence
diagrams.

e Interactions should be described in a single structure.

e IOM/T should represent explicit control structures for state
transition.

e The syntax of IOM/T should be similar to that of Java.
The aim of IOM/T is to bridge the gap between design and im-

plementation. It is important that the implementation in IOM/T
corresponds with the design in AUML sequence diagrams. IOM/T

780

sists of the definition of roles which participate in this interaction
and the definition of message sequences among the roles.

3.2.2 Definition of Role

We define roles usingple structures. Theole structures have a
unique identifier within the interaction and consist of the definitions
of role functionality, the definitions of information variable and the
definitions of sub-interaction. We append “arto therole in or-
der to represent that there are multiple agents which play this role.
The definition of role functionality is specified using Java’s method
definition notation. The definition of information variable is spec-
ified using Java’s field definition notation. When we have to deal
with a large interaction, we divide it into multiple sub-interactions
and represent the entire interaction using them. The definition of
sub-interaction specifies what sub-interaction the role participates
in and what role it plays in the specified sub-interaction, using the
keywordusing.

/ \ sequential the sequence of role actions represents that the [role
1 interaction PingProtocol { actions are executed according to the order of the| se-
% rmeAISegg?Traiget()' quence.

4 boolean isContinue(); loop thewhile structure represents that the contents of this
g void knowAsDead(); structure are to be executed repeatedly until the spec-
7 fole Receiver { ified ro[e funct_lonahty _determmes to continue. The
8 boolean doesReply(); role action which notifies the end of loop to the par-
18) ACLMessage res; ticipants must follow this structure.
11 protocol é .) conditional branch | the if-else structure represents conditional branch.
%% Whrlalﬁa\ y Ssegggé.rls{Contmue()) { Each block represents the execution and one of|th
ig é%,\ggtssggg Sir'(’ge&a?g&)f\cLMessageo; ggonck is executed on the basis of the specified condi-
ing. I\ ; .
16 ping.setContent("(ping)"); it i i it i i
17 ping.setPerformative(\QUERY REF™: conditional execution g}elfksyructure re%rgfserr:ts cond'lfpodnal ex(;a_qutlo_n.]:I'flns
%g , sendAsync(ping); /f# mil fill?acd is executed if the specified condition is fyl-
20 play Receiver { v -
51 ACLMessage ping = recvBlock(); //# m1l parallel the parallel structure represents _parallel execution.
22 res = ping.createResponse(); Each block represents the execution and these actions
22 } are executed parallel.
5 if (Receiver.doesReply()) { weak sequence the weakstructure represents weak sequence execu-
26 play Receiver { i
27 res.setComent(“(aIive)’;?; tion.
%g res_gitperf?rm?m;/e gl EORM"); strong sequence the strong structure represents strong sequence exe-
sendAsync(res); m cution.
%(1) %Iay Sender() { negative the negativestructure represents negative execution.
g% ACLMessage msg = recvBlock(); //# m2 critical thecritical structure represents critical region.
31 } e}|se { ignore Lheignoregtructure represents the parts which sholld
35 play Receiver { e ignored.
36 res.setContent(ping.getContent()); : : :
gg res.gitPerfc()rm?ti\;/e('g\lOT_UNDERSTOOD"); consider tsmil::l%nsédséﬁ;riggléﬁ represents the parts which
sendAsync(res), //im .
39 } assert theassertstructure represents the parts which sholld
40 play Sender {
jlé CCLI\&eslssaggomsg = recvBlock(); //# m3 be asserted.
NOWAsDead(),
43 .
4) } Table 1: List of control structures
46 pla/{ Sender {
47 CLMessage msg = new ACLMessage();
48 msg.setReceiver(getTarget());
49 msg.setContent("(end-of-loop)");
50 msg.setPerformative("INFORM");
2) sendAsync(msg); We define role actions usinglay structures which has one of
gi } the role identifier. We basically describe the contents of role ac-
_ }) tions using Java. We can use some extension. First, we can use role

functionalities and information variables. Second, we can use some
functionalities for handling FIPA ACL[10]. FIPA ACL is a specifi-
cation for messages among agents and consists of several elements
including Sender, Receiver, Per formative andContent. We

can use theACLMessagelass which represents ACL Messages
and has the methods for accessing these elements. We describe the
message transmission using functiseadSync@ndsendAsync()

and message reception using functioesvBlock()and recvNon-
block() Then, we can control the interactions, the beginning of
sub-interactions and the termination of current interaction. The
functionbegininteraction(yepresents the beginning of sub-interaction
and the functiorterminatelnteraction(yepresents the termination

of a current interaction.

In Fig.5, the Sender determines the target by using functional-
ity getTarget() and sends &ing) message on lines 13-19. The
Receiver receives the message on lines 20-23. The Receiver then
decides which message it send to Sender on the basis of the condi-
tion on line 25.

Figure 5: Iterative Ping Protocol in IOM/T

In Fig.5 , we define two roles. One Bender on lines 2-6
and the other iReceiver on lines 7-10. InSender, we define
three functionalitiesgetT'arget() which determines the target of
message,sContinue() which determines whether to continue this
interaction andknowAsDead() which is called when the target
does not reply correctly. IReceiver, we define a functionality,
doesReply() which determines whether it should reply correctly,
and an information variablees which holds the reply message.
Here, we do not define sub-interactions since this interaction is sim-
ple.

3.2.3 Definition of Message Sequences

We define message sequences usingthcol structure. The
protocol structure consists of role actions and control structures.

Table 1 shows the list of control structures. 3.2.5 Execution of Interaction

In Fig.5, theprotocol structure on lines 11-54 define the mes- |nteractions can be implemented as described in the preceding
sage sequence. Role actions on lines 13-19 and 20-23 represengections. However, it is also necessary to provide implementations
role actions that are to be executed sequentially and these of role functionalities in a multi-agent system. We describe the

structure on lines 25-44 represents a conditional branch. Then themapping of functionality to agent implementations usingitey-
while structure on lines 12-45 specifies that these sequences are tgng structures which describe what methods the agent use as role

be repeated. functionalities. We can udeegininteraction()in order to begin an
. interaction. Fig.6 shows an example of an agent who plays the

781

Structure of Lfeline

Structure of Code

Formalization : A(x)

1 public class MyAgent extends Agent { play R
2 playing PingProtocol.Sender { ACLMossage mog: | AC) = new next
3 getTarget = getPingAgent; \ T s 2 orther ot the oo
4 isContinue = isPingContine; f [N \ i
g) knowAsDead = knowAsDead; | play R [
= ACLMessage msg =) = new nex
7 AID getPingAgent() { ... } recvBlock(); //#m A(>m()m<§|next()[[N]](x))
8 boolean isPingContinue() { ... } ”f‘ m is 2 unique identifier of the arrow
18 void knowAsDead() { ... } : I ‘H;:(
alternative]J |)
- = .77 :‘ -7 else if () { Alx) :[n[ew]]d(cna(e) - ,
— — = - -7 P1]l(done) + ==+ + [[Pn]l(done)
. . . . — Jelse { | doneO.INTIx)
Figure 6: A specification of agent functionalities v T]|,"
I \ N |
|
option i if (=) {
P P A() = new done
|] (ILPTI(done) + done<>)
N | doneQ).[INTI(x))
4. AUML AND IOM/T E—
' I . .
In this section, we show the equivalence of AUML sequence dia- oop J | vhile (8 functionali) { AW = new donenext(
grams and IOM/T. We use-calculus to verify the equivalence- P st Cioned Ao
calculus is a formal model for concurrent process and the processes loop temminat /% loop termintion +/ o
p termination) _\ next().[[N]](x))))
are described using the following syntax ruleB, P;(i = 1,2) N [W] | ene i ienerefune oo
represent processas represents actions amgl: represents name. |
T <> represents message transmission thraugh() represents oo J | e (S funoinain) || A pow done nox
message reception through «.P represents action execution, P . done0ne)
. ’ + (done().end().next<>
Py| P, represents paralleP, + P represents selectionew a P 1oop termingron I moxt INTON
. . . T end is a unique identifier of the loo
represents the binding of the namén P. W L~] " ’
| parallel {
parallel J |
___Fi___ flow { P1}
2= 0|a.P|Pi|P| P+ Py |newaP — AGO= new donet
- : 2 2 L flow [Pr} l[[Pﬂ](f;one) I Y [\[[[E(n]g;done)
_ = - done(). - - ~.done().[[NII(x
@ TlT <> |x() ’—N!_‘ _
T
sd interaction id{
D @ role R (-}
protocol{ R = new donég[[PIl(done) | done))
)]

4.1 Formalization of AUML sequence diagrams
In this subsection, we show the formal model of AUML se-

quence diagrams usingcalculus. In this paper we consider only Tabl/e 2: A formal model for AUML sequence diagrams and
IOM/T part 1.

alternative, option, loop andparallel Combined Fragment since
we deal with message sequences. For each lifeline, we formalize
the proces®R;(i = 1,--- ,n) as[[R:]] E by applying the rule de-
scribed in Table 2 and Table 3 recursively. The interaction is for-
malized as follows with the message identifief(i = 1,--- ,p)

and end of loop identifietnd; (i = 1, - - - q):

newmy ---mpends ...endg([[R1]]] - [[[Rn]])

newmy ---mpend; ...endg([[R1]]] - |[[[Rn]])

4.3 Equivalence between AUML sequence di-
agrams and IOM/T

We have formalized both the AUML sequence diagrams and
IOM/T. Details of proof are not shown due to space limitations. The
loop and alternative CombinedFragments correspondudile
structures andf — else structure. We can prove the equivalence
by structural induction. For example,#1 - -- Pn, N in the alter-
native Combined Fragment are equivalenftd- - - Pn, N in the
if — else structure, these representation are formalized to same

4.2 Formalization of IOM/T

In this subsection, we shows the formal model of IOM/T using
mw-calculus. We deal only with message exchanges since our aim
is to verify the equivalence to AUML sequence diagrams. Fur-
thermore we do not deal with the condltl_on qﬁnle structure formula. Therefore, they are equivalent.
andif — else structure for the sake of simplicity. The corre-

" . We can formalize both representation of Iterative Ping Protocol
spondence between transmissions and receptions are based on the -
; o o : - .~ as showedin Fig.7 .
identifier specified as comment since the meaning of the receiver
field of ACLMessage class is not included in IOM/T. For each
role, we formalize the procesR;(i = 1,---,n) as[[R;]|E by 5. DISCUSSION
applying the rule described in Table 2 and Table 3 recursively. In this section, we evaluate IOM/T by comparing to related work.
The interaction is formalized as follows with the message identifier The interaction shownin Fig.1 can be described as shown in Fig.9
m;(i =1,---,p) and end of loop identifieend; (i = 1,- - - q):

782

Structure of Lifeline

Structure of Code

Formalization : A(x)

play R{
ACLMessage msg;
sendAsync(msg); //#m

Alx) = mOX>
m is a unique identifier of the arrow

play R{
ACLMessage msg =
recvBlock(); //#m
1

AG) = m (x>
m is a unique identifier of the arrow

Pn

if (o) {
P1

i
else if (-+) {
Jelse {
Pn
}

AG) = [[P1TIG) + = =+ + [[Pn]](x)

option

P

if (o) {
P

}

AG) = ([IPTI(x) + %<>)

loop J

p

|

|

I
d_]
L=

1

|

|

I

|

|

|

|

|

|

|

loop termination
1

while (S.functionality)) {
P
1
play S {
/* loop termination */

}

A() = new donenext(
[[PIXdone)
| (done(.AGx)
+ (done()-end<>next<>
| nextOX<>N)
end is a unique identifier of the loop

loop I
|

P
|

loop termination
R

while (S functionality)) {
P

}

A(x) = new done, next(
[[P]X(done)
| (done0.A(x)
+ (done().end)next<>
| next0x<>))
end is a unique identifier of the loop

Sender
L1

Receiver
L2

new done(Ly|done())

new next(ml <> .next <>
next().(m2().done <> + m3().done <>))
(done().L1 4+ done().end <> .done <>)

new done(L2|done())

new next(ml().next <>
next().(m2 <> .done <> + m3 <> .done <>))
(done().L2 + done().end().done <>)

new ml m2m3 end(Sender|Receiver)

J

Figure 7: A formal model of Iterative Ping Protocol.

sequence
diagr

generate
skeleton 1oM/T
code
.

agents code

- _

generate
executable
code

executable
code

Figure 8: An overview of implementation using IOM/T.

parallel {
A) = new done

[[P1])done) | -+ - | [[Pn])(done)
| done). + *.donex<>)

_______ flow { P1}

flow { Pn}

I

|

parallel !
P1 |

|

)

T

|

if 5/* are constraints fulfilled? */) {
Teno mal execution */

els
/* output error log */

Table 3: A formal model for AUML sequence diagrams and
IOM/T part 2.

We should be able concentrate on what we have to implement
for these constraints. However, if we use existing languages, we
will be confused as to where we are supposed to implement the
constraints. In the case of IOM/T we can easily determine the part
where we are supposed to implement the constraints since we are

the correspondence between message transmissions and messa gle to recognize that we ha\{e_ to |mplemen_t mat_ters regardlng_ the
- . X . . “first message after the conditional branch in Fig.1 and the im-
receptions is clear. For instance, the message transmission on line

13 corresponds with the message reception on line 16. This Cor_p!ementatmn for the message is qle_ar in Fig.9 . Furthermore, the
. S difference between IOM/T and existing languages become clearer
respondence is clearer than that which is described with existing

e o " . . if we implement more complex interactions, especially interactions
languages. This increases maintainability of interactions. When P P P y

we have to modify the code regarding message exchanges, we cart1hat inc_Iude_ para_tlle_l execution. The number of states increa_ses_ ex-

easily find the message correspondence and parts that the modil‘i-ponentlally |n_eX|st|ng languages due to the number_of c_omt_Jl_natlon

cation would affect. For example, suppose some changes occursOf the states in a parallel process. AS a result, malr_1ta|nab_|llty and

on line 35 where the content of the message is created. We haVereadablllty decreases. For IOM/T this will not be an issue since we
: ust implement each parallel process separately.

to modify the part where Rolel receives the message and handled i . 8 : . .
In this section, we mainly perform comparison with the imple-

it. In IOM/T we can easily find that the part is on line 42. The mentation for JADE. However, itis the same for the other languages

same applies when we add information regarding the implementa-
. . . ; such as AgenTalk, COOL, COSY and Q. Although these languages
tion. Suppose we have to implement the information represented ashave interesting characteristic of their own, we have to divide the

anote in Fig.1 which specifies timing constraints. Role2 should interaction into multiple agents in order to implement it in these

create messages on the basis of the time it takes for creating themlanguages. Q has representation for state transitions but we have to

Thus, we change the method to create message on the basis of thﬁse explicit transitions and state transitions cannot be understood
remaining time. We will implement this on lines 20-21 as follows: P

intuitively.

The gap between design and implementation is a common prob-
lem of multi-agent systems. One solution is to enhance the design
descriptions [8, 5]. Another is to develop implementation descrip-
tion [2]. Our work belongs to the latter solution, we believe this is a
first interaction language that is designed to bridge the gap between

Rolel should judge whether the constraints are fulfilled. Rolel the AUML sequence diagrams and implementation.
should output error logs when the constraints are not fulfilled. Thus, Fig.8 shows an overview of the process starting from the AUML
we will implement the following on line 24: sequence diagrams to the implementation of a multi-agent system.

Interactions represented in IOM/T are described in a single code
and correspond with the design in AUML sequence diagrams. Thus,

if (/* tight constraints */) {

) rrsg.setContent(roughContent);
else
msg.setContent(preciseContent);

783

First, we generate skeleton codes of IOM/T from AUML sequence
diagrams. Some researches have been proposed regarding this pro
cess. M.P.Huget considers the process of generating Java code
from AUML sequence diagrams[13]. M.Dinkloh has developed
a tool which generates skeleton code for JADE from AUML se-
guence diagrams[6]. IPEditor[16] also generates skeleton code for
Bee-gent[17] from a graphical design. We do not show the way
to generate skeleton code in IOM/T due to space limitation. How-
ever, it is not difficult since IOM/T has structures that correspond
to AUML sequence diagrams. Next, we implement interaction by
adding information to the skeleton codes. We can concentrate on
what we should implement since IOM/T improve maintainability
and readability of implementation of interaction. By the way, we
will not limit the target agent-platform for multi-agent systems.
The IOM/T compiler will convert the implementation in IOM/T
and the implementation of agents for the platform into implementa-
tions of multi-agent systems for that platform. The implementation
of agents includes the methods which realize the role functional-
ities. The implementation of agents is beyond the scope of this
paper. The implementations in IOM/T include information which
the design descriptions lack. Thus, the IOM/T compiler can gener-
ate executable implementation of multi-agent system for the target
agent-platform. This allows us to reuse the implementation of in-
teractions. We have developed the IOM/T compiler for JADE.

6. CONCLUSION

In this paper, we have proposed a new interaction description
language called IOM/T. Correspondence with the design in AUML
is not considered in existing languages. IOM/T corresponds with
AUML sequence diagrams and allows us to describe without dis-
persing codes of interactions. IOM/T is capable of describing in-
tuitive state transitions. Thus, maintainability and readability of
implementations of interactions increase if we use IOM/T. Further-
more, we have provided the formal model for AUML sequence di-
agrams and IOM/T and proved the equivalence of both representa-
tions.

In the future, we will create a more precise formal model of
IOM/T and develop compilers for various agent-platforms. We also
plan to verify the effectiveness of IOM/T through demonstration
experiments.

7. ADDITIONAL AUTHORS

Additional authors: Nobukazu YOSHIOKA (National Institute
of Informatics, emailnobukazu@nii.ac.jp)

8. REFERENCES

[1] M. Barbuceanu and M. S. Fox. Cool: A language for
describing coordination in multiagent systems. In V. Lesser
and L. Gasser, editorBroceedings of the First International
Conference oil Multi-Agent Systems (ICMAS;3&)ges

17-24, San Francisco, CA, USA, 1995. AAAI Press.

L. Braubach, A. Pokahr, and D. Moldt. Goal representation
for BDI agent systems. IRrogramming Multiagent Systems
languages, frameworks, techniques and tools ProMAS 2004
Workshop2004.

B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic,
configurable, cooperation protocols for multi-agent systems.
In LNAI, From Reaction to Cognition, MAAMAW 9%ages
157-171, 1993.

CSELT. JADE.

http://sharon.cselt.it/projects/jade/

(2]

(3]

(4]

784

-

1 interaction Sample { \
2 role Rolel { .

3 boolean isFirstLoopContinue();

£51 } boolean isSecondLoopContinue();

6 role Role2 {

g boolean isFirstCase();

9 protocol {

10 while (Rolel isFirstLoopContinue()) {

11 pIaX Rolel {

12 CLMessa e msg;

ﬁ) sendAsync(msg); //# ml

15 play Role2 {

%9 ACLMessag msg = recvBlock(); //# ml
18 if (Role2 isFirstCase()) {

19 play Role2

20 ACLMessage msg;

g% sendAsync(msg); //# m2

23 play Rolel {

%4 ACLMessage msg = recvBlock(); //# m2
5

26 while (Rolel.isSecondLoopContinue()) {
27 play Rolel

28 ACLMessage msg;

%g sendAsync(msg); //# m3

31 play Role2 {

32 ACLMessage msgl = recvBlock(); //# m3
33 ACLMessage msg2

34 = msgl.createResponse();

35 /* create the content of message */
36 msg.setContent(...);

%g) sendAsync(msg2); //# m4

39 play Rolel {

40 ACLMessage msg = recvBlock(); //# m4
41 Object content = msg. getContem()
ﬁ% /* handle the content

44

45 play Rolel {

46 ACLMessage terminateMsg;

jg sendAsync(terminateMsg);

49 else

50 } plax {Rolez

51 CLMessa e msg

g% sendAsync(msg); //# m5

54 play Rolel {

gg ACLMessage msg = recvBlock(); //# m5
57 }

58

59 play Rolel {

60 ACLMessage terminateMsg;

g% sendAsync(terminateMsg);

63 }

64 }

(5]

(6]

(7]

(8]

Figure 9: An implementation in IOM/T

V. T. da Silva, R. Choren, and C. J. de Lucena. A UML based
approach for modeling and implementing multi-agent
systems. IrThe Third International Joint Conference on
Autonomous Agents & Multi Agent Systems AAMAS2004
pages 914-921, 2004.

M. Dinkloh and J. Nimis. A tool for integrated design and
implementation of conversations in multi-agent systems. In
Programming Multiagent Systems languages, frameworks,
techniques and tools ProMAS 2003 Worksh2@03.

T. DOI, N. YOSHIOKA, Y. TAHARA, and S. HONIDEN.
Bridging the gap between AUML and implementation using
IOM/T. In Programming Multiagent Systems languages,
frameworks, techniques and tools ProMAS 2004 Workshop
2004.

L. Ehrler and S. Cranefield. Executing Agent UML
diagrams. InThe Third International Joint Conference on
Autonomous Agents & Multi Agent Systems AAMAS2004

(9]
(10]
(11]
[12]

(13]

(14]

[15]

[16]

[17]

pages 906913, 2004.

emorphia. FIPA-OShttp:
/Iwww.emorphia.com/research/about.htm

FIPA. FIPA ACL message structure specification.
http://lwww.fipa.org/specs/fipa00061/ .

FIPA. The foundation for intelligent physical agents.
http://www.fipa.org

FIPA. Interaction diagram#ittp://www.auml.org/
auml/documents/ID-03-07-02.pdf

M.-P. Huget. Generating code for Agent UML sequence
diagrams. Technical report, University of Liverpool
Department of Computer Science, 2002.

T. Ishida. Q: A scenario description language for interactive
agentslEEE Computer2002.

K. Kuwabara, T. Ishida, and N. Osato. Agentalk: Describing
multiagent coordination protocols with inheritance Aroc.

7th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI '95) 1995.

Y. Tahara, A. Ohsuga, and S. Honiden. Mobile agent security
with the IPEditor development tool and the Mobile UNITY
language. IrProc. of Agents 20QJpages 656-662. ACM
Press, 2001.

TOSHIBA Corporation. Bee-gertttp:

/Imww?2 toshiba.co.jp/beegent/index.htm

APPENDIX

A.

SYNTAX RULE

InteractionDef
InteractionBody
RoleDefs

RoleDef
RoleBody
RoleBodyDefs

RoleBodyDef

SubProtocolDef
FuncDef
InformationDef
ProtocolDef
ProtocolBody
ProtocolBlocks

ProtocolBlock

LoopBlock
WhilePredicate
AlternativeBlock

interaction I'd InteractionBody
RoleDefs ProtocolDef

RoleDef

RoleDefs RoleDef

role #opt Id RoleBody

{ RoleBodyDefsopt }
RoleBodyDef

RoleBodyDefs RoleBodyDef
SubProtocolDef

FuncDef

InformationDef

using InteractionName.Role Name;
ReturnType Funcld(Argumentsgpt);
InformationType Infomationld;
protocol Protocol Body

{ ProtocolBlocks }

ProtocolBlock

ProtocolBlocks ProtocolBlock

play Roleld ActionBlock
LoopBlock

AlternativeBlock

OptionBlock

ParallelBlock

WeakBlock

StrongBlock

NegativeBlock

Critical Block

IgnoreBlock

ConsiderBlock

AssertBlock

while(WhilePredicate){ ProtocolBlocks }
Roleld. Funcld(Argsopt)

IfBlock Elsel f Blocksopt ElseBlock

785

IfBlock
Elsel f Blocks

Elsel f Block
ElseBlock
OptionBlock
IfPredicate
ParallelBlock
JudgeFuncs

JudgeFuc

ParallelSequences

ParallelSequence
WeakBlock
StrongBlock
NegativeBlock
Critical Block
IgnoreBlock
ConsiderBlock
AssertBlock

PlayingDef

PlayingDefBody
FuncMappings

FuncMapping
NormalFuncMapping
Protocol FuncMapping

ProtocolSpecifiers

ProtocolSpecifier

if(I fPredicate) { ProtocolBlocks }
Elsel fBlock

Elsel fBlock Elsel f Blocks

elseif(I fPredicate) { ProtocolBlocks }
else { Protocol Blocks }

if(I fPredicate) { Protocol Blocks }
Roleld.Funcld(Argsopt)

parallel { Judge Funcs ParallelSequences }
Judge Func

JudgeFunc Judge Funcs
Roleld:Funcld

ParallelSequence

ParallelSequence ParallelSequences
flow { ProtocolBlock }

weak { Protocol Blocks }

strong { Protocol Blocks }

negative { ProtocolBlocks }

critical { Protocol Blocks }

ignore { Protocol Blocks }

consider { ProtocolBlocks }

assert { ProtocolBlocks }

playing

Protocolld.PlayerId PlayingDefBody
{FuncMappingsopt }
FuncMapping
FuncMappings FuncMapping
NormalFuncMapping
Protocoll FuncMapping
Funcld = MethodId
ProtocolSpecifiers.Funcld = Methodld
ProtocolSpecifier
ProtocolSpecifiers ProtocolSpecifier
Protocolld.Playerld

