
Using the UML 2.0 Activity Diagram to Model Agent
Plans and Actions

Viviane Torres da Silva* Ricardo Choren Noya+ Carlos J. P. de Lucena*
*Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Computer Science Department,

Rua Marquês de São Vicente, 225 – Gávea, Rio de Janeiro / RJ, 22451-900, Brazil

[viviane,lucena]@inf.puc-rio.br
+Military Institute of Engineering, Department of Systems Engineering,

Pça Gen. Tibúrcio 80 – Praia Vermelha – Rio de Janeiro / RJ, 22290-270, Brazil

choren@de9.ime.eb.br
ABSTRACT
The behavior of an agent is defined through the specification of
plans and actions. Agents have a set of plans that are selected to
be executed according to their goals (and other mental state
information). In this paper, we propose the use of UML 2.0
activity diagrams to model agent plans and actions. We consider a
plan to be an activity. Both plans and activities are composed of
actions and define the action execution sequence. By using some
features available in the UML 2.0 activity diagrams and defining
some new ones, we demonstrate how these diagrams can be
applied to model agent plans and actions.

Categories and Subject Descriptors
D.2[Software Engineering]: Design – representation.

General Terms
Design, Languages

Keywords
Unified modeling language, multi-agent system, plans, actions

1. INTRODUCTION
Agents are software entities designed to satisfy specific conditions
called goals. Adopting a goal represents some commitment to
pursuing a particular state. While specifying a multi-agent system,
designers build plans to determine how the agents rationally act in
accordance with their goals.

Currently, there has been an increasing effort to use UML to
specify multi-agent systems, e.g. AUML [7], AORML [15] and
MAS-ML [13]. Nevertheless, these efforts focus on the structural
and interactive aspects of the system. They provide no basis for
modeling plans that ensure the achievement of goals and no
guidance whatsoever about how plans are related to agent roles,
interactions and organizations. These gaps pose significant

problems for modeling the dynamic behavior of multi-agent
systems.

Usually, agent interaction protocols are used to model the
interaction between agents. However, it is also important to
specify the high-level business processes, i.e. to model the
complex logic, including data flow, within a software agent.

To overcome these limitations, we propose using the UML 2.0
[14] activity diagram to specify action plans. This diagram models
the system behavior, including the sequence and conditions of
execution of the actions. Actions are considered the basic units of
the system behavior. The activity diagram is the most noticeable
change in UML 2.0. It is not a specialization of a state diagram,
but rather a combination of data and object flow diagrams. This
way, we intend to provide a notation for plans that indicate the
rational achievement of goals, so that the diagrams can show
agents playing roles, executing actions and exchanging messages.
We also intend to enhance the MAS-ML modeling language.

This paper is structured as follows. We begin by describing some
characteristics of multi-agent systems that are significant to justify
the use and extension of the features available in the UML 2.0
activity diagram to model plans. Section 3 presents an example of
a multi-agent system that will be used to show the modeling
features introduced in Section 4. Section 4 presents the features
available in the UML 2.0 activity diagrams used to model plans
and actions and other new features defined to model plan related
characteristics that could not be modeled using the standards
features. Section 5 describes the related work, and Section 6
concludes and presents some ongoing work.

2. AGENT BASICS
Agents are goal-oriented entities that have beliefs, plans and
actions defined in its mental state [3][12][10]. Beliefs include
what the agent knows about the environment, itself and other
agents, and its perceptions about what happens in the system [13].

A plan is composed of actions and defines a way to achieve a
goal. A plan can be viewed as state transition machine [5] where
the states define the actions that should be executed and the edges
link these actions, defining their execution order. The transitions
from an action to another can be evaluated according to the
information represented in the agent’s mental state.

Agents play at least one role in an organization [8][18] and
inhabit exactly one environment [2][3]. A role defines duties and
rights that an agent must obey while executing [15][16]. Besides
defining duties and rights, a role also defines the protocols

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.

Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

594

available to the agents playing it. A protocol describes a sequence
of messages that can be sent or received by agents.

While executing, agents can commit to new roles, cancel its roles,
deactivate or activate roles, and change from one role to another
[9][13]. When agents change their roles, they can move from an
organization to another and even from an environment to another.

3. AN EXAMPLE: THE EXPERT
COMMITTEE MAS

Consider the domain of conference management, where authors
can submit papers and a chair distributes these papers among the
reviewers for evaluation. The Expert Committee is an application
solution developed as an example of multi-agent system for the
conference management domain.

In the Expert Committee system, agents play different roles to
achieve their goals. The system supports the following activities:
paper submission, reviewer assignment, review submission, and
acceptance or rejection notification. Throughout this paper, we
will focus on the reviewer assignment activity to show examples
of the notation we propose.

Until the submission deadline, authors can submit their papers.
Once the deadline is reached, the chair must distribute the set of
submitted papers to the reviewers according to their research area.
The system has a configuration parameter that states that a paper
must be reviewed by at least n reviewers. The chair keeps trying to
allocate the reviewers for a limited period of time, after which, if a
paper does not have n reviewers, the chair himself becomes
responsible for reviewing this particular paper.

The allocation activity is carried out in the following way. The
chair sends a paper review proposal to a reviewer. The reviewer
then evaluates the proposal to accept or reject it. Each reviewer
must tell the chair about the papers he agrees to review.

Agents are used in the Expert Committee application to help the
chair with the distribution of papers to reviewers and to assist a
reviewer with the evaluation of proposals. The scenarios that will
be pointed out in the following section are the Distribution of
papers to reviewers and the Evaluation of proposal of reviewing
papers.

4. THE UML ACTIVITY DIAGRAM
Activity diagrams emphasize the sequence and conditions for
action execution. An activity is a specification of parameterized
behavior that is expressed as a flow of execution through the
sequencing of subordinate units (whose primitive elements are
individual actions) [14]. An action represents a single step within
an activity, thus being the fundamental unit of behavior
specification [14].

The UML 2.0 activity diagram was used to model agent plans and
actions. To model agent plans and actions, it was necessary to
extend the activity diagram with new stereotypes related to multi-
agent system characteristics.

4.1 Plans
The definition of plans and activities are similar. Plans are
composed of actions and define the order in which they can be
executed, thus activity diagrams can be used to model plans. Like
an activity, a plan can be illustrated by using three different

representations. In Figure 1 a plan is modeled as a simple activity.
The actions and edges that compose and describe the plan are
modeled inside a round-corned rectangle identified by the name of
the plan. Figure 1 illustrates the plan Evaluation of proposal of
reviewing papers.

Figure 1. A plan modeled as an activity

Figure 2 illustrates an invoking plan by using the representation of
an invoking activity. An invoking plan is a plan that is invoked by
another plan or action. The rake-style symbol indicates
decomposition or sequence of plans. Figure 3 shows the contents
of the invoked plan inside a large round-corned rectangle by
representing the edges and nodes of the plan.

Figure 2 and Figure 3 depict the plan Distribution of papers to
reviewers. This plan was modeled as an invoking plan since it is
called up by the action that monitors the submission deadline.
Once the deadline is reached, the chair executes the plan
Distribution of papers to reviewers.

Figure 2. Example of invoking a plan

Figure 3. The nodes and edges of a plan

4.2 Actions
In UML activity diagrams, it is possible to define an action in two
different ways. An action can be identified only by its name or it
can be described using an application description language. We
propose to describe an action by using a domain-independent
notation.

We believe that actions can be viewed as components. When the
designer defines an action, he is specifying a component that will
implement a given functionality. Besides, a plan is just a logical
sequence of actions. The implementation of these actions can be
independent, to maximize loose coupling and action reuse.

To illustrate this idea, actions could be described and
implemented using a services approach. In such approach, all
actions are defined as services, which are seen as black boxes , i.e.
external actions or plans neither know nor care how they perform
their functionality. In a more general sense, the action interface is
invokable. This means that it is irrelevant if an action is local
(within the system) or remote (external to the immediate system),

595

what interconnect scheme or protocol is used to effect the
invocation, or what infrastructure components are required to
make the connection.

In this approach, an action could be further specified using Web
Services Description Language (WSDL) [6]. Nonetheless, the
WSDL description of any action can become really extensive.
Figure 4 illustrates parts of the description of a simple action that
receives two integers and returns the sum of such integers. It is
possible to notice how vast the description of actions can become
by using WSDL. To solve such problem, we propose to identify
actions by describing their names and identifying the URLs where
their WSDL descriptions are available. Figure 5 illustrates the
action AddNumbers.

����������	
��
��������
����
�����������

�����
����

�
�������� !�"�	
������

���

���

����
�����#�	�����	$��!�
��

���#�	��
�������	
�%�	�����	���&#����
'�
��(�

���#�	��
�����
���
�%�	�����	���&#����
'�
��(�

�(��

����

���

����
��������)�
#�

���

���#�	��
��������!����&#����
'�
��(�

�(��

����

�#�	��&#��
��������%�	��&#���

����#�	����
�
����������

������
#!����

�����#�	�����	$��!�
�(�

������!�#!����

��������)�
#�

��(�

���(�#�	����
�

�(#�	��&#��

���

��(����
����

�

Figure 4. Action described using WSDL

Figure 5. Target namespace identifying the action

4.3 Goals
Agents execute plans in order to achieve theirs goals. The plans of
an agent are associated with its goals; therefore, while modeling
plans, the goals associated with them should be identified. We
propose the use of a new stereotype <<goal>> to describe the
goal related to a plan. Figure 6 shows the use of the stereotype
<<goal>> to associate the goal Evaluate proposal with the plan
Evaluation of proposal of reviewing papers. The goal Evaluate
proposal is one of the goals of the reviewers. In order to achieve
such goal, reviewers execute the plan Evaluation of proposal of
reviewing papers.

Figure 6. Relating goals to plans

4.4 Guard Conditions in Decision Nodes
Guard conditions are defined in the decision nodes of activity
diagrams to describe conditions that must be satisfied in order to
fire an associated transition. We propose to extend the definition
of the guard conditions to describe information related to the
agent’s mental states. Such information may describe the
conditions that should be checked by the agent in order to decide
the next action to execute.

Agents can decide whether or not to execute an action based on
any information contained in their mental state. For instance, an
agent can decide to execute an action based on the messages that
it has received or sent, on the actions that it has previously
executed, and on the goals it has. The history about what the agent
has done is stored in the agent beliefs.

Figure 7 illustrates the use of beliefs in guard conditions. When
the reviewer receives a set of proposal papers to review, the
reviewer checks the deadline of the revision according to the dates
stored in its agenda. The agent’s agenda is one of its beliefs. If the
agent realizes that it will be impossible or very difficult to review
any paper until the deadline, the agent rejects the proposal.

Figure 7. Guard conditions

4.5 Message
The UML meta-model defines the SendSignalAction and the
AcceptEventAction meta-classes to represent signals sent to an
entity and events received by an entity in activity diagrams. We
propose to use such meta-classes to represent the messages sent
and received by an agent. To identify the signals and events that
are agent messages, the stereotype <<message>> should be used.
Since messages are sent and received in the context of protocols,
it is also important to describe the protocols while identifying the
messages.

FIPA ACL parameters can be used to detail the message
definition. We do not encourage the designer to identify all the
parameters that describe a message while modeling it in an
activity diagram. However, we do encourage the designer to select
some parameters to help the diagram users to understand some
specific and/or important characteristics of the message. Figure 8
illustrates the three proposed representation of messages: (i)
simple identification of messages, (ii) identification of message
protocols, and (iii) briefly description of messages. The message
described in Figure 8 in the one sent by the reviewers to the chair
when they reject the proposals of reviewing papers.

596

Figure 8. Representing messages

4.6 Roles
As stated before, an agent is always playing at least one role. To
specify the roles an agent is currently playing, they should be
identified during the plan modeling. We introduce of the
stereotype <<role>> to define the possible roles an agent can be
playing while executing a plan. Figure 9 shows the use of the
stereotype to state that the plan Evaluation of proposal of
reviewing papers is executed in the context of the role reviewer.

Figure 9. Relating roles to plans

While executing a plan, agents can play different roles. An agent
can commit to a new role, can cancel one of its roles, can
temporarily stop playing a role (deactivating it) or can activate a
role that it has temporarily stopped playing. Therefore, besides
identifying roles while executing plans, it may be useful to relate
the roles to the actions of a plan.

To represent agents changing roles, we suggest the use of
stereotypes associated with the actions where these changes take
place. The stereotype <<role_commitment>> should be used to
model an agent committing to a new role, the stereotype
<<role_cancel>> to model an agent canceling a role, the
stereotype <<role_deactivate>> to model an agent
temporarily stooping playing a role and the stereotype
<<role_activate>> to model an agent activating a role.

Figure 10 illustrates the use of swimlanes and the stereotypes
<<role_commitment>> to model two different roles played by
an agent. While executing the plan Distribution of papers to
reviewers, the agent playing the role chair may need to commit to
the role reviewer if a paper has not been associated with reviewers
until the papers distribution deadline. The agent commits to the
role reviewer while executing the action Allocate papers without
reviewers to agent. Note that the proposed notation, with
stereotypes and swimlanes, handles concurrency aspects of role
playing. In this particular example, the agent does not stop
playing the role chair: it starts playing the role receiver
simultaneously.

Figure 10. Partitions, roles and actions

In order to demonstrate the interruption of an action execution
inside the Distribution of papers to reviewers plan, the diagram
element Interruptible Activity Region proposed in the UML 2.0
meta-model was used. Figure 10 illustrates that the agent playing
the role chair interrupts the execution of its plan to commit to the
role reviewer. Besides, Figure 10 depicts the use of the stereotype
<<belief>> to indicate that the list of reviewers and papers are
beliefs of the agent playing the role chair.

We also introduce the use of partitions. Partitions often
correspond to organizational units in a business model [14]. This
way, actions can be either separated into groups or annotated to
identify their group. Figure 11 shows the use of partitions by
annotating the name of the role that is being played when an
action is executing.

The use of annotations and stereotypes are interesting to illustrate
an agent changing roles. When an agent wants to change its role,
it can cancel or deactivate its previous role and commit to or
activate a new role. Figure 11 demonstrate how to model these
four situations by using stereotypes and partitions.

Figure 11. Changing roles

4.7 Duties and Rights
In the previous section, we have used partitions to relate actions
and the roles played by agents while executing those actions.
Since roles and actions are related, it is also possible to identify
actions that are the duties and the rights of the agent playing the
role.

We introduce the stereotypes <<duty>> and <<right>> to
describe the duties and rights of an agent according to the role,
respectively. Figure 12 illustrates the use of the stereotype
<<duty>> and <<right>>. The action Allocate papers to

597

reviewers is one of the duties of the chair role while distributing
papers to reviewers and the action Reject paper to review is one of
the rights of the reviewer role while evaluating the proposals of
reviewing papers.

Figure 12. A duty action

4.8 Organizations
Agents play roles in the scope of an organization. Moreover, an
agent can change from an organization to another to play a
different role. Thus it is important to identify the organizations to
model such features of the system. We propose the use of
partitions and the stereotype <<organization>> to identify
organizations.

Using partitions and such stereotype it is possible to model agents
changing their roles in the same organization and agents changing
their roles when moving from an organization to another. Figure
13 illustrates an agent committing to another role in the same
organization and Figure 14 depicts an agent moving from an
organization to another by canceling its previous role and
committing to a new role in another organization. In Figure 13 the
agent playing the role chair commits to play the role reviewer in
the same organization where it is playing the role chair.

Figure 13. Playing two roles in the same organization

In the Expert Committee system, if the agent playing the role
reviewer does not agree to review a paper because of the revision
deadline, it can stop playing the role reviewer in that event. For
example, Figure 14 illustrates the agent canceling the role
reviewer in a Workshop and committing to the role program
committee in a Symposium. The agent leaves the workshop
organization and enters into the symposium organization. This
figure illustrates the use of a decision node to demonstrate how
plan conditions can be modeled.

*������
��
��

���#���"����+��,�����

�
�����������
��-

������	
���

)�.����%	�#�
��

/��������#�#�	

�	����,��
�����

#	�#�
���#�#�	

������
��	���

%	�#�
��

#�#�	

���

��	���0��
�����

1��������
�

��	���0��������
���

2
��	����
�

���

���

)
�
�
�+
�
	

%
	�
�
	�
�
�3
�
�
�
��
��
�

�
�
�
	�
�

�4
�
��
�

�
�
�5
�
	6

,
�
#

�
�
�
	�
�

�4
�
��
�

�
�

/
&
�
#
�

�!
�

2���!����
����#	�#�
�����

	����+�
��#�#�	

Figure 14. Changing organizations

4.9 Environments
Mobile agents can move from an environment to another while
executing their actions. In order to represent agents moving from
an environment to another, the environments where agents are
executing should be represented in activity diagrams. We
introduce the stereotype <<environment>> to identify
environments and the use of partitions to model agents changing
environments.

To move from an environment to another, the agent stops playing
roles in organizations of the departure environment and starts
playing roles in organizations of the arrival environment, since
roles are defined in the scope of organizations and organizations
in the scope of environments [11,18]. The hierarchical partition
notation can be used to model environments, organizations and
roles. Hierarchical partitions represent the children in the
hierarchy as further partitions of the parent partition [14]. Roles’
partitions are children of organizations’ partitions since different
roles are played in organization. Besides, organizations’ partitions
are children of environments’ partitions since organizations
inhabit environments.

Figure 15 shows an agent moving from the environment Env1 to
the environment Env2 by deactivating the role Z in organization A
and committing to the role W in organization B.

Figure 15. Changing environments

598

5. RELATED WORK
The UML activity diagram has been used to model the behavior of
mobile agents [1][4], to model agent interaction protocols [6][11]
and to model agent plans [5]. By using stereotypes, they extend
the activity diagram to model, for instance, roles, environments,
messages and organizations.

Kinny and Georgeff in [5] use the UML activity diagram to model
agent plans. They define internal states as activities that are
related to sub-goals and they propose to associate conditions with
the agent beliefs. In addition, they define fail states that are
introduced to model the notion of failure. However, they do not
use activity diagrams to model the relationship between plans,
goals and roles played by the agent. Therefore, it is not possible
model all the organizational aspects by using their approach.
Moreover, they also do not model agent messages.

In [4], the authors use the UML 2.0 Activity Diagram just to
model some specific behaviors of mobile agents, which are
cloning, mobility and message passing. The mobility feature is
modeled merely as a "Go - Do Task" activity pair, each one
executed in a host. We are more concerned with the
organizational aspects of mobility, providing a way to model
agents changing roles, stopping action plans and moving from one
organization to another, which may not even be in different hosts.

In their approach, message passing is represented with signal
sending and signal receipt, combined with ACL performative
stereotypes. We also use signals and ACL to model messages but
we go further in specifying the messages by identifying the
protocols, the receivers and any other relevant message
information that can be described by using ACL. The work
presented here does not provide special notation for cloning since
it can be simply modeled as an activity (or a set of activities) in an
agent action plan.

In [1], the authors propose the use of stereotypes associated with
actions to model mobile objects, locations, mobile locations and
actions that move and clone agents. In this paper, we do not
propose any specific stereotype to be used associated with mobile
agents. The only stereotype that is related to mobility
characteristic is the stereotype <<environment>> used together
with partitions to model environments.

Lind [6] recommends the use of the stereotypes <<send>> and
<<receive>> to model messages. Those stereotypes are
identified in the edges that link actions to indicate the actions that
send or receive messages. Since our proposal extends the UML
2.0, in this paper we suggest to indicate messages by associating
stereotypes with the AcceptEventAction and SendSignalAction
meta-classes. Such meta-classes were not available in previous
UML versions.

In [6] the authors also propose to model roles by using the
stereotype <<roles>> related to swimlanes. Nevertheless, in our
approach, we also model the modification of the agent roles by
associating stereotypes related to the actions that originate the
change.

In [11] the authors use swimlanes to model roles and group of
agents (or organizations). They also suggest the use of the
stereotype <<role change>> in notes related to actions to
indicate when an agent changes its roles. We extend their proposal
defining other stereotypes to point out how the changes occur. We

also suggest the use of partitions to model agents moving from an
organization to another.

6. CONCLUSION AND ONGOING WORK
In this paper we propose the use of the UML 2.0 activity diagrams
to model agent plans and actions. By using our approach it is
possible (i) to describe actions using a domain-independent
notation, (ii) to associate goals and roles with plans, (iii) to check
the information in the agent mental state by using guard
conditions, (iv) to describe messages, (v) to represent agents
changing their roles, (vi) to describe the actions that are duties
and rights, (vii) to model agents moving from an organization to
another and (viii) to model agents moving from an environment to
another. The extended activity diagram was included in the set of
diagrams proposed by MAS-ML. Nowadays, MAS-ML has tree
structural diagrams (extended class diagram, organization diagram
and role diagram) and two dynamic diagrams (extended sequence
and activity diagrams) that can be used to model the static and
dynamic characteristics of agents, organizations, roles,
environments and objects.

We are in the way of analyzing the UML 2.0 activity diagram to
model the selection of plans. Before executing a plan, the agent
must select the plan to be executed from a plan library according
to, among other things, the goals it wants to achieve. We believe
that the selection of plans can also be modeled as a state transition
machine and, therefore, can be modeled in activity diagrams.

Moreover, the interaction overview diagram is also being
considered to model plans and their actions. The main difference
between this diagram and the activity diagram is that it promotes
overview of the control flow. By using this diagram to model a
plan, the actions of the plan can be detailed by using interaction,
i.e., by identifying the interaction (sequence) diagrams that
represent those actions.

7. ACKNOWLEDGMENTS
This work has been partially supported by the ESSMA Project
under grant 552068/2002-0 (CNPq, Brazil).

8. REFERENCES
[1] H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing.

“Extending Activity Diagrams to Model Mobile Systems.”
In: M. Aksit, M. Mezini, and R. Unland, editors, Objects,
Components, Architectures, Services, and Applications for a
Networked World, LNCS 2591, pp. 278-293, 2003.

[2] M. d’Inverno; M. Luck. Understanding Agent Systems. New
York: Springer. 2001.

[3] I. Ishida, L. Gasser, M. Yokoo. “Organization self design of
production systems.” In: IEEE Transaction on Knowledge
and Data Engineering, v.4, n.2, p.123-134. 1992.

[4] M. Kang, K. Taguchi. “Modelling Mobile Agent Applications
by Extended UML Activity Diagram” ICEIS (4), 519-522,
2004.

[5] D. Kinny and M. Georgeff, (1997) "Modeling and design of
multi-agent systems," In Intelligent Agents III, Müller, J.,
Wooldridge, M. and Jennings, N., Eds., Springer 1193, pp.
1-20.

599

[6] J. Lind. Specifying Agent Interaction Protocols with Standard
UML, In Proceedings of the Second International Workshop
on Agent-Oriented Software Engineering (AOSE-2001),
LNCS 2222, Springer-Verlag, 2002

[7] J. Odell, H. Parunak and B. Bauer. “Extending UML for
Agents” In: Wagner, G., Lesperance, Y. and Yu, E.
Proceedings of the Agent-Oriented Information Systems
Workshop, AOIS 2000, Eds., Austin, pp. 3-17, 2000.

[8] J. Odell, H. Parunak, M. Fleisher. “The Role of Roles in
Designing Effective Agent Organizations.” In: A. Garcia, C.
Lucena, F. Zamboneli, A. Omicini, J. Castro, (Eds.) Software
Engineering for Large-Scale Multi-Agent Systems. LNCS
2603, Berlin: Springer, 2003.

[9] J. Odell, Parunal, H., S. Breuckner, M. Fleischer. “Temporal
Aspects of Dynamic Role Assignment,". In: Agent-Oriented
Software Engineering (AOSE) IV, P. Giorgini, Jörg Müller,
James Odell, eds., Lecture Notes on Computer Science
volume (forthcoming), Springer, Berlin, 2004.

[10] OMG. Agent Platform Special Interest Group: Agent
Technology. In: Green Paper. Version 1.0, 2000.

[11] H. Parunak and J. Odell. “Representing social structures in
UML” In Agent-Oriented Software Engineering II,
Wooldridge, M., Weiss, G. and Ciancarini, P., Eds., LNCS
2222, Springer-Verlag, Berlin, pp. 1-16, 2002.

[12] Y. Shoham. “Agent-Oriented Programming.” Artificial
Intelligence, v.60, 1993.

[13] V. Silva, C. Lucena. “From a Conceptual Framework for
Agents and Objects to a Multi-Agent System Modeling
Language”, In: Sycara, K., Wooldridge, M. (Edts.), Journal
of Autonomous Agents and Multi-Agent Systems, Kluwer
Academic Publishers, ISSN 1387-2532, pp. 145-189, volume
9, issue 1-2, 2004.

[14] UML: Unified Modeling Language Specification, version
2.0, OMG. Available at: <http://www.uml.org>. Accessed in:
December 10, 2004.

[15] G. Wagner, “The Agent-Object-Relationship Metamodel:
Towards a Unified View of State and Behavior”, Information
Systems, 28(5), 2003.

[16] L. Yu, B. Schmid. “A Conceptual Framework for Agent-
Oriented and Role-Based Work on Modeling.” In: G.
Wagner, E. Yu (Eds.). Proceedings of the 1st International
Workshop on Agent-Oriented Information Systems, 1999.

[17] WSDL. Web Services Description Language (WSDL),
version 1.1, W3C. Available at:
<http://www.w3.org/TR/wsdl>. Accessed in: December 10,
2004.

[18] F. Zambonelli, N. Jennings, M. Wooldridge. “Organizational
abstractions for the analysis and design of multi-agent
systems.” In: P. Ciancarini, M. Wooldridge (Eds.) Agent-
Oriented Software Engineering, LNCS 1957, Berlin:
Springer, p. 127-141. 2001.

600

