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ABSTRACT 
Software comprehension (understanding software structure and 
behavior) is essential for developing, maintaining, and improving 
software.  This is particularly true of agent-based systems, in 
which the actions of autonomous agents are affected by numerous 
factors, such as events in a dynamic environment, local uncertain 
beliefs, and intentions of other agents.  Existing comprehension 
tools are not suited to such large, concurrent software and do not 
leverage concepts of the agent-oriented paradigm to aid the user 
in understanding the software’s behavior.  To address the software 
comprehension of agent-based systems, this research proposes a 
method and accompanying tool that automates some of the 
manual tasks performed by the human user during software 
comprehension, such as explanation generation and knowledge 
verification. 

Categories and Subject Descriptors 
D.2.5 [Testing and Debugging]: Debugging aids, diagnostics, 
monitors, testing tools, tracing. 

General Terms 
Documentation, Design, Experimentation, Human Factors, 
Verification. 

Keywords 
Software comprehension, agent-oriented software engineering, 
reverse engineering, debugging, maintenance, tracer. 

1. INTRODUCTION 
Software comprehension is crucial for the development, 
maintenance (e.g., debugging, testing, and improving), and 
redesign of software.  Software comprehension (a.k.a. reverse 
engineering) is performed by the human user to understand the 
structure and behavior of the software.  The current suite of tools 
to help a user comprehend software includes (1) those that gather, 
summarize, and enable the user to browse through the source code 
(static analysis) and (2) those that generate behavioral diagrams 

from captured execution traces (dynamic analysis).  A 
commonality among these comprehension tools is that they 
capture artifacts about the software (e.g., static dependencies 
among objects and events that occur during simulation) and leave 
it up to the user to interpret and reason about the software’s 
behavior.   

This research aims to reduce the amount of manual effort 
performed by the human user during software comprehension by 
developing a method (1) to reason about observed software 
behavior at the design abstraction level and (2) to explain why 
given observations occurred.  The proposed method is particularly 
important for agent-based software, where agents (autonomous 
software entities) take actions based on localized (possibly 
erroneous) beliefs about their environment.  Comprehension of 
such sophisticated software systems is complicated by the number 
of agents and factors (e.g., beliefs, environmental events, other 
agents’ intentions and beliefs) that affect each agent’s actions.  
This research aims to help designers who want to improve agent 
or system behavior; developers who need to debug and verify 
agent behavior; and end-users who want to understand (at the 
design level) why agents performed certain actions.   

The approach of this research is to imitate what a human user 
does in software comprehension. Specifically, this paper presents 
the Tracing Method to semi-automate the process of building and 
refining the user’s understanding of the system (called knowledge 
base K) and using K to explain and verify agent behavior in the 
implemented system.  As a result of the Tracing Method, an 
explicit representation K is used to express what the user knows 
about the software system.  For agent-based systems, K is 
expressed in terms of agent concepts (i.e., beliefs, goals, 
intentions, actions, environmental events, and inter-agent 
messages), which are typical concepts used in agent-oriented 
software designs.  The Tracer Tool has been implemented to assist 
the user through the proposed comprehension method.  An 
experiment of the tool being applied to two agent systems is 
described. 

Taking the viewpoint that a person’s comprehension of a subject 
can be indirectly measured by how much the person can explain 
about the subject, the Tracer Tool is able to generate explanations 
(i.e., reasons for why an observation occurred), given K and 
observations captured from the system’s execution.  These 
explanations can be used by designers, developers, and end-users 
to elucidate, debug, and build trust in the agent system’s behavior. 

Section 2 reviews existing work related to software 
comprehension.  Section 3 describes the Tracing Method and 
accompanying Tracer Tool, which is demonstrated in Section 4.  
Section 5 summarizes this research and its contribution to agent-
oriented software engineering. 
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2. RELATED WORK 
Software maintenance will always be needed as long as the design 
or implementation needs to be modified.  Software bugs 
inevitably arise during the development of the implementation 
due to programming error, design error, or communication error.  
To fix bugs or to ensure that the implementation is free (for the 
most part) of bugs, the designer or developer must have an 
adequate understanding of the software.  Such an understanding 
can be acquired by reading design documents, examining source 
code, and analyzing execution traces of the system.   

Section 2.1 describes several software comprehension tools (often 
categorized as reverse engineering tools) to assist the user in 
analyzing and perusing the source code.  Section 2.2 discusses the 
use of model-checking, which focuses on testing and verification 
of software behavior, as another approach for software 
comprehension since the model being checked can be thought of 
as a formal design specification.  That design specification 
abstracts away many of the details of the implementation, and the 
entire system can be viewed in a concise representation, unlike the 
overwhelming abundance of data gathered by traditional 
comprehension tools.  This research takes the model-checking 
approach for representing software behavior and the reverse 
engineering approach for verifying the model against the actual 
implementation. 

Though useful, these techniques have their limitations (as 
described below) and can be improved for the purpose of 
comprehending agent-based software.  For agent software in 
particular, the difficulties in comprehension are exacerbated by 
characteristics of individual agents and of the system itself.  
Agents are distributed, localized software entities that are 
typically characterized as being rational, proactive, adaptable, 
social, and able to deal with uncertainty.  A software system with 
many agents, each with its own goals, resources, and constraints, 
making decisions, interacting, and acting on its own, makes 
software comprehension a challenging activity. An end-user may 
be hesitant to trust such autonomous agents without knowing how 
the agents make their decisions.  For comprehension, the user 
must consider the system’s distribution, concurrency, domain 
uncertainty, and non-determinism [6].  This paper proposes a 
method and tool that builds on the ideas from existing approaches 
and extends the state-of-the-art to better assist the human user (of 
various skill levels) in comprehending agent-based software. 

2.1 Comprehension (or RE) Tools 
Comprehension tools are synonymous with reverse engineering 
(RE) tools in that both aim to offer the user a better understanding 
of the structure and relationship among software components of 
the system.  In addition to identifying components and their 
dependencies, RE involves creating abstractions of the system 
design [3].  For example, Rigi and PBS extract structural data 
from the source code, analyze its structure, and visualize the 
software architecture for the user to browse [1; 5].  RE tools tend 
to produce a large amount of data for the user to interpret.  To 
deal with this, SoftSpec allows users to query a relational database 
of automatically gathered information about the software 
architecture [2]. Alternatively, using a graph-oriented approach, 
the GUPRO (Generic Understanding of Programs) toolset 
transforms source code into graphs according to a defined concept 
model [11].  In a case study by Lange, Winter, and Koblenz 
comparing graph-oriented and database approaches, GUPRO’s 

graph-oriented approach offered a more efficient way to analyze 
and search through the large amounts of data extracted from the 
source code of a large stock-trading application [13].  This 
research employs graphs to visualize the system’s behavior. 

Additionally, since these tools parse the source code directly, they 
are limited to programming languages that are parsable by the tool 
(i.e., tools must be extended for additional languages).  For real-
world applications, RE tools need to support software that use 
more than one programming language [19].  Since the Tracer Tool 
does not parse code, the tool can operate with any software 
system implemented in practically any mix of languages. 

For users familiar with design patterns, Schauer and Keller have a 
tool to extract, abstract, and visualize design patterns; however, 
the tool can only identify pre-defined patterns [18].  This research 
also uses abstractions to help extract familiar design concepts 
from the implementation, thus, aiding the comprehension of the 
overall system behavior, independent of language-dependent 
implementation constructs. 

In addition to static analysis of the source code, some RE tools 
analyze the dynamic aspects of the system in order to understand 
software behavior (i.e., actions and their motivations and 
consequences) in varying execution scenarios.  For example, in 
SCED, detailed event trace information (e.g., method invocation) 
is used to create a set of sequence and state diagrams [10].  Other 
tools, such as Hindsight and Lemma, can create flow charts and 
control-flow diagrams [7; 15].  Moreover, results of dynamic 
analysis can also be represented as use cases and recurring 
behavioral patterns, which brings the implementation closer to the 
design [9; 14].  Since dynamic agent behavior is central to 
comprehending agent systems, the Tracer Tool focuses on 
elucidating reasons for agent behavior.   

Due to the large amount of run-time data generated (even for 
small systems), dynamic analysis tools must also manage and 
abstract the extracted data [20].  To limit the amount of data that 
the user must search through, the user often must select specific 
components to be analyzed by the RE tool.  Thus, it is usually 
assumed that the user has some understanding of the static 
structure of the software [20].  This is also assumed for the 
Tracing Method described in this paper.  This research deals with 
the large amount of data by automating data interpretation for the 
user (described in Section 3).  As an alternative to dealing with 
the large amount of data, Poutakidis et al. focuses only on the 
verification of agent interaction protocols [16].  The Tracing 
Method allows the user to analyze any agent concepts in the agent 
design, including interaction protocols.  

2.2 Model-checking 
Reverse engineering is usually performed as a supporting activity 
for other software engineering tasks after a working 
implementation has been created.  Such tasks include re-
engineering to add or extend features; maintenance to correct or 
improve the software, reusing of components in other software; 
and assessing if the software satisfies certain requirements.  
Alternatively, system behaviors (as expressed by a formal model 
of the design) can be checked before any development takes 
place. Model-checking is used to formally verify behavioral 
properties (e.g., deadlocks and assertion failures) of software 
systems, but the ideas behind model-checking can be used for 
software comprehension.  Model-checking using tools such as 
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Spin [8] and Bogor [17] can be very useful in guaranteeing 
dynamic properties of the implementation, provided the model 
being checked accurately represents the implementation.  
Unfortunately, model-checking can only be performed on models 
whose state space is small enough to be exhaustively checked in a 
reasonable amount of time.  For most agent-based systems (which 
are written in procedural languages such as Java or C), this means 
that a simpler model of the implementations must be created 
manually, which suggests that the model is representative of what 
the user believes about the implementation and may not be 
representative of the actual implementation. 

In addition, as the implementation changes, the model must be 
updated as appropriate.  In practice, keeping an accurate model 
that reflects the implementation is very difficult, particularly if the 
model extraction is done manually.  This problem is commonly 
known as the translation gap.  There are a few tools, such as Java 
PathFinder (JPF) [21], that extract models from the source code, 
but these tools are not yet mature, are language-dependent, and do 
not scale well (JPF is suited to programs with approximately 
10,000 lines of code). 

Due to these and other issues with applying model-checking in 
practice, Edmonds emphasizes the need for empirical analysis of 
agent behavior, such as scenario and field testing [4].  This 
research borrows the approach of modeling what the user 
understands from model-checking.  To extend this approach, the 
Tracing Method also verifies the model (called K) against the 
actual implementation using a RE approach and maintains the 
model so that it accurately represents the implementation. 

3. TRACING METHOD & TRACER TOOL 
This research combines and extends ideas of empirical analysis 
from reverse engineering and abstraction from model-checking.  
The result is a high-level, more scalable, practical, semi-
automated solution for agent software comprehension.  
Comprehension is performed at the system-level using high-level 
agent concepts (explained in Section 3.1) that are familiar to 
designers, developers, and end-users.  Hence, all activities in the 
Tracing Method (described in Section 3.3) operate in the realm of 
agent concepts, rather than detailed execution traces and 
programming data structures of traditional reverse engineering.  
By abstracting implementation details as agent concepts, 
scalability is dependent on the number of agent concepts, rather 
than on code size or state-space complexity.  The solution is 
practical in that it can be applied to any programming language 
(that can log data) and that the learning curve is low, unlike many 
RE and model-checking tools.  The Tracer Tool assists the user by 
automating as much of the Tracing Method as possible, such as 
organizing the logged data, creating interpretations of logged data, 
verifying the knowledge base K, and generating explanations 
(described in Section 3.4). 

3.1 Agent concepts 
Agent concepts denote constructs (e.g., goals and beliefs) used in 
agent-based systems and are abstracted away from low-level 
implementation constructs.  Since agent concepts are used in 
software designs to describe agent structure (e.g., an agent 
encapsulates localized beliefs, goals, and intentions) and behavior 
(e.g., an agent performs an action when it believes the event 
occurred), agent concepts should be leveraged for comprehending 

the software.  If the same concepts and models are used in 
forward and reverse engineering, tools would be able to better 
support re-engineering, round-trip engineering, maintenance, and 
reuse [20]. In this research, agent concepts are used to leverage 
the user’s intuitive knowledge of general agent-based systems to 
comprehend the implementation.   

The current set of agent concepts includes goal, belief, intention, 
action, event, and message.  These agent concepts have a general 
definition or understanding in the agent community, but due to the 
variety of approaches and applications, there is no definitive 
representation for the agent concepts. Instead, agent concepts can 
be better defined by their relationship with each other (Figure 1 
illustrates some typical relationships). 

Agents are distributed, goal-oriented entities situated in an 
environment and encapsulate decision-making capabilities. 
Agents need their own goal(s) in order to be proactive (i.e., take 
initiative to achieve some goal) and autonomous (i.e., make 
decisions on their own based on their goals). In addition to 
localized beliefs about itself, agents also maintain beliefs about 
the environment, including objects situated in the environment. 
Beliefs are subjective representations of the state of the agent or 
the system and can affect many other aspects of the agent, 
including its goals. Using its current beliefs, an agent achieves a 
goal by generating an intention (or plan), which prescribes actions 
that the agent(s) intend to perform. Actions performed by agents 
and other entities can cause events in the environment, which 
agents may sense and use to update their beliefs. For explaining 
agent behavior, an agent’s goals, beliefs, and intentions, in 
addition to its actions, must be considered because agents may act 
as expected but for undesirable reasons. 

For multi-agent systems, communication is often an important 
factor for system performance. An agent may send messages to 
others during belief maintenance (for knowledge-sharing), during 

 

 
 Figure 1. Agent concepts and some typical relationships. 
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planning (for collaboration), or during schedule execution (for 
coordination). In terms of agent concepts, a communicated 
message can directly or indirectly affect an agent’s goal, belief, 
intention, and/or action. Thus, an explanation of an agent action 
should include communicated messages that contributed to that 
action being performed. 

3.2 Knowledge Base 
A knowledge base (K) is used to explicitly represent what the user 
comprehends about the software; specifically, K describes the 
expected agent behavior in the system.  K is represented as a 
concept graph where nodes denote agent concepts and directed 
edges denote relations between agent concepts.  Each node has a 
set of attributes, some of which are static while others are 
assigned values during runtime (agent concepts are instantiated as 
observations during runtime).  The relations represent causal or 
temporal links between agent concepts.  For example, beliefs can 
“cause” (loosely defined) or influence a certain intention to be 
created, or an event occurs after an action is performed.  Incoming 
relations for an agent concept refer to relations that point to that 
concept.  Continuing the example, the aforementioned event 
would have an incoming relation originating from the action.  
With an explicit representation of the user’s knowledge of the 
system (K), that knowledge can be verified against the actual 
behavior of the implementation. 

The representation for K is designed to be general enough to 
allow for various research ideas and agent models.  Each agent 
concept has a user-defined name and a set of attributes (e.g., agent 
names, preconditions, postconditions, and associated parameters).  
When the instrumented implementation is run, the agent concepts 
are recorded as observations that are instantiated and populated 
with run-time data for each attribute.  Users can define additional 
attributes to capture application-specific details about the agent 
concept.  These attributes are critical for automation, such as 
suggesting possible relations between agent concepts, by the 
Tracer Tool.  Details about the process of building K with the aid 
of the Tracer Tool are described in Section 3.3. 

3.3 Tracing Method 
A human’s learning process centers around building and refining 
their knowledge, in this case, represented as K.  Learning is a 
cycle consisting of (1) hypothesizing about concepts (i.e., adding 
agent concepts and relations to K) based on collected data about 
system behavior, (2) testing the hypothesis against the actual 
system (i.e., verifying K against the actual implementation), and 
(3) interpreting the observations collected from testing.  The 
Tracing Method imitates this cycle and the Tracer Tool automates 
some of the manual tasks involved in each of these steps. 

Initially, the knowledge base K is empty, so the user begins by 
defining agent concepts of interest to be recorded during 
execution. The agent concepts of interest may be derived from 
design documents, informal communications, experience with the 
agent-based systems, etc.  For example, the specification of a 
communication protocol identifies messages sent and received by 
the agent.  Note that not all agent concepts must be identified – K 
is incrementally refined and gradually increases in size as the user 
adds relevant agent concepts and learned relations. 

When the implementation runs, agent concepts are instantiated 
with run-time data (e.g., call stack, simulation timestamp, and 

values for attributes) and are logged as observations (described in 
Step 2).  From these observations, an interpretation is created 
using K as described in Step 3.  Initially, when K has no relations 
defined, the interpretation is simply a set of unconnected 
observations. 

Step 1 - Hypothesizing  
Given an interpretation, the Tracer Tool can suggest possible 
relations for observations with no incoming relation.  The 
algorithm compares attribute values between observations (hence 
the importance of agent concept attributes) and if attribute values 
“match”, then a generalized relation is suggested (e.g., intention i 
causes action a because a is listed within i).  Experiments 
showing the performance of the relation-suggesting algorithm are 
described in Section 4.  With the Tracer Tool, the user can 
efficiently investigate the suggested relation, verify that the 
relation is meaningful, and approve the relation to be added to K.  
The user can also add relations that could not be automatically 
found.   

In addition to adding relations, the user can add and modify agent 
concepts in K to gather more relevant run-time data that can help 
understand the agent’s or system’s behavior.  In so doing, logging 
code will need to be added or modified in the source code. 
Currently, there is no way to automatically suggest that agent 
concepts be added.  With each iteration through this cycle, the 
increase in comprehension is apparent as agent concepts and 
relations are added to K. 

Step 2 - Testing  
Testing is needed to insure that the agent concepts and relations 
defined in K accurately reflect the actual implementation.  Testing 
involves instrumenting the source code with simple logging code 
to denote where agent concepts occur or change.  For each agent 
concept in K, the Tracer Tool generates single-line logging code 
to be inserted into the source code by the user.  It is assumed that 
the user has general structural knowledge about the source code 
to be able to identify where agent concepts occur.  Given this 
assumption, hypothesis testing can be done by the designer, 
developer, or end-user.  The set of agent concepts that should be 
logged is usually selected from (but not limited to) the agent 
design. 

When the implementation runs, the logging code is executed and 
observations are recorded.  The Tracer Tool uses a client-server 
model to collect log data from the running agent system, which 
may be distributed across several machines.  Since observations 
may not arrive at the server in order, the Tracer Tool organizes 
and sorts the observations to be interpreted in Step 1. 

Though the observations are at a high abstraction level, enough 
run-time details are recorded to locate the exact place in the 
source code that created the observation.  Note that since only 
agent concepts are logged, the amount of data produced is reduced 
and scalability is improved.  The result of this step is a set of 
observations (i.e., logged run-time data) about the agent concepts 
specified in K. 

To test the robustness of K, the agent system must be run through 
a set of scenarios that adequately covers the execution space of 
the agent systems.  Obviously, an exhaustive scenario set is 
impossible and impractical.  This is a limitation of reverse 
engineering that is difficult to overcome.  Another limitation with 
this approach is that for agents that dramatically change their 
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behavior (e.g., agents based on genetic algorithms or agents that 
dynamically learn new actions), there is usually no expected 
behavior to be modeled by K. 

Step 3 – Interpreting  
Traditionally, observing and relating observations together is 
performed manually by the user.  Using K, the Tracer Tool can 
automatically collect and interpret the observations for the user by 
linking appropriate observations together, building a relational 
graph.  Based on relations defined in K, the Tracer Tool compares 
observations and their attributes to determine if the observations 
are related.  If they are related, a directed edge is created between 
the observations.  For example, if the “postcondition” attribute of 
an agent’s action has the value “near target” and the 
“precondition” attribute of an environmental event also has the 
value “near target”, then a directed edge is created from the action 
to the event.   

This is repeated for each observation, and the resulting 
interpretation is visualized as a relational graph (seen in Figure 2) 
whose structure is similar to K.  In some sense, K is being used as 
a template to create the interpretation.  The difference is that the 
interpretation represents actual behavior while K represents 
expected behavior.  If the interpretation is inconsistent with K, K 
may need to be modified, just as the user’s knowledge must be 
modified if the implementation did not behaved as expected.  
Sources of inconsistencies are enumerated in Section 3.4. 

The process of interpreting can be performed during run-time or 
after the agent system has finished execution.  Interpreting is 
similar to design recovery, a subfield within reverse engineering.  
Since many types of interpretations can be created from the 
implementation, it is possible to add additional interpreters to the 
Tracer Tool to aid in comprehension.  For example, another 
interpreter can create state-transition diagrams for processes 
within an agent based on the same set of observations. 

Repeat: This cycle repeats until K is complete with respect to a 

set of implementation executions. K is complete if for all 
interpretations for a given set of implementation’s executions, 
every observation has an incoming relation (except for initial 
observations and observations of exogenous events that occur in 
the environment).  In other words, given any observation o, K can 
be used to trace back from that observation to some other 
observation that caused o.  The Tracer Tool will suggest possible 
relations for observations that do not yet have an incoming 
relation.  

Though K may be complete, the knowledge in K may not be 
sufficient to get an adequate grasp of the system.  For example, a 
trivial K can simply contain three agent concepts (e.g., belief, 
action, and event), one concept leading to the next.  The issue is 
how to determine if all relevant agent concepts have been 
included in K.  This depends on the level of detail desired, but as 
a guideline, all agent concepts that are present in an agent-
oriented software design should be included in K.  The defined set 
of agent concepts shown in Figure 1 helps to keep K at an 
abstraction level consistent with the design. 

Note that all agent concepts and relations are added to K by the 
user.  Thus, K contains only information that the user 
understands.  By explicitly representing what the user understands 
in K, some additional tasks can be automated.  For example, 
explanations of observed behavior can be automatically generated 
and anomalous (or unexpected) behavior can be automatically 
identified.  The next section describes automated explanation 
generation. 

3.4 Automated Explanation Generation 
In this process of building, verifying, and refining K, anomalous 
behavior may be discovered.  Anomalous behavior manifests 
itself as inconsistencies between the interpretation and the 
implementation.  Inconsistencies appear as observations (or 
nodes) without incoming relations or relations between 
observations that do not semantically make sense.  The source of 

 
Figure 2. Example relational graph interpretation of a single agent. 
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these inconsistencies could be any of the following: (1) a bug 
exists in the implementation, (2) a defined relation in K is 
incorrect, (3) K is incomplete and requires additional agent 
concepts or relations, or (4) the location where the logging code 
was inserted by the user is incorrect.  The Tracing Method was 
designed to insure that the user’s comprehension, represented in 
K, is complete with respect to a set of execution scenarios and 
correctly reflects the implementation.   

To track down bugs in the design or implementation, the Tracer 
Tool can generate explanations for a specified observation (e.g., 
an anomalous action performed by an agent) in terms of agent 
concepts.  An explanation is created by traversing (backwards) 
through the relational graph interpretation. Starting from the 
observation o being explained, incoming relations (edges) are 
followed to other observations that caused or preceded o.  Given a 
complete K, an observation can be followed all the way back to 
the initial observations.  If K is incomplete, explanations may not 
be complete (i.e., may not include all relevant observations). 

As seen in Figure 4, an explanation is shown as a tree structure 
consisting of observations, thus keeping the explanation in the 
realm of agent concepts, familiar to the designer, developer, and 
end-user.  For example, action A:4111 was a result of belief 
B:4057 and intention I:4095.  Looking at the details of those 
nodes, the B:4057 was a precondition that enabled the action and 
I:4095 was the intention that included the action.  Going deeper 
into the tree, B:4057 was a result of event E:4055, which in turn 
was caused by A:2656.  Similarly, I:4095 was formulated from 
belief B:4079 and previous intention I:2640.  The depth of the 
explanation tree continues until an observation with no incoming 
relation exists, which is one of the initial observations or an 
exogenous event that independently occurs in the environment.  If 
the explanation does not end with one of these observations, then 
K is incomplete and requires that relations be added.  Section 4 

demonstrates the algorithm used to suggest relations and 
summarizes some experimental results. 

In addition to showing what is happening in the system in terms 
of agent concepts, the Tracer Tool can facilitate software 
comprehension by generating explanations that describe why 
agents behave as they do.  Lam and Barber [12] presents a 
detailed example of how the Tracer Tool was used to generate 
explanations in the UAV (unmanned aerial vehicle) application 
domain and to comprehend the agents implemented for that 
domain. In that paper, relations in K were manually specified as 
rules, each defining the relation between observations.  In this 
paper, relations are suggested automatically. 

4. SUGGESTING RELATIONS 
Automatically suggesting relations is only valuable if most of the 
suggested relations are semantically correct.  To show how well 
the relation-suggesting algorithm currently performs for different 
applications, this section describes the experimental results of 
applying the Tracer Tool on two multi-agent systems: “Simple” 
(about 500 lines of Java code) and “UAV” (about 20,000 lines of 
Java code). 

The relation-suggesting algorithm is initiated for an observation o 
when the Tracer Tool cannot create an incoming relation for 
observation o based on the current K.  This occurs when K has no 
incoming relation for the agent concept corresponding to 
observation o that originates from some other observation.  
Starting from o, the algorithm searches backwards (temporally) 
through the observation list, using heuristics to determine if a 
previous observation is related in some way to o.  For example, if 
o is an action, then the algorithm searches for the last observed 
intention i that has some similar attribute as those of the action o.  
If such an intention is found, a relation from intention i to action o 

 
 

Figure 3: Suggested relations from the Tracer Tool  
for the UAV application. 

 

Figure 4. Explanation of agent action A:4111. 
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is suggested.  The relation-suggesting algorithm is outlined in 
pseudo-code as follows: 

suggestRelationFor(OBSERVATION o) { 
 for each HEURISTIC h { 
  for each past_OBSERVATION p  
  within h’s searchHorizon { 
   if ( h.appliesTo(p,o) ) { 
    tests = commonAttributes(p,o); 
    if ( ! empty(tests) ){ 
     return createRelation(p,o,tests); 
 }}}} 
 return null; 
} 
 
commonAttributes(OBSERVATION p, OBSERVATION o) { 
 set of TESTs s; 
 for each ATTRIBUTE a of OBSERVATION p { 
  for each ATTRIBUTE b of OBSERVATION o { 
   if ( valueOf(a)==valueOf(b) ) { 
   add TEST( “valueOf(a)==valueOf(b)” ) to s; 
 }}} 
 return s; 
} 
 
The heuristic’s search horizon specifies how far back to search for 
a relating observation.  It can be none (which will search until a 
relation is suggested or the first observation is reached), or it can 
be a predicate, such as isIntention (which will search backward up 
to the last intention).  An example heuristic that searches for the 
relation connecting an action to an associated event is shown 
below: 

heuristic1.appliesTo(p,o) { 
 return ( IS_ACTION(p) and IS_EVENT(o) and  
  !empty(commonAttributes(p,o)) ); 
} 
 
The algorithm always terminates because it only looks at 
preceding observations and there is a finite number of past 
observations.  The computational complexity of the algorithm in 
the worst case is O(n2), where n is the number of observations. 

For each observation without an incoming relation, the algorithm 
suggests a relation and adds it to the list (if it has nor already been 
added) or appends it to an existing relation, as shown in Figure 3.  
For example, a relation is suggested for the belief observation 
servicedTarget.  Each child of servicedTarget (in this case, there 
is only one) is a possible explanation (or cause) for serviceTarget.  
So, the uavScan event is a possible explanation for the 
serviceTarget belief, which is semantically correct for the UAV 
application.  Other observations, such as the flyToTarget action, 
may have more than one possible explanation.  Let each parent-
child pair be called a subrelation.  For example, flyToTarget 
action has 2 subrelations. 

If the relation has already been suggested, then the corresponding 
observation IDs are added to the list of examples (seen on the 
right side of Figure 3).  The examples are provided so that the 
user can investigate the example observations to determine if the 
suggested relation is semantically correct. 

For each domain application, logging code for each agent concept 
was inserted into the source code.  Table 1 shows the number of 

agent concepts logged for each agent system.  The Tracing 
Method was iterated until K was complete.  In other words, all 
observations were correctly linked to all appropriate observations 
as in Figure 2.   

Table 1 summarizes the number of relations that was correctly 
suggested, incorrectly suggested, and manually-created.  For more 
precise measurements, the number inside parentheses is the 
number of subrelations. The results show that the relation-
suggesting algorithm captures approximately 66% of the relations 
in the Simple system and approximately 80% in the UAV system 
with relatively few incorrect suggestions.  Although further 
testing on other agent-based systems is required, the algorithm 
shows promise in automating the tedious task of associating 
observations with each other. 

The relation-suggesting algorithm can be improved to identify 
more relations, but such improvements may not be generalizable 
to other domain applications.  A major focus of the Tracer Tool is 
to remain domain-independent and allow users to specialize the 
tool for their own applications.  Future work for the Tracer Tool 
includes allowing the user (1) to control which heuristics are used 
to determine if two observations are possibly related and (2) to 
define additional heuristics for their particular domain type. 

5. SUMMARY 
Software comprehension is essential for developing, maintaining, 
and redesigning complex software, such as agent-based systems.  
This research aims to remedy the drawbacks and limitations of 
existing techniques (i.e., reverse engineering and model-
checking).  Traditional reverse engineering tools produce large 
amounts of detailed documentation that the user must manually 
navigate, investigate, and decipher – time-consuming and 
inefficient tasks.  Lange et. al. comment that “scanning through 
complex diagrams, whether on paper or GUI, is no efficient way 
to comprehend large software systems” [13].  Though model-
checking offers conciseness and abstraction in its model 
representation and exhaustive search in behavior verification, the 
representativeness of its model with respect to the actual 
implementation is difficult to prove and maintain as the 
implementation evolves. 

This paper describes three contributions that extend ideas from 
existing work to assist the user in comprehending agent software.  
First, a high-level representation (called the knowledge base K) 
that explicitly describes the user’s growing knowledge of the 
software’s behavior was defined.  The representation uses agent 
concepts that are familiar to the designer, developer, and end-user.  
The explicit representation enabled the second contribution, 
which is the Tracing Method and Tracer Tool.  The Tracing 
Method describes a process to create, refine, and verify K (the 

Table 1: Results for relation-suggesting algorithm. 
 

 Simple UAV 

agent concepts 17 22 

correct suggestions 12 (13) 11 (17) 

incorrect suggestions 0 (2) 1 (2) 

manually-created 4 (5) 2 (2) 
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user’s understanding of the system) with respect to the actual 
implementation.  With the aid of the Tracer Tool, many of the 
manual tasks, such as scanning for unexpected behavior, are 
automated.  With a refined and complete K, the third contribution 
advances the state-of-the-art by automatically explaining why an 
agent performed some unexpected behavior, not only describing 
what is happening.  

This research shows that some comprehension tasks can be 
automated to assist in developing the user’s understanding of the 
system. In essence, the research approach is to imitate the learning 
cycle performed by humans.  Specifically, a human collects and 
interprets data, forms hypotheses, and tests those hypotheses.  The 
Tracer Tool generates interpretations from observations, suggests 
additions to the knowledge base, and collects observations to be 
interpreted.  Additionally, this research leverages the semantics of 
agent concepts as abstractions and provides automated reasoning 
about the resulting abstracted representation.  Future work 
includes behavior pattern recognition and anomalous behavior 
detection. 
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