
Comprehending Agent Software
D. N. Lam and K. S. Barber
The University of Texas at Austin

Laboratory for Intelligent Processes and Systems
1 University Station C0803, Austin, TX 78712-0240

{dnlam, barber}@lips.utexas.edu

ABSTRACT
Software comprehension (understanding software structure and
behavior) is essential for developing, maintaining, and improving
software. This is particularly true of agent-based systems, in
which the actions of autonomous agents are affected by numerous
factors, such as events in a dynamic environment, local uncertain
beliefs, and intentions of other agents. Existing comprehension
tools are not suited to such large, concurrent software and do not
leverage concepts of the agent-oriented paradigm to aid the user
in understanding the software’s behavior. To address the software
comprehension of agent-based systems, this research proposes a
method and accompanying tool that automates some of the
manual tasks performed by the human user during software
comprehension, such as explanation generation and knowledge
verification.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids, diagnostics,
monitors, testing tools, tracing.

General Terms
Documentation, Design, Experimentation, Human Factors,
Verification.

Keywords
Software comprehension, agent-oriented software engineering,
reverse engineering, debugging, maintenance, tracer.

1. INTRODUCTION
Software comprehension is crucial for the development,
maintenance (e.g., debugging, testing, and improving), and
redesign of software. Software comprehension (a.k.a. reverse
engineering) is performed by the human user to understand the
structure and behavior of the software. The current suite of tools
to help a user comprehend software includes (1) those that gather,
summarize, and enable the user to browse through the source code
(static analysis) and (2) those that generate behavioral diagrams

from captured execution traces (dynamic analysis). A
commonality among these comprehension tools is that they
capture artifacts about the software (e.g., static dependencies
among objects and events that occur during simulation) and leave
it up to the user to interpret and reason about the software’s
behavior.

This research aims to reduce the amount of manual effort
performed by the human user during software comprehension by
developing a method (1) to reason about observed software
behavior at the design abstraction level and (2) to explain why
given observations occurred. The proposed method is particularly
important for agent-based software, where agents (autonomous
software entities) take actions based on localized (possibly
erroneous) beliefs about their environment. Comprehension of
such sophisticated software systems is complicated by the number
of agents and factors (e.g., beliefs, environmental events, other
agents’ intentions and beliefs) that affect each agent’s actions.
This research aims to help designers who want to improve agent
or system behavior; developers who need to debug and verify
agent behavior; and end-users who want to understand (at the
design level) why agents performed certain actions.

The approach of this research is to imitate what a human user
does in software comprehension. Specifically, this paper presents
the Tracing Method to semi-automate the process of building and
refining the user’s understanding of the system (called knowledge
base K) and using K to explain and verify agent behavior in the
implemented system. As a result of the Tracing Method, an
explicit representation K is used to express what the user knows
about the software system. For agent-based systems, K is
expressed in terms of agent concepts (i.e., beliefs, goals,
intentions, actions, environmental events, and inter-agent
messages), which are typical concepts used in agent-oriented
software designs. The Tracer Tool has been implemented to assist
the user through the proposed comprehension method. An
experiment of the tool being applied to two agent systems is
described.

Taking the viewpoint that a person’s comprehension of a subject
can be indirectly measured by how much the person can explain
about the subject, the Tracer Tool is able to generate explanations
(i.e., reasons for why an observation occurred), given K and
observations captured from the system’s execution. These
explanations can be used by designers, developers, and end-users
to elucidate, debug, and build trust in the agent system’s behavior.

Section 2 reviews existing work related to software
comprehension. Section 3 describes the Tracing Method and
accompanying Tracer Tool, which is demonstrated in Section 4.
Section 5 summarizes this research and its contribution to agent-
oriented software engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

586

2. RELATED WORK
Software maintenance will always be needed as long as the design
or implementation needs to be modified. Software bugs
inevitably arise during the development of the implementation
due to programming error, design error, or communication error.
To fix bugs or to ensure that the implementation is free (for the
most part) of bugs, the designer or developer must have an
adequate understanding of the software. Such an understanding
can be acquired by reading design documents, examining source
code, and analyzing execution traces of the system.

Section 2.1 describes several software comprehension tools (often
categorized as reverse engineering tools) to assist the user in
analyzing and perusing the source code. Section 2.2 discusses the
use of model-checking, which focuses on testing and verification
of software behavior, as another approach for software
comprehension since the model being checked can be thought of
as a formal design specification. That design specification
abstracts away many of the details of the implementation, and the
entire system can be viewed in a concise representation, unlike the
overwhelming abundance of data gathered by traditional
comprehension tools. This research takes the model-checking
approach for representing software behavior and the reverse
engineering approach for verifying the model against the actual
implementation.

Though useful, these techniques have their limitations (as
described below) and can be improved for the purpose of
comprehending agent-based software. For agent software in
particular, the difficulties in comprehension are exacerbated by
characteristics of individual agents and of the system itself.
Agents are distributed, localized software entities that are
typically characterized as being rational, proactive, adaptable,
social, and able to deal with uncertainty. A software system with
many agents, each with its own goals, resources, and constraints,
making decisions, interacting, and acting on its own, makes
software comprehension a challenging activity. An end-user may
be hesitant to trust such autonomous agents without knowing how
the agents make their decisions. For comprehension, the user
must consider the system’s distribution, concurrency, domain
uncertainty, and non-determinism [6]. This paper proposes a
method and tool that builds on the ideas from existing approaches
and extends the state-of-the-art to better assist the human user (of
various skill levels) in comprehending agent-based software.

2.1 Comprehension (or RE) Tools
Comprehension tools are synonymous with reverse engineering
(RE) tools in that both aim to offer the user a better understanding
of the structure and relationship among software components of
the system. In addition to identifying components and their
dependencies, RE involves creating abstractions of the system
design [3]. For example, Rigi and PBS extract structural data
from the source code, analyze its structure, and visualize the
software architecture for the user to browse [1; 5]. RE tools tend
to produce a large amount of data for the user to interpret. To
deal with this, SoftSpec allows users to query a relational database
of automatically gathered information about the software
architecture [2]. Alternatively, using a graph-oriented approach,
the GUPRO (Generic Understanding of Programs) toolset
transforms source code into graphs according to a defined concept
model [11]. In a case study by Lange, Winter, and Koblenz
comparing graph-oriented and database approaches, GUPRO’s

graph-oriented approach offered a more efficient way to analyze
and search through the large amounts of data extracted from the
source code of a large stock-trading application [13]. This
research employs graphs to visualize the system’s behavior.

Additionally, since these tools parse the source code directly, they
are limited to programming languages that are parsable by the tool
(i.e., tools must be extended for additional languages). For real-
world applications, RE tools need to support software that use
more than one programming language [19]. Since the Tracer Tool
does not parse code, the tool can operate with any software
system implemented in practically any mix of languages.

For users familiar with design patterns, Schauer and Keller have a
tool to extract, abstract, and visualize design patterns; however,
the tool can only identify pre-defined patterns [18]. This research
also uses abstractions to help extract familiar design concepts
from the implementation, thus, aiding the comprehension of the
overall system behavior, independent of language-dependent
implementation constructs.

In addition to static analysis of the source code, some RE tools
analyze the dynamic aspects of the system in order to understand
software behavior (i.e., actions and their motivations and
consequences) in varying execution scenarios. For example, in
SCED, detailed event trace information (e.g., method invocation)
is used to create a set of sequence and state diagrams [10]. Other
tools, such as Hindsight and Lemma, can create flow charts and
control-flow diagrams [7; 15]. Moreover, results of dynamic
analysis can also be represented as use cases and recurring
behavioral patterns, which brings the implementation closer to the
design [9; 14]. Since dynamic agent behavior is central to
comprehending agent systems, the Tracer Tool focuses on
elucidating reasons for agent behavior.

Due to the large amount of run-time data generated (even for
small systems), dynamic analysis tools must also manage and
abstract the extracted data [20]. To limit the amount of data that
the user must search through, the user often must select specific
components to be analyzed by the RE tool. Thus, it is usually
assumed that the user has some understanding of the static
structure of the software [20]. This is also assumed for the
Tracing Method described in this paper. This research deals with
the large amount of data by automating data interpretation for the
user (described in Section 3). As an alternative to dealing with
the large amount of data, Poutakidis et al. focuses only on the
verification of agent interaction protocols [16]. The Tracing
Method allows the user to analyze any agent concepts in the agent
design, including interaction protocols.

2.2 Model-checking
Reverse engineering is usually performed as a supporting activity
for other software engineering tasks after a working
implementation has been created. Such tasks include re-
engineering to add or extend features; maintenance to correct or
improve the software, reusing of components in other software;
and assessing if the software satisfies certain requirements.
Alternatively, system behaviors (as expressed by a formal model
of the design) can be checked before any development takes
place. Model-checking is used to formally verify behavioral
properties (e.g., deadlocks and assertion failures) of software
systems, but the ideas behind model-checking can be used for
software comprehension. Model-checking using tools such as

587

Spin [8] and Bogor [17] can be very useful in guaranteeing
dynamic properties of the implementation, provided the model
being checked accurately represents the implementation.
Unfortunately, model-checking can only be performed on models
whose state space is small enough to be exhaustively checked in a
reasonable amount of time. For most agent-based systems (which
are written in procedural languages such as Java or C), this means
that a simpler model of the implementations must be created
manually, which suggests that the model is representative of what
the user believes about the implementation and may not be
representative of the actual implementation.

In addition, as the implementation changes, the model must be
updated as appropriate. In practice, keeping an accurate model
that reflects the implementation is very difficult, particularly if the
model extraction is done manually. This problem is commonly
known as the translation gap. There are a few tools, such as Java
PathFinder (JPF) [21], that extract models from the source code,
but these tools are not yet mature, are language-dependent, and do
not scale well (JPF is suited to programs with approximately
10,000 lines of code).

Due to these and other issues with applying model-checking in
practice, Edmonds emphasizes the need for empirical analysis of
agent behavior, such as scenario and field testing [4]. This
research borrows the approach of modeling what the user
understands from model-checking. To extend this approach, the
Tracing Method also verifies the model (called K) against the
actual implementation using a RE approach and maintains the
model so that it accurately represents the implementation.

3. TRACING METHOD & TRACER TOOL
This research combines and extends ideas of empirical analysis
from reverse engineering and abstraction from model-checking.
The result is a high-level, more scalable, practical, semi-
automated solution for agent software comprehension.
Comprehension is performed at the system-level using high-level
agent concepts (explained in Section 3.1) that are familiar to
designers, developers, and end-users. Hence, all activities in the
Tracing Method (described in Section 3.3) operate in the realm of
agent concepts, rather than detailed execution traces and
programming data structures of traditional reverse engineering.
By abstracting implementation details as agent concepts,
scalability is dependent on the number of agent concepts, rather
than on code size or state-space complexity. The solution is
practical in that it can be applied to any programming language
(that can log data) and that the learning curve is low, unlike many
RE and model-checking tools. The Tracer Tool assists the user by
automating as much of the Tracing Method as possible, such as
organizing the logged data, creating interpretations of logged data,
verifying the knowledge base K, and generating explanations
(described in Section 3.4).

3.1 Agent concepts
Agent concepts denote constructs (e.g., goals and beliefs) used in
agent-based systems and are abstracted away from low-level
implementation constructs. Since agent concepts are used in
software designs to describe agent structure (e.g., an agent
encapsulates localized beliefs, goals, and intentions) and behavior
(e.g., an agent performs an action when it believes the event
occurred), agent concepts should be leveraged for comprehending

the software. If the same concepts and models are used in
forward and reverse engineering, tools would be able to better
support re-engineering, round-trip engineering, maintenance, and
reuse [20]. In this research, agent concepts are used to leverage
the user’s intuitive knowledge of general agent-based systems to
comprehend the implementation.

The current set of agent concepts includes goal, belief, intention,
action, event, and message. These agent concepts have a general
definition or understanding in the agent community, but due to the
variety of approaches and applications, there is no definitive
representation for the agent concepts. Instead, agent concepts can
be better defined by their relationship with each other (Figure 1
illustrates some typical relationships).

Agents are distributed, goal-oriented entities situated in an
environment and encapsulate decision-making capabilities.
Agents need their own goal(s) in order to be proactive (i.e., take
initiative to achieve some goal) and autonomous (i.e., make
decisions on their own based on their goals). In addition to
localized beliefs about itself, agents also maintain beliefs about
the environment, including objects situated in the environment.
Beliefs are subjective representations of the state of the agent or
the system and can affect many other aspects of the agent,
including its goals. Using its current beliefs, an agent achieves a
goal by generating an intention (or plan), which prescribes actions
that the agent(s) intend to perform. Actions performed by agents
and other entities can cause events in the environment, which
agents may sense and use to update their beliefs. For explaining
agent behavior, an agent’s goals, beliefs, and intentions, in
addition to its actions, must be considered because agents may act
as expected but for undesirable reasons.

For multi-agent systems, communication is often an important
factor for system performance. An agent may send messages to
others during belief maintenance (for knowledge-sharing), during

 Figure 1. Agent concepts and some typical relationships.

588

planning (for collaboration), or during schedule execution (for
coordination). In terms of agent concepts, a communicated
message can directly or indirectly affect an agent’s goal, belief,
intention, and/or action. Thus, an explanation of an agent action
should include communicated messages that contributed to that
action being performed.

3.2 Knowledge Base
A knowledge base (K) is used to explicitly represent what the user
comprehends about the software; specifically, K describes the
expected agent behavior in the system. K is represented as a
concept graph where nodes denote agent concepts and directed
edges denote relations between agent concepts. Each node has a
set of attributes, some of which are static while others are
assigned values during runtime (agent concepts are instantiated as
observations during runtime). The relations represent causal or
temporal links between agent concepts. For example, beliefs can
“cause” (loosely defined) or influence a certain intention to be
created, or an event occurs after an action is performed. Incoming
relations for an agent concept refer to relations that point to that
concept. Continuing the example, the aforementioned event
would have an incoming relation originating from the action.
With an explicit representation of the user’s knowledge of the
system (K), that knowledge can be verified against the actual
behavior of the implementation.

The representation for K is designed to be general enough to
allow for various research ideas and agent models. Each agent
concept has a user-defined name and a set of attributes (e.g., agent
names, preconditions, postconditions, and associated parameters).
When the instrumented implementation is run, the agent concepts
are recorded as observations that are instantiated and populated
with run-time data for each attribute. Users can define additional
attributes to capture application-specific details about the agent
concept. These attributes are critical for automation, such as
suggesting possible relations between agent concepts, by the
Tracer Tool. Details about the process of building K with the aid
of the Tracer Tool are described in Section 3.3.

3.3 Tracing Method
A human’s learning process centers around building and refining
their knowledge, in this case, represented as K. Learning is a
cycle consisting of (1) hypothesizing about concepts (i.e., adding
agent concepts and relations to K) based on collected data about
system behavior, (2) testing the hypothesis against the actual
system (i.e., verifying K against the actual implementation), and
(3) interpreting the observations collected from testing. The
Tracing Method imitates this cycle and the Tracer Tool automates
some of the manual tasks involved in each of these steps.

Initially, the knowledge base K is empty, so the user begins by
defining agent concepts of interest to be recorded during
execution. The agent concepts of interest may be derived from
design documents, informal communications, experience with the
agent-based systems, etc. For example, the specification of a
communication protocol identifies messages sent and received by
the agent. Note that not all agent concepts must be identified – K
is incrementally refined and gradually increases in size as the user
adds relevant agent concepts and learned relations.

When the implementation runs, agent concepts are instantiated
with run-time data (e.g., call stack, simulation timestamp, and

values for attributes) and are logged as observations (described in
Step 2). From these observations, an interpretation is created
using K as described in Step 3. Initially, when K has no relations
defined, the interpretation is simply a set of unconnected
observations.

Step 1 - Hypothesizing
Given an interpretation, the Tracer Tool can suggest possible
relations for observations with no incoming relation. The
algorithm compares attribute values between observations (hence
the importance of agent concept attributes) and if attribute values
“match”, then a generalized relation is suggested (e.g., intention i
causes action a because a is listed within i). Experiments
showing the performance of the relation-suggesting algorithm are
described in Section 4. With the Tracer Tool, the user can
efficiently investigate the suggested relation, verify that the
relation is meaningful, and approve the relation to be added to K.
The user can also add relations that could not be automatically
found.

In addition to adding relations, the user can add and modify agent
concepts in K to gather more relevant run-time data that can help
understand the agent’s or system’s behavior. In so doing, logging
code will need to be added or modified in the source code.
Currently, there is no way to automatically suggest that agent
concepts be added. With each iteration through this cycle, the
increase in comprehension is apparent as agent concepts and
relations are added to K.

Step 2 - Testing
Testing is needed to insure that the agent concepts and relations
defined in K accurately reflect the actual implementation. Testing
involves instrumenting the source code with simple logging code
to denote where agent concepts occur or change. For each agent
concept in K, the Tracer Tool generates single-line logging code
to be inserted into the source code by the user. It is assumed that
the user has general structural knowledge about the source code
to be able to identify where agent concepts occur. Given this
assumption, hypothesis testing can be done by the designer,
developer, or end-user. The set of agent concepts that should be
logged is usually selected from (but not limited to) the agent
design.

When the implementation runs, the logging code is executed and
observations are recorded. The Tracer Tool uses a client-server
model to collect log data from the running agent system, which
may be distributed across several machines. Since observations
may not arrive at the server in order, the Tracer Tool organizes
and sorts the observations to be interpreted in Step 1.

Though the observations are at a high abstraction level, enough
run-time details are recorded to locate the exact place in the
source code that created the observation. Note that since only
agent concepts are logged, the amount of data produced is reduced
and scalability is improved. The result of this step is a set of
observations (i.e., logged run-time data) about the agent concepts
specified in K.

To test the robustness of K, the agent system must be run through
a set of scenarios that adequately covers the execution space of
the agent systems. Obviously, an exhaustive scenario set is
impossible and impractical. This is a limitation of reverse
engineering that is difficult to overcome. Another limitation with
this approach is that for agents that dramatically change their

589

behavior (e.g., agents based on genetic algorithms or agents that
dynamically learn new actions), there is usually no expected
behavior to be modeled by K.

Step 3 – Interpreting
Traditionally, observing and relating observations together is
performed manually by the user. Using K, the Tracer Tool can
automatically collect and interpret the observations for the user by
linking appropriate observations together, building a relational
graph. Based on relations defined in K, the Tracer Tool compares
observations and their attributes to determine if the observations
are related. If they are related, a directed edge is created between
the observations. For example, if the “postcondition” attribute of
an agent’s action has the value “near target” and the
“precondition” attribute of an environmental event also has the
value “near target”, then a directed edge is created from the action
to the event.

This is repeated for each observation, and the resulting
interpretation is visualized as a relational graph (seen in Figure 2)
whose structure is similar to K. In some sense, K is being used as
a template to create the interpretation. The difference is that the
interpretation represents actual behavior while K represents
expected behavior. If the interpretation is inconsistent with K, K
may need to be modified, just as the user’s knowledge must be
modified if the implementation did not behaved as expected.
Sources of inconsistencies are enumerated in Section 3.4.

The process of interpreting can be performed during run-time or
after the agent system has finished execution. Interpreting is
similar to design recovery, a subfield within reverse engineering.
Since many types of interpretations can be created from the
implementation, it is possible to add additional interpreters to the
Tracer Tool to aid in comprehension. For example, another
interpreter can create state-transition diagrams for processes
within an agent based on the same set of observations.

Repeat: This cycle repeats until K is complete with respect to a

set of implementation executions. K is complete if for all
interpretations for a given set of implementation’s executions,
every observation has an incoming relation (except for initial
observations and observations of exogenous events that occur in
the environment). In other words, given any observation o, K can
be used to trace back from that observation to some other
observation that caused o. The Tracer Tool will suggest possible
relations for observations that do not yet have an incoming
relation.

Though K may be complete, the knowledge in K may not be
sufficient to get an adequate grasp of the system. For example, a
trivial K can simply contain three agent concepts (e.g., belief,
action, and event), one concept leading to the next. The issue is
how to determine if all relevant agent concepts have been
included in K. This depends on the level of detail desired, but as
a guideline, all agent concepts that are present in an agent-
oriented software design should be included in K. The defined set
of agent concepts shown in Figure 1 helps to keep K at an
abstraction level consistent with the design.

Note that all agent concepts and relations are added to K by the
user. Thus, K contains only information that the user
understands. By explicitly representing what the user understands
in K, some additional tasks can be automated. For example,
explanations of observed behavior can be automatically generated
and anomalous (or unexpected) behavior can be automatically
identified. The next section describes automated explanation
generation.

3.4 Automated Explanation Generation
In this process of building, verifying, and refining K, anomalous
behavior may be discovered. Anomalous behavior manifests
itself as inconsistencies between the interpretation and the
implementation. Inconsistencies appear as observations (or
nodes) without incoming relations or relations between
observations that do not semantically make sense. The source of

Figure 2. Example relational graph interpretation of a single agent.

590

these inconsistencies could be any of the following: (1) a bug
exists in the implementation, (2) a defined relation in K is
incorrect, (3) K is incomplete and requires additional agent
concepts or relations, or (4) the location where the logging code
was inserted by the user is incorrect. The Tracing Method was
designed to insure that the user’s comprehension, represented in
K, is complete with respect to a set of execution scenarios and
correctly reflects the implementation.

To track down bugs in the design or implementation, the Tracer
Tool can generate explanations for a specified observation (e.g.,
an anomalous action performed by an agent) in terms of agent
concepts. An explanation is created by traversing (backwards)
through the relational graph interpretation. Starting from the
observation o being explained, incoming relations (edges) are
followed to other observations that caused or preceded o. Given a
complete K, an observation can be followed all the way back to
the initial observations. If K is incomplete, explanations may not
be complete (i.e., may not include all relevant observations).

As seen in Figure 4, an explanation is shown as a tree structure
consisting of observations, thus keeping the explanation in the
realm of agent concepts, familiar to the designer, developer, and
end-user. For example, action A:4111 was a result of belief
B:4057 and intention I:4095. Looking at the details of those
nodes, the B:4057 was a precondition that enabled the action and
I:4095 was the intention that included the action. Going deeper
into the tree, B:4057 was a result of event E:4055, which in turn
was caused by A:2656. Similarly, I:4095 was formulated from
belief B:4079 and previous intention I:2640. The depth of the
explanation tree continues until an observation with no incoming
relation exists, which is one of the initial observations or an
exogenous event that independently occurs in the environment. If
the explanation does not end with one of these observations, then
K is incomplete and requires that relations be added. Section 4

demonstrates the algorithm used to suggest relations and
summarizes some experimental results.

In addition to showing what is happening in the system in terms
of agent concepts, the Tracer Tool can facilitate software
comprehension by generating explanations that describe why
agents behave as they do. Lam and Barber [12] presents a
detailed example of how the Tracer Tool was used to generate
explanations in the UAV (unmanned aerial vehicle) application
domain and to comprehend the agents implemented for that
domain. In that paper, relations in K were manually specified as
rules, each defining the relation between observations. In this
paper, relations are suggested automatically.

4. SUGGESTING RELATIONS
Automatically suggesting relations is only valuable if most of the
suggested relations are semantically correct. To show how well
the relation-suggesting algorithm currently performs for different
applications, this section describes the experimental results of
applying the Tracer Tool on two multi-agent systems: “Simple”
(about 500 lines of Java code) and “UAV” (about 20,000 lines of
Java code).

The relation-suggesting algorithm is initiated for an observation o
when the Tracer Tool cannot create an incoming relation for
observation o based on the current K. This occurs when K has no
incoming relation for the agent concept corresponding to
observation o that originates from some other observation.
Starting from o, the algorithm searches backwards (temporally)
through the observation list, using heuristics to determine if a
previous observation is related in some way to o. For example, if
o is an action, then the algorithm searches for the last observed
intention i that has some similar attribute as those of the action o.
If such an intention is found, a relation from intention i to action o

Figure 3: Suggested relations from the Tracer Tool
for the UAV application.

Figure 4. Explanation of agent action A:4111.

591

is suggested. The relation-suggesting algorithm is outlined in
pseudo-code as follows:

suggestRelationFor(OBSERVATION o) {
 for each HEURISTIC h {
 for each past_OBSERVATION p
 within h’s searchHorizon {
 if (h.appliesTo(p,o)) {
 tests = commonAttributes(p,o);
 if (! empty(tests)){
 return createRelation(p,o,tests);
 }}}}
 return null;
}

commonAttributes(OBSERVATION p, OBSERVATION o) {
 set of TESTs s;
 for each ATTRIBUTE a of OBSERVATION p {
 for each ATTRIBUTE b of OBSERVATION o {
 if (valueOf(a)==valueOf(b)) {
 add TEST(“valueOf(a)==valueOf(b)”) to s;
 }}}
 return s;
}

The heuristic’s search horizon specifies how far back to search for
a relating observation. It can be none (which will search until a
relation is suggested or the first observation is reached), or it can
be a predicate, such as isIntention (which will search backward up
to the last intention). An example heuristic that searches for the
relation connecting an action to an associated event is shown
below:

heuristic1.appliesTo(p,o) {
 return (IS_ACTION(p) and IS_EVENT(o) and
 !empty(commonAttributes(p,o)));
}

The algorithm always terminates because it only looks at
preceding observations and there is a finite number of past
observations. The computational complexity of the algorithm in
the worst case is O(n2), where n is the number of observations.

For each observation without an incoming relation, the algorithm
suggests a relation and adds it to the list (if it has nor already been
added) or appends it to an existing relation, as shown in Figure 3.
For example, a relation is suggested for the belief observation
servicedTarget. Each child of servicedTarget (in this case, there
is only one) is a possible explanation (or cause) for serviceTarget.
So, the uavScan event is a possible explanation for the
serviceTarget belief, which is semantically correct for the UAV
application. Other observations, such as the flyToTarget action,
may have more than one possible explanation. Let each parent-
child pair be called a subrelation. For example, flyToTarget
action has 2 subrelations.

If the relation has already been suggested, then the corresponding
observation IDs are added to the list of examples (seen on the
right side of Figure 3). The examples are provided so that the
user can investigate the example observations to determine if the
suggested relation is semantically correct.

For each domain application, logging code for each agent concept
was inserted into the source code. Table 1 shows the number of

agent concepts logged for each agent system. The Tracing
Method was iterated until K was complete. In other words, all
observations were correctly linked to all appropriate observations
as in Figure 2.

Table 1 summarizes the number of relations that was correctly
suggested, incorrectly suggested, and manually-created. For more
precise measurements, the number inside parentheses is the
number of subrelations. The results show that the relation-
suggesting algorithm captures approximately 66% of the relations
in the Simple system and approximately 80% in the UAV system
with relatively few incorrect suggestions. Although further
testing on other agent-based systems is required, the algorithm
shows promise in automating the tedious task of associating
observations with each other.

The relation-suggesting algorithm can be improved to identify
more relations, but such improvements may not be generalizable
to other domain applications. A major focus of the Tracer Tool is
to remain domain-independent and allow users to specialize the
tool for their own applications. Future work for the Tracer Tool
includes allowing the user (1) to control which heuristics are used
to determine if two observations are possibly related and (2) to
define additional heuristics for their particular domain type.

5. SUMMARY
Software comprehension is essential for developing, maintaining,
and redesigning complex software, such as agent-based systems.
This research aims to remedy the drawbacks and limitations of
existing techniques (i.e., reverse engineering and model-
checking). Traditional reverse engineering tools produce large
amounts of detailed documentation that the user must manually
navigate, investigate, and decipher – time-consuming and
inefficient tasks. Lange et. al. comment that “scanning through
complex diagrams, whether on paper or GUI, is no efficient way
to comprehend large software systems” [13]. Though model-
checking offers conciseness and abstraction in its model
representation and exhaustive search in behavior verification, the
representativeness of its model with respect to the actual
implementation is difficult to prove and maintain as the
implementation evolves.

This paper describes three contributions that extend ideas from
existing work to assist the user in comprehending agent software.
First, a high-level representation (called the knowledge base K)
that explicitly describes the user’s growing knowledge of the
software’s behavior was defined. The representation uses agent
concepts that are familiar to the designer, developer, and end-user.
The explicit representation enabled the second contribution,
which is the Tracing Method and Tracer Tool. The Tracing
Method describes a process to create, refine, and verify K (the

Table 1: Results for relation-suggesting algorithm.

 Simple UAV

agent concepts 17 22

correct suggestions 12 (13) 11 (17)

incorrect suggestions 0 (2) 1 (2)

manually-created 4 (5) 2 (2)

592

user’s understanding of the system) with respect to the actual
implementation. With the aid of the Tracer Tool, many of the
manual tasks, such as scanning for unexpected behavior, are
automated. With a refined and complete K, the third contribution
advances the state-of-the-art by automatically explaining why an
agent performed some unexpected behavior, not only describing
what is happening.

This research shows that some comprehension tasks can be
automated to assist in developing the user’s understanding of the
system. In essence, the research approach is to imitate the learning
cycle performed by humans. Specifically, a human collects and
interprets data, forms hypotheses, and tests those hypotheses. The
Tracer Tool generates interpretations from observations, suggests
additions to the knowledge base, and collects observations to be
interpreted. Additionally, this research leverages the semantics of
agent concepts as abstractions and provides automated reasoning
about the resulting abstracted representation. Future work
includes behavior pattern recognition and anomalous behavior
detection.

7. ACKNOWLEDGEMENTS
This research was funded in part by the Defense Advanced
Research Projects Agency and Air Force Research Laboratory,
Air Force Materiel Command, USAF, under agreement number
F30602-00-2-0588. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and
conclusions herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed on implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

7. REFERENCES
[1] Agrawal, A., Du, M., McCollum, C., Systä, T., Wong, K.,

Yu, P., and Müller, H. A. Rigi - An End-User Programmable
Tool for Identifying Reusable Components. In Proceedings
of Fifth International Conference on Software Reuse
(Victoria, British Columbia, 1998).

[2] Bruening, D., Devabhaktuni, S., and Amarasinghe, S.
Softspec: Software-based Speculative Parallelism. In
Proceedings of 3rd {ACM} Workshop on Feedback-Directed
and Dynamic Optimization (Montery, California, 2000),
ACM Press.

[3] Chikofsky, E. J. and James H. Cross, I. Reverse Engineering
and Design Recovery: A Taxonomy. IEEE Software, 7, 1
(1990), 13-17.

[4] Edmonds, B. and Bryson, J. The Insufficiency of Formal
Design Methods. Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems, (2004), 938-
946.

[5] Finnigan, P. J., Holt, R. C., Kalas, I., Kerr, S., Kontogiannis,
K., Müeller, H. A., Mylopoulos, J., Perelgut, S. G., Stanley,
M., and Wong, K. The Software Bookshelf. IBM Systems
Journal, 36, 4 (1997), 564-593.

[6] Gasser, L., Braganza, C., and Herman, N. MACE: A Flexible
Testbed for Distributed AI Research. In Distributed Artificial
Intelligence, Huhns, M. N., ed. Morgan Kaufmann, San
Mateo, CA, 1987. 119-152.

[7] Hindsight http://www.testersedge.com/hindsight.htm.

[8] Holzmann, G. J. The Model Checker Spin. IEEE
Transactions on Software Engineering, 23, 5 (1997), 279-
295.

[9] Jerding, D. and Rugaber, S. Extraction of Architectural
Connections from Event Traces. In Proceedings of ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (Montreal, Canada, 1998),
ACM Press.

[10] Koskimies, K., Männistö, T., Systä, T., and Tuomi, J.
Automated Support for Modeling OO Software. IEEE
Software, 15, 1 (1998), 87-94.

[11] Kullbach, B. and Winter, A. Querying as an Enabling
Technology in Software Reengineering. In Proceedings of
3rd European Conference on Softward Maintenance and
Reengineering (Los Alamitos, 1999), IEEE Computer
Society, 42-50.

[12] Lam, D. N. and Barber, K. S. Debugging Agent Behavior in
an Implemented Agent System. In Proceedings of Second
International Workshop on Programming Multi-Agent
Systems at the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems (New York,
NY, 2004), 45-56.

[13] Lange, C., Winter, A., and Sneed, H. M. Comparing Graph-
Based Program Comprehension Tools to Relational
Database-Based Tools. In Proceedings of Ninth International
Workshop on Program Comprehension (Toronto, Canada,
2001), IEEE Computer Society, 209.

[14] Lucca, G. D., Fasolino, A., and Carlini, U. Recovering Use
Case Models from Object-Oriented Code: A Thread-based
Approach. In Proceedings of 7th Working Conference on
Reverse Engineering (Brisbane, Queensland, Australia,
2000), 108-117.

[15] Mayrhauser, A. v. and Lang, S. On the Role of Static
Analysis during Software Maintenance. In Proceedings of
7th International Conference on Program Comprehension
(Pittsburgh, PA, 1999), IEEE Computer Society, 170-177.

[16] Poutakidis, D., Padgham, L., and Winikoff, M. Debugging
Multi-Agent Systems Using Design Artifacts: The Case of
Interaction Protocols. In Proceedings of First International
Joint Conference on Autonomous Agents and MultiAgent
Systems (Bologna, Italy, 2002), ACM Press, 960-967.

[17] Robby, Dwyer, M. B., and Hatcliff, J. Bogor: An Extensible
and Highly-Modular Model Checking Framework. In
Proceedings of Fourth Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(Helsinki, Finland, 2003), ACM Press, 267-276.

[18] Schauer, R. and Keller, R. K. Pattern Visualization for
Software Comprehension. In Proceedings of 6th
International Workshop on Program Comprehension
(Ischia, Italy, 1998), 4-12.

[19] Sim, S. E. and Storey, M.-A. A Structured Demonstration of
Program Comprehension Tools. In Proceedings of Seventh
Working Conference on Reverse Engineering (Toronto,
Ontario, Canada, 1999), IEEE Computer Society, 184.

[20] Stroulia, E. and Systä, T. Dynamic Analysis for Reverse
Engineering and Program Understanding. ACM SIGAPP
Applied Computing Review, 10, 1 (2002), 8-17.

[21] Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F.
Model Checking Programs. Automated Software Engineering
Journal, 10, 2 (2003).

593

