
Argumentation-based dialogues for deliberation

Yuqing Tang and Simon Parsons
Department of Computer Science

Graduate Center
City University of New York
365 5th Avenue, New York

NY 10016, USA

ytang@gc.cuny.edu,parsons@sci.brooklyn.cuny.edu

ABSTRACT
This paper presents an argumentation-based approach to
deliberation, the process by which two or more agents reach
a consensus on a course of action. The kind of deliberation
we are interested in combines both the selection of an over-
all goal, the reduction of this goal into sub-goals, and the
formation of a plan to achieve the overall goal. We develop
a mechanism for doing this and then proceed to describe
how it can be integrated into a system of argumentation to
provide a sound and complete deliberation system, before
showing how the same process can be achieved through a
multi-agent dialogue.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Inte-
lligence—Coherence and co-ordination; multiagent systems.

General Terms
Languages, theory.

Keywords
Agent communication, dialogue games, argumentation.

1. INTRODUCTION
Multi-agent planning is clearly an important topic for the

field of multi-agents systems, and, as one might imagine, has
been widely studied and for a long time. As [4] points out,
there is a large variety of approaches, from distributed ver-
sions of classical AI planning techniques like noah [3] and
partial planning [6], to techniques that were developed to
exploit specific attributes of multi-agent systems like joint
intentions [14, 23], or the intention-that of SharedPlans [9].
Some of these approaches deal with multi-agent plans holis-
tically [10], while others build plans for individual agents
and then merge them [7]. Approaches as disperate as model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29,2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ..$5.00

checking [24] and auctions [26] have been adapted to gener-
ate multiagent plans.

In this paper we bring together aspects of multiagent plan-
ning and work in a field that has grown up more recently,
argumentation-based dialogue [18]. While there has been
much work on argumentation-based dialogue in the last few
years—including that of Kraus [13], Maudet [15], McBurney
[16], Reed [20], Schroeder et al. [21] and Sycara [22]—there
is not yet a definitive account of what Walton and Krabbe
[25] call deliberation dialogues. These are dialogues in which
two or more agents converse to formulate a joint course of
action.

At the time of writing, we have team formation dialogues
Dignum et al. [5], dialogues about what should be done [8],
dialogues in which one agent proposes a plan and then per-
saudes others to adopt it [17], and even a general purpose
framework for deliberation [12]. However, our goal in this
paper is to provide a form of dialogue which allows agents to
exchange arguments about the details of means-ends plan-
ning. This is something we believe is essential if agents are
going to rationally discuss what plans to adopt. In particu-
lar, we aim to develop a dialogue in which agents not only
decide what to do, but create a plan jointly, with different
sub-plans being suggested by different agents which then
merge them to create an overall plan that they all agree on.

2. NOTATION
As usual when considering planning, whether the classi-

cal planning of strips or the decision theoretic planning of
pomdps [1] we abstract the physical world into states, ac-
tions, and state transitions caused by the actions. States
and actions are the basic objects in L, the underlying lan-
guage used in our approach. The kind of procedure we are
interested in will determine how to compose a sequence of
actions to achieve a desired state transition, namely to reach
a goal from a given state.

In L, we think of a plan as being a sequence of actions, and
we want to determine a plan that gets us from a specified
initial state to a specified final state. The basic objects of L
are:

1. A set of states: S = {s0, s1, . . . , sn}.
2. A set of actions: A = {a0, a1, . . . , am}.
3. A set of pairs of initial state and goal state. We term

such a pair a nisus1 and denote a set of nisi: N =
1
Nisus: a striving towards a goal.

552

{s0 ↪→ s ′0, s1 ↪→ s ′1, . . . , st ↪→ s ′t} where si ∈ S ; as an
abbreviation, N = {n0,n1, ..., nt} where ni = si ↪→ s ′i .
↪→ denotes state transition.

4. A set of plans: P = {p0, p1, .., ps}. A plan p is a
sequence of actions p = a1 . . . at where ai ∈ A.

Sentences in L describe the world. In particular we are in-
terested in what actions and plans achieve.

1. The effect of an action is (a) to cause a state transition
or (b) to achieve a nisus. a � (s ↪→ s ′) where s, s ′ ∈ S ,
a ∈ A indicates action a causes a transition from s to
s ′. a � n means action a achieves nisus n.

In other words, actions bring about simple state tran-
sitions, and some of these state transitions may be
distinguished as nisi — transitions between states we
identify as start and end points for agents.

2. The effect of a plan can also be thought of in terms of
state transitions: p � (s ↪→ s ′) where p ∈ P means
plan p causes a state transition from s to s ′. Here
p must satisfy the conditions that (a) p = a1 . . . at

and (b) there exists a sequence of states s0s1 . . . st−1st
such that s = s0 and s ′ = st , ai � (si−1 ↪→ si) for
(i = 1...t).

Plans are thus specific sequences of actions that, when
executed in the right order, will create a path through
state space between two specified states.

Our notion of plan is thus very much like the usual notion
of a plan in simple AI planning. However, we choose to
specify goals not by the usual target state but rather as a
pair of initial state and final state (though we also use the
conventional notion of goal in places). Why do we do this?

The answer is that the notion of a nisus fits rather better
with our approach to deliberation than the usual notion of
a goal. Obviously, plans, goals and nisi are all suitable for
describing a state-transition graph G = (S ,A) where nodes
S are states, edges A are assigned by atomic actions, and
edges are directed2. Planning is essentially a process of find-
ing a path between two given states s0 and sg , and were we
to plan in classic means-ends style from initial state to goal
state, or vice-versa, the usual notion of goal would suffice.
However, we don’t. The planning process we describe allows
agents to work from start, end, or middle, and in such a sit-
uation it is convenient to be able to link start and end point
exactly as a nisus does, in order to keep track of where one
is in the process.

Our slightly non-standard notation for action, a � s1 ↪→
s2, is similarly motivated by the deliberation process. A set
of action descriptions of the kind we use can be viewed as
the definition of a function a : S → S . By taking an action
to be a function on states in this way, we capture explicitly,
and in a propositional form, the fact that the same action
applied to different initial states will lead to different final
states (and it is a short step to capturing non-deterministic
actions).

In the rest of the paper we blur the distinction between
actions and plans because we take an action a to be an
atomic plan. They share the same effect of creating state
transitions.

2
An action can assign more than one edge between nodes.

3. DELIBERATION AND PLANNING
We start by considering the deliberation process that a

single agent goes through. The usage that Walton and
Krabbe [25] make of the term “deliberation”, which is to
denote the whole scope of practical reasoning, differs from
that made by Bratman [2], who uses it to denote the pro-
cess of choosing goals3 that are then subject to means-ends
reasoning. Since we will be considering both types of delib-
eration, we will denote the first by DWK , and the second by
DB . For us the DWK process starts with an overall nisus n0,
and uses DB to refine the set of sub-nisi in conjunction with
a process of means-ends planning.

In more detail, we recursively divide DB and the associ-
ated planning into phases until a plan for n0 is reached. All
the phases share the same top-level nisus n0, and each phase
has a deliberation context. A deliberation context consists of
1) the top-level nisus n0, 2) a set of intermediate nisi Ninter

and 3) a set of useful plans Puseful (we will describe the way
this set is constructed in detail below). Within a context,
an agent deliberates in the DB sense. Based on the result,
the agent then plans. Based on the DB and planning, the
agent then decides whether or not to recursively call a child
phase to solve a sub-problem. If this is the case, the next
round of DB and planning is delayed until the child phase is
complete.

To make the procedure precise, we define the following:

1. Justified(n) means that a nisus n is achievable, namely
it is a nisus with a plan p such that p � n.

2. Src(N) = {n|n ↪→ n ′ ∈ N } is the set of source states
of a given set of nisi N .

3. Dest(N) = {s ′|s ↪→ s ′ ∈ N } is the set of destination
states of a given set of nisi N .

4. Src(P) = {s|p � (s ↪→ s ′), p ∈ P} is the set of source
states of a given set of plans P .

5. Dest(P) = {s ′|p � (s ↪→ s ′), p ∈ P} is the set of
destination states of a given set of plans P .

Now, we present our first DWK procedure, SD (for simple
deliberation). This is called with a top-level nisus n0 = s0 ↪→
sg , initializes its top-level context with context ID i = 0 as
N i

inter = φ and a set of partial plans that might be adopted
P i

useful = A. (A is the set of actions.) SD then executes the
following steps:

1. Check whether Justified(n0) holds, that is whether no

can be achieved using plans in P i
useful . If it is, then

stop with a plan for n0.

2. Carry out DB :

(a) Create a child context ID j for its child phase.

(b) Choose a set of intermediate nisi N j
inter for the

child phase from:

Nisi of the form s ↪→ s ′ where s ∈ Dest(P i
useful)

and s ′ ∈ Src(P i
useful). They are all the possible

state pairs which connect the end state of the ex-
isting plans to the start state of the other existing

3
To be precise Bratman considers intentions not goals, but for our

purposes there is little practical difference.

553

plans. If there are plans for these nisi output by
the planning procedure in the future, then we will
have new plans by combining two existing plans
with these future plans.

Nisi of the form s0 ↪→ s ′ where s ′ ∈ Src(P i
useful).

They are all the possible state pairs which connect
initial state of the top-level nisus to the start state
of the existent plans.

Nisi of the form s ↪→ sg where s ∈ Dest(P i
useful).

They are all the possible state pairs which connect
the end state of the existent plans to the goal state
of the top-level nisus.

Based on the candidate nisi given above, heuris-
tics (see below) are used to gather a subset of
these nisi to be N j

inter which is believed to be im-
portant to achieve our top-level nisus n0.

Note that the last two sets of nisi are not necessary,
but make the process more efficient.

3. Combine plans guided by the result of DB . For each
intermediate nisus s ↪→ s ′ ∈ N j

inter , combine plans as
follows

(a) Extend forward plans that end with initial states
of nisi in N j

inter : look for plans p1 � (s ↪→ si)
and p2 � (si ↪→ sj) and combine them to give
p1p2 � (s ↪→ sj) if such p1, si , sj , p2 exist.

(b) Extend backward plans that start with final states
of nisi in N j

inter : look for plans p1 � (si ↪→ sj)
and p2 � (sj ↪→ s ′) and combine them to give
p1p2 � (si ↪→ s ′) if such p1, si , sj , p2 exist.

Add these plans into P i
useful .

4. Reason about plans. Pick a subset of P i
useful to be the

set P j
useful passed to a child phase which recursively

applies the SD procedure with the new context with
ID j . Repeat until all the plans in P i

useful have been
distributed.

5. Collect plans from child phases and combine all the
P j

useful into P i
useful .

6. Go to the beginning of the procedure. Some termina-
tion conditions can be applied here to stop the proce-
dure when the system figures out there is no plan to
achieve n0.

Step 2(b) is the key step in the planning process — each
of the sub-parts of this step are ways in which the plan is
constructed. The second and third sub-parts, respectively,
capture the notions of backward chaining from the goal state
and forward chaining from the initial state. The first step
captures the idea that planning can work forwards and back-
wards simultaneously from some state in the middle of a
possible plan.

Although we are describing this process for a single agent
at the moment, consider how such a process might take place
were several agents to be involved. In such a case different
agents would be throwing out different suggestions simul-
taneously, and at any one time, we might have plans for

achieving many different nisi “on the table”. The heuristics
in the fourth sub-part of 2(b), are methods that select the
most promising of such a set of nisi (which can equally well
be identified by a single agent) for further consideration.

Below we will adapt this procedure first to incorporate
argumentation, and then to allow it to be distributed across
a pair of agents. Before we do this, we obtain soundness and
completeness results:

Proposition 1 (Soundness). If SD generates a plan
p, then p is a plan to achieve the top-level nisus n0 using
the atomic actions A.

Proof. Step 3 of the deliberation procedure ensures that
only valid plans in L are composed from actions in A. Step
1 guarantees that the deliberation procedure succeeds only if
there is a plan p � n0. Therefore p is a valid plan to achieve
n0 using the atomic actions A.

Before attempting the completeness result, we need some
further notation:

1. Pn is the set of plans with n actions in its action se-
quence.

2. ⊕ is a plan combination operator Pi ⊕Pj = {p1p2|p1 ∈
Pi ∧ p2 ∈ Pj } ∪ {p2p1|p1 ∈ Pi ∧ p2 ∈ Pj} where p1p2

and p2p1 must satisfy the valid plan conditions given
above. This operator corresponds to step 3.

Proposition 2 (Completeness). If there is a plan for
intial nisus n0, then SD will succeed with a plan p which
achieves n0.

Proof. In step 2, P i
useful determines N j

inter (j is a child

context of i). In step 3, N j
inter determines the plans being

added into P i
useful . Therefore step 2 and 3 together determine

the growth of P i
useful . The recursive child phase calls in step

5 expedite the discovery of the top-level nisus n0; they don’t
affect the growth of P i

useful . We will show that step 2 and step

3 together will grow P0
useful to contain all the plans which can

be generated from atomic actions A so that if there is a plan
for n0 the deliberation procedure will certainly discover it.

We divide P0
useful into n disjoint subsets P = P1 ∪ P2 ∪

... ∪ Pn , where n is the number of states(namely length of
plans in Pn is in the range of 1 . . .n)4. Initially P0

1 = A
and P0

i = φ for i = 2 . . .n, each time step 2 and step 3
together grow P in the following way: Pk+1

t = ∪(Pk
i ⊕ Pk

j)

for all i + j = t. Therefore if, in step 2 and 3, Pk
i are fixed

for i = 1 . . . t − 1 then Pk+1
t = Pk

t . P1 is fixed during any
iteration; after the first iteration P2 is fixed since P1 is fixed;
after the second iteration P3 is fixed since P1, P2 are fixed.
In this way, after n − 1 iterations, Pn will be fixed. Since
the maximal plan length is n, P will contain all the possible
plans after n−1 iterations. Therefore if there is a valid plan
for n0 then P will contain it after n−1 iterations. This ends
the proof.

4
In any plan, we discard any action sequence that includes a cy-

cle p = a1a2 . . . ai−1ai . . . aiai+1 . . ., because the corresponding con-
tracted plan p′ = a1a2 . . . ai−1aiai+1 . . . is guaranteed to be reached
sooner or later by the procedure where we have two plans p1 = p′ =
a1a2 . . . ai−1 and p2 = aiai+1 . . . Doing this effectively makes the
Markov assumption, taking the effects of an action to uniquely deter-
mine the succeeding state.

554

4. ARGUMENT AND DELIBERATION
To combine DB with argumentation, we need to do three

things. First, we extend L with predicates that control the
DB procedure. Second, we establish logic-based rules for
nisus reduction, reasoning about plans, plan combination
and information passing through different contexts. (This
will enable us to construct plans by STRIPS-like logical rea-
soning). Third, we add a commitment store [11] to track the
course of DB and planning.

With a knowledge base expanded using the extended L,
a plan for a nisus is certainly contained in the theorems of
a subset of the knowledge base. However, the deliberation
problem, to some extent, is to select an efficient way to con-
struct a proof which backs up a plan for a nisus (the proof
then becomes the justification that can be provided in a
multi-agent DWK). The commitment store provides a trace
of how such a proof is constructed.

4.1 Additional notation
To capture the context of phases, we introduce the follow-

ing predicates into L

1. Ultimate(n) denotes n ∈ N is the top-level nisus.

2. N (contextid , n) denotes n ∈ N is an intermediate nisus
in context with ID contextid . It is a predicate that
determines whether n ∈ ncontextid

inter .

3. P(contextid , p) denotes p ∈ P is a useful plan in con-
text with ID contextid . It is a predicate that deter-
mines whether p ∈ Pcontextid

useful or not.

4. Justified(contextid , n) denotes the existence of a plan
for nisus n in a the context contextid .

5. Parent(id1, id2) denotes the fact that context id1 is the
parent of context id2.

4.2 Rules
In order to create arguments that support plans, we need

to be able to trace the planning process. To do that we need
to introduce the following logical rules.

Nisus justification

P(i , p) ∧ [p � (s ′ ↪→ s ′)] → Justified(contextid , s ↪→ s ′)

Note that here, as in all these rules, → denotes material
implication.

Candidate nisus composition

Ultimate(n) → N (j ,n)

Parent(i , j)
∧ P(i ,p1)
∧ P(i ,p2)
∧ [p1 � (s ′ ↪→ sfoo1)]
∧ [p2 � (sfoo2 ↪→ s)] → Ncand (j , s ↪→ s ′)

Parent(i , j)
∧ P(i ,p)
∧ Ultimate(s0 ↪→ sg)
∧ [p � (s ↪→ sfoo)] → Ncand (j , s0 ↪→ s)

Parent(i , j)
∧ P(i ,p)
∧ Ultimate(s0 ↪→ sg)
∧ [p � (sfoo ↪→ s)] → Ncand (j , s ↪→ sg)

We can use heuristics to select N (j ,n) from Ncand (j ,n) in
order to reduce the search space. Without the heuristics, we
will have rule

Ncand (j ,n) → N (j ,n)

so that every candidate nisus is considered.

Candidate plan combination

[p1 � (s ↪→ sm)]
∧ [p2 � (sm ↪→ s ′)] → p1p2 � (s ↪→ s ′)

P(i ,p1)
∧ P(i ,p2)
∧ N (i , s ↪→ sfoo)
∧ p1p2 � (s ↪→ s ′) → P(i , p1p2)

P(i ,p1)
∧ P(i ,p2)
∧ N (i , sfoo ↪→ s)
∧ p1p2 � (s ↪→ s ′) → P(i , p1p2)

Plan selection

Parent(i , j) ∧ P(i ,p) → Pcand (j , p)

Again we can use heuristics select P(j ,p) from Pcand (j , p).
Without using heuristics, we will have rule

Pcand (j ,p) → P(j ,p)

so that every candidate plan is considered.

Plan collection

P(j ,p) ∧ Parent(i , j) → P(i ,p)

These basic rules provide a backbone to guarantee that our
procedure searches the whole space of plans so that if there
is a plan to achieve the nisus n0 then we will reach it sooner
or later.

4.3 Heuristics
The basic rules give us a no-frills planning procedure.

Adding in heuristics like those given here tries to ensure
that if there is a plan that can achieve the top-level nisus,
the deliberation procedure will reach it as early as possi-
ble. We take inspiration from decision-theoretic planning
[1], where action choices are made on the basis of their ex-
pected cost. Accordingly we introduce the following notions
of cost.

1. The action-state transition cost cost(a, s, s ′) is the cost
of taking action a to transform state from s to s ′.
The value is computed or assigned outside the resoning
system.

2. The plan-state-transition cost cost(p, s, s ′) is the cost
of taking a plan p to transform state from s to s ′. The
value is computed from cost(a, si , s

′
i+1) for all actions

a in the plan p.

555

3. The overall cost cost(s ↪→ s ′) is an abbreviation of
cost(s, s ′), the cost of transforming state s into s ′. The
value is computed from cost(p, s, s ′) for all the plans
p and actions a which can cause state transition from
s to s ′.

The idea is that although we often want to consider p �

(s ↪→ s ′) as a holistic entity, to do DB and planning we need
to make comparisons between plans and actions, and we use
costs to make these comparisons.

The cost of a plan can be derived from the cost of its
actions in the same kind of way as it is done in decision-
theoretic planning5. Whatever mechanism is adopted, it
is outside the logical reasoning that we are studying here.
Thus the assignment of costs to overall plans is, so far as the
DB and planning processes are concerned, carried out by an
oracle.

Another useful notion in deciding which nisi to adopt is
the correlated valuation of one nisus relative to another,
denoted value(n, n ′). This captures the value of achieving
nisus n ′ in order to achieve n, and can be computed from
the costs of all the plans which have the form p � n for
which there exists a subplan p′ of p such that p′ � n ′. If
there is no such a sub plan p′ then value(n,n ′) = 0.

With these ideas in place, we can suggest heuristics for
plan selection and nisus composition. One possibility for
plan selection is to select the lowest cost plan:

Parent(i , j)
∧ Pcand (j ,p)
∧ P(i ,p)
∧ P(i ,p′)
∧ cost(i , p) < cost(i , p′) → P(j ,p)

A possibility for nisus composition is to only adopt nisi for
which the correlated valuation is above some threshold. To
do this we can use:

N (j ,n)
∧Ncand (j ,n ′)
∧value(g , g ′) > c → G(j , g ′)

Other heuristics can, of course, be adopted.

4.4 Single agent deliberation
We are now in a position to explain how a single agent can

use argumentation-based DWK to figure out what to do. We
assume the agent has a knowledge base KB which contains
a description of the physical world (e.g. the set of available
actions and their effects). The agent also has a commiment
store CS which it uses to trace the course of deliberation.
The idea behind the procedure is to guarantee that all nec-
cessary sentences to support an argument are available in
the commiment store CS before such an argument is con-
structed. The argumentation system used is

AS = 〈A(KB ∪ CS ,Undercut , Pref 〉
in the notation of [19].

The procedure for argumentation-based deliberation, SDA
(Simple Deliberation through Argumentation), is given a
top-level nisus n0 = s0 ↪→ sg . It first initializes the con-
text id with i = 0, CS with Ultimate(n0) and P(i ,a) for all
a ∈ A.

5
Such costs may be assigned by a form of reinforcement learning, for

example.

1. Check AS to see whether Justified(n0) is acceptable.
If it is, then stop with a plan for n0 in CS .

2. Carry out a DB :

(a) Set a context ID j for a child phase.

(b) Using KB and CS , use AS to check if N (j ,n) is
acceptable for nisi of the following three cases:

Nisi such as (s ↪→ s ′) for s ∈ Dest(P) and s ′ ∈
Src(P). This captures the idea of extending exis-
tent plans forwards and backwards.

Nisi such as (s0 ↪→ s ′) for s ′ ∈ Src(P). This
captures the idea of extending the existent plans
forwards from the source of the top-level nisus.

Nisi such as (s ↪→ sg) for s ∈ Dest(P) to cap-
ture the idea of extending the existent plans back-
wards from the destination of the top-level nisus.

Assert all the acceptable sentences N (j ,n) in CS . No-
tice that the above can be achieved only if the rules for
nisus composition are used. If the agent exhausts all
the possible cadidates nisi Ncand (j ,n) but no G(j ,n)
can be asserted, then the child phase returns to the
parent context with no new plans added.

3. Combine plans guided by the results of DB . For all
the nisi n = (s ↪→ s ′) with acceptable arguments for
N (j ,n), combine plans as follows:

Plans from s. Look for plans p1 � (s ↪→ si) and
p2 � (si ↪→ sj), combine them to be p1p2 � (s ↪→ sj)
if such p1, si , sj , p2 exist.

Plans to s ′. Look for plans p1 � (si ↪→ sj) and p2 �

(sj ↪→ s ′), combine them to be p1p2 � (si ↪→ s ′) if
such p1, si , sj , p2 exist.

Check with AS, assert all acceptable p1p2 � (s ↪→ sj),
p1p2 � (si ↪→ s ′) into CS .

4. Reason about plans. Using the plan selection rules,
identify the candidate useful plans p, and for each use
AS to check whether P(j ,p) is acceptable. If it is
acceptable, assert it into CS .

5. Recursively call a child phase to go through SDA with
the new context with ID j .

6. Collect plans from the child phase: Use plan collec-
tion rules to identify candidates plans p. For each p,
check with AS whether P(i , p) is acceptable. If it is
acceptable, assert it into CS .

7. Go to the beginning of the procedure.

Since SDA is based on a process for DB and planning which
we know is sound and complete, we can easily show that it
is sound and complete itself:

Proposition 3 (Soundness). If plan p for nisus n0 is
acceptable according to AS at the end of the SDA, then p
achieves n0 using actions from A.

Proof. Step 3 combines plan p from P1 and P2 only if
AS accepts the combination. Thus AS accepts the effects of
p. Step 1 ensures that p is a plan for n0.

556

Proposition 4 (Completeness). If there is a plan p
which achieves nisus n0 using atomic actions A, then SDA
will generate p.

Proof. Similar to the proof of Proposition 2, since steps
2 and 3 together will explore all the possible combinations of
discovered acceptable plans, the procedure will generate all
the plans acceptable by AS at the end of the procedure. If
there is plan p which achieves initial nisus n0 using actions
from A, then such a plan is contained in all the acceptable
plans by AS.

5. DELIBERATION DIALOGUES
We now consider how to extend the DWK process to be-

come a dialogue. We describe the dialogue process as being
between just two agents, but it can easily be extended to a
multi-party dialogue.

5.1 Basic configuration
The scenario for which our deliberation dialogue was cre-

ated is as follows:

1. Dialogues take place between two agents, A1 and A2.

2. A1 has initial knowledge base KB1 and commitment
store CS1.

3. A2 has initial knowledge base: KB2 and a commiment
store CS2.

4. A1 and A2 share the same rules for planning and delib-
eration and differ only in the way they evaluate plans
and nisi. They may, however, have different set of ac-
tions reflecting different capabilities.

5. The context ID, id , is shared by A1 and A2. Initially,
id = 0.

6. A1 and A2 have an mechanism to allocate unique con-
text IDs.

7. Both A1 and A2 can access CS1 and CS2, hence the
argumentation system of A1 is

AS1 = 〈A(KB1 ∪ CS1 ∪ CS2),Undercut , Pref 〉
and the argumentation system of A2 is

AS2 = 〈A(KB2 ∪ CS1 ∪ CS2),Undercut , Pref 〉.
Within this scenario we need to add the following idea of an
auxilliary sub-dialogue.

5.2 Auxiliary discussion sub-dialogue
One of the reasons for agents to enagage in deliberation

dialogues is to combine both agents’ reasoning and planning
capabilities. One possible downside, the fact that conflicts
may arise between the two agents, can be resolved by the
use of argumentation (which, at heart, is a system for resolv-
ing conflicts in terms of the acceptability of the arguments
which support the conflicting statements in two argumenta-
tion systems). To achieve this resolution we need an auxil-
iary discussion sub-dialogue to render a sentence acceptable
to both agents, by which we mean that it is accepted by the
argumentation systems AS1 and AS2.

A discussion sub-dialogue is started by a dialogue move
discuss(p). Assume that A1 moves first, the discussion sub-
dialogue proceeds as follows:

1. A1 checks with its own argumentation system AS1

whether p is acceptable, if it is, then A1 makes the
locution discuss(p), indicating that p is open for dis-
cussion.

2. A2 checks with its argumentation system AS2 whether
p is acceptable, if it is, A2 stops and declares that p
is accepted by both agents. Otherwise, A2 challenges
p indicating that it needs to see the argument for p
(which will be the reason behind A1’s suggestion of
p).

3. A1 responds to the challenge by asserting the set of
support S for p.

4. For each sentence q ′ ∈ S , A2 checks with AS2. For the
unaccepted sentences q ′ ∈ S , A2 discusses ¬q ′ with
A1, if any of the ¬q ′ are accepted by the discussion
then go to next step; otherwise stop and declare p is
accepted by both agents.

5. A1 replaces S with another alternative support and
goes back to step 3.

6. If A1 exhausts all the possible supports for p but the
discussion with A2 accepts none of them, then declare
p is not accepted by the discussion.

With this machinery, we can now set down the deliberation
dialogue.

5.3 A dialogue for deliberation
Two agents can have two different set of atomic actions.

This means they have different capability or different views
of the physicial world.

We assume that initially A1 and A2 agree on a top-level
nisus n0 = s0 ↪→ sg (though they could arrive at this after
another dialogue, a negotiation perhaps). A1 and A2 ini-
tialize the context id with i = 0. A1 initializes CS1 with
Ultimate(n0) and P(i , a) for all its actions, and A2 does
the same for its commitment store. The simple deliberation
dialogue, SDD, then consists of the following steps:

1. A1 discusses A2 to check whether Justified(n0) is ac-
ceptable. If it is, then stop with a plan for n0.

2. Carry out DB :

(a) Create a context ID j for a child phase.

(b) A1 discusses with A2 to check whether N (j ,n) is
acceptable for nisus of the following three cases

Nisi of the form s ↪→ s ′ where s ∈ Dest(P) and
s ′ ∈ Src(P), to capture the ideas of extending
existent plans forwards and backwards.

Nisi of the form s0 ↪→ s ′ where s ′ ∈ Src(P), to
capture the ideas of extending the existent plans
forwards from the source of the top-level nisus.

Nisi of the form s ↪→ sg where s ∈ Dest(P), to
capture the ideas of extending the existent plans
backwards from the destination of the top-level
nisus.

Assert all the acceptable sentences N (j ,n) in CS1.
Notice that the above can be achieved only if
nisus composition rules on are used.

557

(c) A2 carries out the same step as A1 but asserts
results into CS2. The bidirectional discussion is
to ensure all the sentences that will be needed in
the future can be exchanged between A1 and A2.

After A1 and A2 have exhausted all the nisi n that
satisify Ncand (j ,n), and no new N (j ,n) are asserted,
return to the parent context with no new plans are
asserted.

3. Combine plans guided by the results of DB .

(a) For all the nisi n = (s ↪→ s ′) with acceptable
arguments for N (j ,n), A1 combines plans:

Plans from s: look for plans p1 � (s ↪→ si) and
p2 � (si ↪→ sj), combine them to be p1p2 �

(s ↪→ sj) if such p1, si , sj , p2 exist.

Plans to s ′: look for plans p1 � (si ↪→ sj) and
p2 � (sj ↪→ s ′), combine them to be p1p2 �

(si ↪→ s ′) if such p1, si , sj , p2 exist.

A1 discusses p1p2 � (s ↪→ sj), p1p2 � (si ↪→ s ′),
with A2, asserting the acceptable plans into CS1.

(b) A2 does the same as A1 does for (a) but asserts
the results into CS2.

4. Reason about plans:

(a) A1 uses the plan selection rules to identify can-
didate useful plans p, and discusses with A2 if
P(j ,p) is acceptable. If it is acceptable, A1 as-
serts it into CS1.

(b) A2 carries out the analogous process.

5. Recursively call a child phase to go through SDD with
the new context with ID j .

6. Collect plans from the child phase:

(a) A1 uses the plan collection rules to figure out the
candidates of plans p should be collected. Then
he discusses with A2 to check whether P(i ,p) is
acceptable. If it is acceptable, assert it into CS1.

(b) A2 carries out the analogous process

7. Go to the beginning of the procedure.

Once again we can prove the soundness and completeness of
the procedure, showing that reacsting it as a dialogue does
not detract from it:

Proposition 5 (Soundness). If plan p for nisus n0 is
acceptable by both agents at the end of SDD, then p achieves
n0 using atomic actions that both agents agree upon.

Proof. Step 3 combines plan p from P1 and P2 only if
AS1 and AS2 both accept the combination. Thus both agents
agree on the effects of p. Step 1 ensures that both agents
agree that p is a plan for n0.

Proposition 6 (Completeness). If there is a plan p
which achieves nisus n0 using a set of atomic actions that
both agents agree upon, then SDD will generate p.

Proof. Similar to the proof of Propositions 2 and 4, since
steps 2 and 3 together will explore all the possible combina-
tions of discovered plans accepted by both agents, the proce-
dure will generate all the plans acceptable by both AS1 and
AS2 at the end of the procedure. If, according to the accept-
able atomic actions A agreed by both agents, there is plan p
which achieves initial nisus n0, then such a plan is contained
in all the acceptable plans by AS1 and AS2.

6. DISCUSSION
The full argumentation-based deliberation dialogue suc-

cessfully composes plans in one of the following ways:

1. A1 composes the whole plan, A2 agrees with it.

2. A2 composes the whole plan, A1 agrees with it.

3. A1 composes some parts of the plan; A2 composes
some other parts of the plan; A1 and A2 combine the
two parts at the end, and both A1 and A2 agree with
the final plan.

Thus we can see that our process combines the “create a plan
and then convince others it works” approach of [17] with the
“merge different plans” approach of [7]. For a given situation
SDD will typically take an approach that is a mixture of the
two, involving the creation and merging of separate sub-
plans some of which one agent has to persuade the other to
adopt. SDD thus achieves the nisus that we set out at the
start of the paper.

One thing to note about this work concerns the heuristics
used to guide the search for plans during deliberation. These
are never specified in any detail, though we give some high-
level hints about the possible form that they may take. This
does not detract from the formal results, since the results
hold even if we have no heuristics (in which case we essen-
tially do an exhaustive search through the full state-space).
However, decent heuristics will help to focus the search and
thus make it more efficient.

7. CONCLUSION
This paper has described a mechanism for carrying out

deliberation dialogues in the sense of Walton and Krabbe
[25] — that is dialogues in which agents decide what to do.
Our approach, which as described is limited to two agents
but could easily be generalised, recursively mixes nisus se-
lection and planning, allowing these tasks to be distributed
between the agents in a flexible way. The approach makes
it possible for agents to combine their knowledge about the
environment, and to make use of the planning abilities of
both agents (since one can readily imagine that they have
complementary expertise, as embodied in the heuristics they
can employ).

Two directions of furture research are particularly attrac-
tive to us. First, as mentioned above, it seems appropriate
to allow the agents to learn the values of actions across a
number of trials, and this might easily be achieved by tech-
niques from reinforcement learning. Doing so suggests a
bridge between the kind of procedure we have developed
here and multi-agent decision theoretic planning of the kind
considered in [10]. Exploring such connections is the second
direction we intend to take.

558

Acknowledgements
This work was made possible by funding from NSF #REC-
02-19347, NSF #IIS 0329037 and EU FP6-IST 002307 (AS-
PIC).

8. REFERENCES
[1] Craig Boutilier, Thomas Dean, and Steve Hanks.

Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial
Intelligence Research, 11:1–94, 1999.

[2] M. E. Bratman. Intention, plans, and practical reason.
CSLI Publications, 1999.

[3] D. D. Corkill. Hierarchical planning in a distributed
environment. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 168–175,
1979.

[4] M. E. desJardins, E. H. Durfee, C. L. Ortiz, and M. J.
Wolverton. A survey of research in distributed,
continual planning. AI Magazine, 21(1), 2000.

[5] F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge.
Agent theory for team formation by dialogue. In
C. Castelfranchi and Y. Lespérance, editors, Seventh
Workshop on Agent Theories, Architectures, and
Languages, pages 141–156, Boston, USA, 2000.

[6] E. H. Durfee and V. R. Lesser. Partial global
planning: A coordination framework for distributed
hypothesis formation. IEEE Transactions on Systems,
Man, and Cybernetics, KDE-1:63–83, 1991.

[7] E. Ephrati and J. S. Rosenschein. Multi-agent
planning as the process of merging distributed
sub-plans. In Proceedings of the Twelfth International
Workshop on Distributed Artificial Intelligence, pages
115–129, 1993.

[8] K. Greenwood, T. Bench-Capon, and P. McBurney.
Structuring dialogue between the People and their
representatives. In R. Traunmüller, editor, Electronic
Government: Proceedings of the Second International
Conference (EGOV03), Prague, Czech Republic,
Lecture Notes in Computer Science 2739, pages 55–62,
Berlin, Germany, 2003. Springer.

[9] B. J. Grosz and S. Kraus. The evolution of
sharedplans. In M. J. Wooldridge and A. Rao, editors,
Foundations of Rational Agency, volume 14 of Applied
Logic. Kluwer, The Netherlands, 1999.

[10] C. Guestrin, D. Koller, and R. Parr. Multiagent
planning with factored MDPs. In Advances in Neural
Information Processing Systems, pages 1523–1530,
2001.

[11] C. L. Hamblin. Fallacies. Methuen and Co Ltd,
London, UK, 1970.

[12] D. Hitchcock, P. McBurney, and S. Parsons. The
eightfold way of deliberation dialogues. International
Journal of Intelligent Systems, 2004.

[13] S. Kraus, K. Sycara, and A. Evenchik. Reaching
agreements through argumentation: a logical model
and implementation. Artificial Intelligence,
104(1–2):1–69, 1998.

[14] H. Levesque, P. Cohen, and J. Nunes. On acting
together. In Proceedings of the National Conference on
Artificial Intelligence, pages 94–99, 1990.

[15] N. Maudet and F. Evrard. A generic framework for

dialogue game implementation. In Proceedings of the
2nd Workshop on Formal Semantics and Pragmatics
of Dialogue, University of Twente, The Netherlands,
May 1998.

[16] P. McBurney. Rational Interaction. PhD thesis,
University of Liverpool, 2002.

[17] P. Panzarasa, N. R. Jennings, and T. J. Norman.
Formalising collaborative decision making and
practical reasoning in multi-agent systems. Journal of
Logic and Computation, 12(1):55–117, 2002.

[18] S. Parsons and P. McBurney. Argumentation-based
dialogues for agent coordination. Group Decision and
Negotiation, 12(5):415–439, 2003.

[19] S. Parsons, M. Wooldridge, and L. Amgoud. An
analysis of formal inter-agent dialogues. In 1st
International Conference on Autonomous Agents and
Multi-Agent Systems. ACM Press, 2002.

[20] C. Reed. Dialogue frames in agent communications. In
Y. Demazeau, editor, Proceedings of the Third
International Conference on Multi-Agent Systems,
pages 246–253. IEEE Press, 1998.

[21] M. Schroeder, D. A. Plewe, and A. Raab. Ultima
ratio: should Hamlet kill Claudius. In Proceedings of
the 2nd International Conference on Autonomous
Agents, pages 467–468, 1998.

[22] K. Sycara. Argumentation: Planning other agents’
plans. In Proceedings of the Eleventh Joint Conference
on Artificial Intelligence, pages 517–523, 1989.

[23] M. Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7:83–124, 1997.

[24] W. van der Hoek and M. Wooldridge. Tractable
multiagent planning for epsitemic goals. In
Proceedings of the 1st International Conference on
Autonomous Agents and Multiagent Systems, 2002.

[25] D. N. Walton and E. C. W. Krabbe. Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning.
State University of New York Press, Albany, NY,
USA, 1995.

[26] R. Zlot and A. Stentz. Market-based multirobot
coordination using task abstraction. In Proceedings of
the 4th International Conference on Field and Service
Robotics, 2003.

559

