
Automated Resource-Driven Mission Phasing Techniques
for Constrained Agents

Jianhui Wu
EECS Department, University of Michigan

Ann Arbor, MI 48109 USA

jianhuiw@umich.edu

Edmund H. Durfee
EECS Department, University of Michigan

Ann Arbor, MI 48109 USA

durfee@umich.edu

ABSTRACT
A constrained agent is limited in the actions that it can take
at any given time, and a challenging problem is to design
policies for such agents to do the best they can despite their
limitations. One way of improving agent performance is to
break larger tasks into phases, where the constrained agent
is better able to handle each phase and can reconfigure its
limited capabilities differently for each phase. In this paper,
we present algorithms for automating the process of finding
and using mission phases for constrained agents. We ana-
lyze several variations of this problem that correspond to
different classes of important constrained-agent problems,
and show through analysis and experiments that our tech-
niques can increase an agent’s rewards for varying levels of
constraints on the agent and on the phases.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE; I.2.8 [ARTIFICIAL INTELLIGENCE]: Con-
trol Methods, and Search

General Terms
ALGORITHMS

Keywords
Mission phasing, constrained MDPs, abstract MDPs, mixed
integer programming

1. MOTIVATION AND INTRODUCTION
Markov decision processes (MDPs) provide a good frame-

work to compute optimal policies for autonomous agents
operating in uncertain environments. However, the optimal
policies computed by MDPs might not be executable by con-
strained agents. For example, a real-time autonomous driv-
ing agent might be unable to schedule all of its desired ac-
tions (watching for pedestrians, checking surrounding traffic,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

reading gauges, etc.) frequently enough to optimally reach
its destination at maximum speed and minimum risk be-
cause it cannot redirect its limited perceptual resources fast
enough in all relevant directions. Or, as another example, a
Mars Rover might be unable to carry all of the tools desired
by an optimal scientific mission on a given day.

Coping with agent architectures that constrain executable
policies has been the subject of several recent studies. Alt-
man has adopted a Lagrangian and dual LP approach to
solve constrained MDPs with total cost criteria [1]. Fein-
berg has analyzed the complexity of constrained discounted
MDPs [7]. Dolgov and Durfee presented algorithms for a
wide range of constrained optimization problems via reduc-
tion to linear and integer programming [5, 6]. These ap-
proaches search for a policy that is executable within the
agent constraints and that optimizes the expected (possibly
discounted) reward accrued over the entire agent execution.

In constrained MDPs, it is generally the case that an ex-
ecutable policy is optimal with respect to the (probability
distribution over the) state(s) in which the agent begins ex-
ecuting the policy [5, 6]. Not surprisingly, this suggests
that a constrained agent might be able to do better if it
can change its policy during execution: when it reaches a
particular state, it might adopt a new policy that uses its
constrained resources more effectively given the particular
trajectory the world has taken. For example, when our au-
tonomous driving agent reaches a highway entrance ramp,
it might improve its expected reward by adopting a policy
that calls for greater speed and more frequent traffic checks,
balanced by less frequent checks for pedestrians and traffic
lights. Our Mars Rover might discover that its path has
brought it near to the lander, such that it might drop off
instruments that it no longer needs and pick up others that
might increase the value of its remaining science experiments
for the day.

Thus, unlike an unconstrained agent that can execute a
policy that is optimal for all possible eventualities, we ar-
gue that a constrained agent can benefit from judiciously
breaking its overall mission into phases, where as it moves
from phase to phase it can adopt a different, more effective
policy for its current phase. This assertion is not surprising.
The challenge, though, is in automating the process of cre-
ating and exploiting mission phases, as opposed to having
the phases predefined in the description of the mission, in
complex stochastic domains.

In contrast to techniques that improve computational trac-
tability by decomposing larger planning problems into se-
quences of smaller problems (for example, passing through

331

intermediate landmark states [9, 15]), our use of mission
phasing addresses execution constraints rather than compu-
tational constraints. Indeed, as will be seen, in general our
mission phasing methods will not in themselves reduce com-
putational requirements because a policy in one phase can
only be optimized with respect to the policies planned for
the possible subsequent phases that might be entered.

In this paper, we define the mission phasing problem (MPP)
in stochastic domains as the problem of determining the
states at which phases change (where an agent switches its
policy) and the optimal policies to adopt for each phase (at
each policy-switching state), given the agent constraints.
We look at several increasingly general variations of the
MPP, and for each, we present, analyze, and illustrate solu-
tion algorithms. We empirically evaluate the effectiveness of
our techniques under varying degrees of agent constraints.
Our presentation begins, though, by summarizing the con-
cepts behind (constrained) Markov Decision Processes that
our work builds on, and ends with a discussion of challenges
that remain.

2. MDP AND CONSTRAINED MDP
A classical MDP can be defined as a four-tuple 〈S, A, P, R〉,

where S is a finite state space, A is a finite action space,
P = {pa

ij} is the state transition probability where pa
ij is

the probability that the agent reaches state j if it executes
action a in state i, and R = {ria} is the reward function
where ria is the reward that the agent receives if it executes
action a in state i.

In this paper, we concentrate on decision problems in tran-
sient Markov processes [10], although in general our results
will apply to any contracting MDP. In a transient Markov
process, an agent will eventually leave the corresponding
Markov chain, after running a policy for a finite number of
steps. In other words, given a finite state space, it is as-
sumed that the agent visits any state only a finite number
of times for any policy.

Well-known value and policy iteration algorithms are com-
monly used in solving unconstrained MDPs [16]. However,
it is surprisingly hard to make these algorithms work on
constrained problems, and many researchers adopt an al-
ternative formulation that is based upon linear program-
ming [1, 2, 5]. In this section, we recap how to formulate an
unconstrained MDP into a linear program, whose solution
yields the optimal policy maximizing the total expected re-
ward, because our subsequent techniques extend these foun-
dations.

If xia denotes the expected number of times action a is
executed in state i, then the objective function

P
i

P
a xiaria

represents the total expected reward. Now, consider the
linear program shown in Eq.1.

max
X

i

X

a

xiaria (1)

subject to the following constraints:
˛
˛
˛
˛

P
a xja = αj +

P
i

P
a pa

ijxia

xia ≥ 0

where αj is probability that the system is initially in state
j. The constraint

P
a xja = αj +

P
i

P
a pa

ijxia indicates
that the expected number of times state j is visited must
equal the initial probability distribution at state j plus the

expected number of times state j is entered via all possible
transitions.

If we solve the linear program in Eq.1, it is trivial to derive
the optimal policy that specifies the action(s) to take in a
given state. Specifically, assigning a probability of executing
action a at state i as πia = xiaP

a xia
will maximize the total

expected reward. If any πia has a value other than zero
or one, the optimal policy is randomized; otherwise it is
deterministic.

Formulating unconstrained MDPs as linear programs makes
it easier to add other constraints. A wide range of such con-
strained optimization problems have been investigated by
Dolgov and Durfee [5, 6]. In order to familiarize readers with
some background knowledge on solving constrained Markov
decision problems, we show a simple example below. Let us
say that the cost of incorporating action a into the policy
is ua (e.g., watching for pedestrians uses the camera 20% of
the time), and the total cost cannot exceed an upper bound
ω (e.g., the camera cannot be used more than 100% of the
time). The linear program formulation of MDPs makes it
easy to incorporate these kinds of costs and limitations by
imposing the following constraint on xia

X

a

uaθ(
X

i

xia) ≤ ω (2)

where θ(z) is a step function, defined as

θ(z) =

j
1 z > 0
0 otherwise

Note that θ(z) is a nonlinear function, and so we need
to convert the nonlinear constraint (Eq.2) into linear con-
straints for the sake of using linear or integer programming
algorithms. One way to accomplish this is to introduce ad-
ditional integer variables [5]. The details are shown below.

˛
˛
˛
˛
˛
˛

P
a ua∆a ≤ ω

P
i xia

X
≤ ∆a

∆a ∈ {0, 1}
(3)

where X is a constant greater than sup
P

i xia, and ∆a, an
integer in the interval [0, 1], is used to indicate whether
action a is scheduled in the policy.

As a result, the constrained MDP is formulated as a mixed
integer program. Mixed integer programming (MIP) is the
discrete version of linear programming with an additional
requirement that partial variables must be integers. MIPs
can be solved by a variety of highly optimized algorithms
and tools [4, 19]. In recent years, there has been substantial
progress on using MIPs in automated planning [3, 11, 17,
18].

We illustrate this technique using the example shown in
Figure 1; we will illustrate our subsequent extensions to
these ideas using this example as well to help the reader
understand and compare the techniques. In this example,
there are six states {S1, S2, S3, S4, S5, S6} and six actions
{a1, a2, a3, a4, a5, a6}, where the agent starts at S1, and a1

is a noop that represents the fact that the agent has the
freedom of not executing any action (unoop = 0). The cost
(ua) of each action in the set {a2, a3, a4, a5, a6} is 1. If the
cost upper bound ω is unlimited, this is an unconstrained
MDP. Using policy iteration or linear programming (Eq.1),
we could easily compute the optimal policy, which is [S1 →
a2, S2 → noop/a3, S3 → a4, S4 → a5, S5 → a6, S6 → noop],
and the total expected reward is 174.65.

332

S1

-5

S3

-5

S6

200

S2

-20

S4

-5

S5

-5

a2 (0.1), noop (0.8)

a2 (0.9), noop (0.2) a3 (1.0), noop (1.0)

a5 (0.1), noop (0.5)

a5 (0.8), noop (0.2)

a5 (0.1), noop (0.3)

a6 (0.8), noop (0.2)

a6 (0.2), noop (0.8)

a4
(0.9), noop (0.05)

a4 (0.1), noop (0.95)

Figure 1: A simple example.

Suppose instead that the agent is highly constrained, such
that now the agent can only execute a policy with one action
that is not a noop (ω = 1). It is not obvious which action
the agent should schedule. We can solve the problem by
formulating it as the following MIP (combining Eq.1 and
Eq.3):

max
X

i

X

a

xiaria (4)

subject to the following constraints:
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

P
a xja = αj +

P
i

P
a pa

ijxia

xia ≥ 0P
a ua∆a ≤ ω

P
i xia

X
≤ ∆a

∆a ∈ {0, 1}
where pa

ij and ria are as shown in Figure 1, α1 = 1, αj∈{2,...,6}
= 0, u1 = 0, ua∈{2,...,6} = 1, ω = 1, and X can be computed
by solving:

X = max
X

i

X

a

xia

˛
˛
˛
˛

P
a xja = αj +

P
i

P
a pa

ijxia

xia ≥ 0
(5)

Eq.5 yields X=70.24, which is guaranteed to be no less than
sup

P
i xia, and Eq.4 is solved as:

[(x11, x12), (x21, x23), (x31, x34), (x41, x45), (x51, x56), x61]

= [(3.47, 0), (3.03, 0), (5.21, 0), (4.95, 0), (0, 1.25), 1]

[∆1, ∆2, ∆3, ∆4, ∆5, ∆6] = [1, 0, 0, 0, 0, 1]

The optimal policy is [S1 → noop, S2 → noop, S3 → noop, S4

→ noop, S5 → a6, S6 → noop], and the corresponding total
expected reward is reduced to 65.02 due to the constraints
on total action costs. This is the optimal policy for the con-
strained agent that uses a single policy throughout its entire
mission. We will use this example as we go along to see the

degree to which automated mission phasing can improve this
expected reward.

3. FIXED POLICY-SWITCHING STATES
We begin our examination of automated mission phasing

by first assuming that policy-switching states are known a
priori. This assumption fits many problems where the op-
portunity to switch policies is dictated by the state of the
world rather than being a choice of the agent. In the case of a
driving agent, for example, red lights and highway ramps are
good opportunities for switching policies compared to try-
ing to switch policies in fast-paced situations such as while
careening among a crowd of moving pedestrians.1 In the
case of a Mars Rover, the locations on Mars where it can
change its instrumentation will likely be very limited, and
well known to it.

Decomposition techniques for planning in stochastic do-
mains are widely used for large environments with many
states [8, 14]. In those approaches, states are partitioned
into smaller regions, a policy is computed for each region,
and then these local policies are pieced together to obtain
a global policy. Automated mission phasing techniques are
analogous to decomposition techniques – partitioning a mis-
sion into multiple phases leads to smaller state/action spaces
in each phase – though the motivation for mission phasing
is the constraints on policies agents can execute rather than
the reduction of computational requirements during policy
formulation. Nonetheless, we can exploit these ideas. In
this section, we assume that none of constraints is associ-
ated with more than one phase and postpone the discussion
of more general constraints to Sections 4 and 5.

We now present an abstract MDP algorithm for solving
MPPs. An abstract MDP is composed of abstract states,
each of which represents a mission phase. The “action” for
an abstract state is the policy used in its corresponding mis-
sion phase. Since it is assumed that agent constraints in one
phase are unaffected by policy choices in another phase, the
abstract MDP is an unconstrained MDP even though inter-
nally each phase is still a constrained MDP. The algorithm
thus uses a policy iteration approach at the abstract level
with an embedded MIP solver. The embedded MIP solver
finds possible executable policies and their expected rewards
for each of the phases, but different policies will have dif-
ferent probabilities of reaching the various policy switching
states at the “edges” of the phase. The outer policy itera-
tion algorithm at the abstract level iteratively searches for
the combination of phase policies that maximizes reward
across the whole mission.

The detailed procedure for the abstract MDP solver is
illustrated below:

1. Partitioning the mission into smaller phases
When policy-switching states are given, partitioning
a mission into multiple phases is trivial. Start from
a state with a positive initial probability distribution,
which we call START state, or a policy-switching state,
and then keep expanding through all connected transi-
tions until encountering other policy-switching states.

1Some real-time agent architectures, like CIRCA (which will
be discussed later), explicitly model time-critical transitions,
making it possible to identify states where a pause while
switching policies could be catastrophic.

333

S6

S2S4

S5

S1 S2

Phase III

Phase I

S3

S6

S2

S5

Phase II

Figure 2: Abstract MDP with three phases.

2. Policy Iteration
The following policy iteration algorithm is used, after
the mission is partitioned.

(a) Solve the corresponding unconstrained MDP and
compute a utility function U(s) for each policy-
switching state s. U(s) are used as initial values
of policy-switching states in the MPP since they
are likely to provide good estimates.

(b) In the abstract MDP, each phase is treated as
an abstract state and each policy for a phase is
treated as an abstract action for that phase’s ab-
stract state. The policy iteration algorithm alter-
nates between the following two steps:

Policy evaluation: Given abstract actions, cal-
culate U(s) for each policy-switching state
s. For small state spaces, standard linear al-
gebra methods are often the best solutions
for policy evaluation. For large state spaces,
a simplified value iteration algorithm might
be preferred (simplified because the policy in
each phase is fixed).

Policy improvement : Rather than enumerating
all possible policies (abstract actions) for a
phase (abstract state), the algorithm uses a
constrained MDP solver, such as in Eq.4, to
calculate the optimal policy in the phase, given
the current utility functions of the (outgoing)
neighboring policy-switching states.

We now return to our running example introduced in Sec-
tion 2 to illustrate how the total expected reward can be
improved if the agent can switch its policy at some states.
Let us say that the agent knows it is able to switch policies
at states S1, S3 and S4. The corresponding abstract MDP
is constructed and shown in Figure 2, which is composed
of three abstract states. Using the above policy-iteration
algorithm, and assuming the same parameters (especially

that an executable policy cannot have more than one ac-
tion that is not a noop), the utility functions of the policy-
switching states eventually converge to U(S1) = 113.65,
U(S3) = 120.65, and U(S4) = 123.05. The optimal pol-
icy in phase I is [S1 → a2, S2 → noop], the optimal policy
in phase II is [S2 → noop, S3 → noop, S5 → a6, S6 → noop]
and the optimal policy in phase III is [S2 → noop, S4 →
noop, S5 → a6, S6 → noop]; the total expected reward is
113.65.

Thanks to the policy iteration algorithm, the abstract
MDP solver generally converges quickly. However, it should
be noted that two limitations are inherent in the abstract
MDP solver. One of the limitations is that the abstract
MDP solver requires that policy-switching states are known
a priori. An approach to alleviate this limitation is to inte-
grate the abstract MDP solver with search techniques, such
as branch and bound algorithms. The other limitation is
due to the possible existence of constraints running across
multiple phases. The abstract MDP is an unconstrained
MDP and so the embedded policy iteration algorithm is ef-
ficient and well-suited. In other words, the abstract MDP
solver cannot cope with constraints associated with multi-
ple abstract states, such as limitations on the total expected
costs across phases, and restrictions on the expected num-
ber of visits to a specific state. In the following sections, we
present a more general solver.

4. FIXED NUMBER OF POLICY SWITCH-
ING STATES

In this section, we assume that policy-switching states are
not given a priori and so an agent has to determine for itself
an optimal set of policy-switching states. Obviously, if an
agent could switch policies at every state, then it could ob-
tain the same reward as in the unconstrained case (assuming
that there is no action whose cost all by itself exceeds the
policy cost constraint). In practice, though, a constrained
agent will have limitations in how many contingent policies
it can compute and/or store. Specifically, in this section we
will assume an agent has an upper bound on the number of
mappings it can represent between policy-switching states
and the policy to adopt for each. The agent thus must de-
cide which states and policies to put into this mapping.

When the number of policy-switching states must be less
than a constant integer value K, we refer to the mission
phasing problem as a constrained optimization MPP. Clearly,
the abstract MDP solver presented in Section 3 cannot be
used for the constrained optimization MPP because now a
decision to create a policy-switching state in one phase will
consume an entry in the state-to-policy mapping that will
now be unavailable for another phase. That is, there are
now constraints that span multiple phases.

In this section, we construct a mixed integer program, the
solution to which yields the optimal set of policy-switching
states maximizing the total expected reward. We make
a simplifying assumption that a START state (which has
a positive initial probability distribution αj) is always a
policy-switching state. This assumption makes the presen-
tation clearer and representation more concise, as well as
sidestepping the question of what the ”default” agent pol-
icy might be (since that is what it would use if it could not
switch policies in a START state).

Let xk
ia be the expected number of times action a is ex-

334

ecuted in state i within phase k. Clearly, if state i is not
reachable in phase k, then xk

ia = 0. Let αk
j =

P
a xk

ja −
P

i

P
a pa

ijx
k
ia, then αk

j provides a way to characterize tran-
sitions among phases. If state j is neither a START state
nor a policy-switching state, then αk

j = 0 for any k, since in
any phase the expected number of times of visiting state j
(
P

a xk
ja) must equal the expected number of times of enter-

ing state j through all possible transitions (
P

i

P
a pa

ijx
k
ia).

If state j is a policy-switching state,
P

k αk
j = αj . Recall

that αj is the initial probability distribution for state j.P
k αk

j = αj guarantees that the total expected number of
times of visiting state j must equal the initial probability
distribution for state j plus the total expected number of
times of entering state j through all possible transitions.

Now, we can formulate the constrained optimization MPP
into a mixed integer program shown in Eq.6. The objective
function

P
i

P
a

P
k xk

iaria is the total expected reward, and
K is the maximum number of policy-switching states.

max
X

i

X

a

X

k

xk
iaria (6)

subject to the following constraints:
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

P
a xk

ja −Pi

P
a pa

ijx
k
ia = αk

j (cons.1)P
k αk

j = αj (cons.2)
X ≥ supαk

j (cons.3)
αk

j

X
≤ Ψj (cons.4)P

j Ψj ≤ K (cons.5)

xk
ia ≥ 0 (cons.6)

Ψj ∈ {0, 1} (cons.7)
k ∈ {1, 2, . . . , K} (cons.8)
other constraints (cons.9)

• As illustrated, constraint (1) in Eq.6 models the con-
servation of probability within a phase.

• Constraint (2) simply indicates the fact that
P

k αk
j =

P
k(
P

a xk
ja−

P
i

P
a pa

ijx
k
ia) =

P
a xja−Pi

P
a pa

ijxia

= αj , where xia =
P

k xk
ia is the total expected num-

ber of times action a is executed in state i.

• Constraint (3) defines X ≥ sup αk
j , which is used to

guarantee
αk

j

X
≤ 1. Directly computing sup αk

j might
not be easy. In transient systems, a feasible alternative
is to compute X = max

P
i

P
a xia, since

sup αk
j = sup(

X

a

xk
ja −

X

i

X

a

pa
ijx

k
ia)

≤ sup
X

a

xk
ja

≤
X

i

X

a

X

k

xk
ia

≤ X

where X = max
P

i

P
a xia can be computed by using

Eq.5.

• Ψj in constraint (4) is a binary variable, where Ψj = 1
when state j is a policy-switching state, and Ψj = 0
otherwise. Clearly, constraints (4) and (7) mean that

∃k
αk

j

X
> 0 ⇒ Ψj = 1.

• Constraint (5) says that the number of policy-switching
states must be no greater than K.

• Constraints (6-8) denote the ranges of variables. Note
that there is no restriction for the range of αk

j .

• The previous constraints capture constraints on the
number of policy switching states, but not other con-
straints such as constraints on executable policies (such
as the total costs of the actions in a policy). Constraint
(9) in the formulation is a placeholder for these other
constraints (an example of these follows soon).

We now show how to derive an optimal MPP policy from
the solution to Eq.6. The computation of the MPP optimal
policy involves two steps:

1. Computing the optimal policy in each phase k. This is
the same as before – at state i, action a is executed

with probability πk
ia =

xk
iaP

a xk
ia

. Let πk = {πk
ia} denote

the phase policy in phase k.

2. Determining which phase policy to adopt at a policy-
switching state i. This is also trivial. The agent should
choose the phase policy πk with probability Πk

i =
xk

iP
k xk

i

at state i for maximizing the total expected re-

ward, where xk
i =

P
a xk

ia.

Recall that constraint (9) is a placeholder for other
constraints, which can vary in a wide range. In many
MPPs (including our examples shown in this paper),
the choice of policy at a policy-switching state is de-
terministic. However, for some cases (e.g., there exists
execution constraints [5] across multiple phases), the
choice of policy might be randomized. For these cases,
if the deterministic choice is desired, we need to force
that each policy-switching state only belongs to one
phase. That is, the following constraints should be in-
corporated into Eq.6.
P

k θ(xk
i) ≤

j
1 if state i is a policy-switching state
K otherwise

where θ(z) is a step function, defined as θ(z) = 1 ⇔
z > 0, θ(z) = 0 ⇔ z ≤ 0. This nonlinear constraint
can be reformulated into integer constraints

˛
˛
˛
˛
˛
˛
˛

xk
i

X
≤ σk

iP
k σk

i ≤ (1 − K)Ψi + K
σk

i ∈ {0, 1}
where σk

i is a binary variable. σk
i = 1 when state i

belongs to phase k, and σk
i = 0 otherwise.

We conclude this section by illustrating our solution on
our running example. Recall that, as shown in Section 3,
when the agent is allowed to switch its policy at S1, S3 and
S4, its total expected reward is 113.65. Rather than pre-
determining the policy-switching states, we now say that
two additional policy-switching states besides START state
S1 can be chosen by the agent from any states in the system.
The problem can then be solved by placing the following
constraints (which represent a multi-phase version of Eq.3)
into “other constraints” in Eq.6:

˛
˛
˛
˛
˛
˛
˛

P
a ua∆k

a ≤ ω
P

i xk
ia

X
≤ ∆k

a

∆k
a ∈ {0, 1}

(7)

335

Using the same transition probability pa
ij , reward ria, initial

probability distribution αj , utility cost ua, the cost upper
bound ω and constant value X as in Section 2, the integer
solution of the mixed integer program is:

[Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ψ6] = [1, 0, 1, 0, 1, 0]
˛
˛
˛
˛
˛
˛

∆1
1, ∆

1
2, ∆

1
3, ∆

1
4, ∆

1
5, ∆

1
6

∆2
1, ∆

2
2, ∆

2
3, ∆

2
4, ∆

2
5, ∆

2
6

∆3
1, ∆

3
2, ∆

3
3, ∆

3
4, ∆

3
5, ∆

3
6

˛
˛
˛
˛
˛
˛
=

˛
˛
˛
˛
˛
˛

0, 1, 0, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, 0, 1

˛
˛
˛
˛
˛
˛

The total expected reward of the agent is 173.80 by adopt-
ing the policy [S1 → a2, S2 → noop] at S1, switching to the
policy [S3 → a4, S4 → noop] at S3, and switching to the
policy [S2 → noop, S5 → a6, S6 → noop] at S5.

5. INCORPORATING COST FOR POLICY
SWITCHING

Now we neither assume that the policy-switching states
are predefined (Section 3) or that the number of policy-
switching states is bounded (Section 4). Instead, we assume
that policy switching can occur at any state, and at as many
states as desired, but that there is a cost associated with
switching a policy at a state (and different states can have
different costs). In our Mars Rover example, for instance,
the Rover might be able to redistribute instruments around
its environment so that it could switch policies when reach-
ing any of those depots, but there would be a cost to creating
those states.

Similarly, a number of problems in the real-time AI litera-
ture can fit into this case. For example, the Cooperative In-
telligent Real-Time Control Architecture (CIRCA) [12, 13]
provides a constrained agent architecture for time-critical
applications. A CIRCA agent schedules a periodic set of
tasks, where the tasks can gather sensor data, assess whether
the system state requires an associated response, and if so
take the response. The more states and responses the agent
needs to be prepared to take, the less frequently it can do
them all. Clearly, breaking a mission into smaller, simpler
phases is one way to enable real-time responsiveness in each
phase. However, switching policies cannot happen instan-
taneously; while CIRCA is detecting that it should switch
policies and is making the switch, it might not monitor quite
as frequently for events that it should respond to. To pre-
vent missing critical responses, a CIRCA agent could employ
ideas analogous to the Rover example by changing some of
the states in the world to buffer itself from rapid real-time
responses. In the driving domain, for example, long highway
entrance and exit ramps are instances of such modifications
that provide relatively benign states for switching policies.

For these kinds of problems, we associate a cost with mak-
ing a state into one that is conducive to policy switching. If
these costs are calibrated with the costs and rewards associ-
ated with executing policies, then the optimization problem
is to maximize the total expected reward, accounting for the
costs of creating policy-switching states, without predeter-
mining which states or how many there will be.

We call these kinds of MPPs optimization MPPs, which
can also be formulated into MIPs (Eq.8) in a similar manner
as described in Section 4.

max
X

i

X

a

X

k

xk
iaria −

X

i

ciΨi (8)

subject to the following constraints:
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

P
a xk

ja −Pi

P
a pa

ijx
k
ia = αk

jP
k αk

j = αj

X ≥ sup αk
j

αk
j

X
≤ ΨjP

j Ψj ≤ N

xk
ia ≥ 0

Ψj ∈ {0, 1}
k ∈ {1, 2, . . . , N}
other constraints

where ci is the cost of allowing the agent to switch policies
at state i, the objective function

P
i

P
a

P
k xk

iaria−Pi ciΨi

is the total expected reward of the agent minus the cost for
making policy-switching states, and N is the total number
of states.

We now revisit our running example to illustrate how the
above algorithm can be used to solve optimization MPPs.
Let us say that [c1, c2, c3, c4, c5, c6] = [0, 5, 95, 5, 100, 0].

Similarly to Section 4, the optimal policy can be com-
puted by placing Eq.7 into Eq.8. It should be noted that
using different MIP algorithms might lead to different so-
lutions ∆, because the size of the optimal set of policy-
switching states is usually less than N , and so ∆ might con-
tain some meaningless information. For example, if phase
k does not exist (∀i, a xk

ia = 0), then any ∆k = {∆k
a} sat-

isfying
P

a ua∆k
a ≤ ω is possible. Nevertheless, employing

different MIP algorithms cannot change the optimal value
of the objective function since each MIP algorithm attempts
to maximize the same objective function while satisfying the
same list of constraints. The solution using the cplex MIP
solver is

[Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ψ6] = [1, 0, 0, 1, 0, 0]
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

∆1
1, ∆

1
2, ∆

1
3, ∆

1
4, ∆

1
5, ∆

1
6

∆2
1, ∆

2
2, ∆

2
3, ∆

2
4, ∆

2
5, ∆

2
6

∆3
1, ∆

3
2, ∆

3
3, ∆

3
4, ∆

3
5, ∆

3
6

∆4
1, ∆

4
2, ∆

4
3, ∆

4
4, ∆

4
5, ∆

4
6

∆5
1, ∆

5
2, ∆

5
3, ∆

5
4, ∆

5
5, ∆

5
6

∆6
1, ∆

6
2, ∆

6
3, ∆

6
4, ∆

6
5, ∆

6
6

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

=

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

1 0 0 0 0 1
− − − − − −
− − − − − −
1 1 0 0 0 0
− − − − − −
− − − − − −

˛
˛
˛
˛
˛
˛
˛
˛
˛
˛
˛

where ‘-’ indicates meaningless information.
So, the optimal policy in the phase initiated at S1 is [S1 →

a2, S2 → noop, S3 → noop, S5 → noop] and the optimal
policy in the phase initiated at S4 is [S2 → noop, S3 →
noop, S4 → noop, S5 → a6]. The value of the objective
function is 96.96. In comparison with the total expected
reward computed in Section 4, the agent receives a lower
reward because it cannot afford the cost of switching policies
at S3 and S5.

6. EMPIRICAL RESULTS
To this point, we have described a series of increasingly

difficult MPPs and techniques for solving them, using a sim-
ple example to illustrate these ideas. Ultimately, the signifi-
cance of these techniques hinges on their ability to automate
the phasing of increasingly difficult problems, where diffi-
culty can arise along various dimensions. In this section,
we give a preliminary empirical evaluation of our techniques
focusing on problems with a larger and more interconnected
state space, and considering various degrees of agent con-
strainedness.

336

 16

1: −iar

cci :

17
1: −iar

cci :

18
1: −iar

cci :

19
1: −iar

cci :

20
1: −iar

cci :

21
100:iar

cci :

11
1: −iar

cci :

12
1: −iar

cci :

13
1: −iar

cci :

14
1: −iar

cci :

15
100: −iar

cci :

7
1: −iar

cci :

8
1: −iar

cci :

9
1: −iar

cci :

10
100: −iar

cci :

4
1: −iar

cci :

5
1: −iar

cci :

6
100: −iar

cci :

2
1: −iar

cci :

3
100: −iar

cci :

1
1: −iar

0:ic

Figure 3: Experimental setup.

1 2 3 4 5 6 7 8 9 10
−120

−100

−80

−60

−40

−20

0

20

40

the number of states capable of direction actions (ω)

th
e

to
ta

l e
xp

ec
te

d
re

w
ar

d

K=1

K=2

K=3

K=4

K=5

Figure 4: Experimental results (tlim = ∞) for a fixed
number K of policy-switching states, for different
values of K.

Suppose that an agent is situated in the environment
shown in Figure 3. Beginning in the START state S1, it
must choose an action in the space {noop, Up, Left, Down,
Right} at each time step. The mission terminates when the
agent reaches one of the GOAL states {S3, S6, S10, S15, S21}.
The system is stochastic. noop randomly moves the agent to
one of the neighboring states (each direction has probabil-
ity 0.25). Each direction action in the set {Up, Left, Down,
Right} achieves the intended effect with probability 0.75,
moves the agent in either direction perpendicular to the in-
tended direction with probability 0.1, and goes in the op-
posite direction with probability 0.05. Furthermore, if the
agent bumps into a wall, it stays at the same state. The
architecture of the agent is constrained – it can only imple-
ment direction actions in a limited number of states. That
is, for some states, the agent might not be able to imple-
ment direction actions, in which case noop is executed. The
reward ria and the cost ci are shown in Figure 3.

Figure 4 shows the optimal total expected rewards by as-
suming that the number of policy-switching states K is fixed
(where START state S1 is always a policy-switching state).
We can see that breaking the mission into multiple phases
can significantly improve the total expected reward of the

1 2 3 4 5 6 7 8 9 10
−120

−100

−80

−60

−40

−20

0

20

40

the number of states capable of direction actions (ω)

th
e

to
ta

l e
xp

ec
te

d
re

w
ar

d

K=1

K=2

K=3

K=4

K=5

Figure 5: Experimental results (tlim = 100) for a
fixed number of K policy-switching states, for dif-
ferent values of K.

1 2 3 4 5 6 7 8 9 10
−120

−100

−80

−60

−40

−20

0

20

40

c=1

c=4

c=16

c=64

the number of states capable of direction actions (ω)

th
e

to
ta

l e
xp

ec
te

d
re

w
ar

d
m

in
us

 th
e

co
st

 o
f m

ak
in

g
po

lic
y−

sw
itc

hi
ng

 s
ta

te
s

Figure 6: Experimental results (tlim = ∞) for in-
corporating cost c for policy switching, for different
values of c.

1 2 3 4 5 6 7 8 9 10
−120

−100

−80

−60

−40

−20

0

20

40

c=1

c=4

c=16

c=64

the number of states capable of direction actions (ω)

th
e

to
ta

l e
xp

ec
te

d
re

w
ar

d
m

in
us

 th
e

co
st

 o
f m

ak
in

g
po

lic
y−

sw
itc

hi
ng

 s
ta

te
s

Figure 7: Experimental results (tlim = 100s) for in-
corporating cost c for policy switching, for different
values of c.

337

constrained agent, especially when constraints are tightened.
It should be noted that mixed integer programming solvers

become slower in finding the optimal solution as the num-
ber of integer variables increases. That is, when the number
of states or the number of phases is large, the MIP solvers
might need a long time to compute optimal policies. How-
ever, state-of-the-art MIP solvers (such as cplex) are usually
able to return a good solution using much less time. Figure 5
shows the total expected rewards by limiting the computa-
tional time tlim to 100 seconds for each data point.

Experimental results for incorporating cost for policy switch-
ing are shown in Figure 6 (tlim = ∞) and Figure 7 (tlim =
100s), where the number of policy-switching states is unlim-
ited, and c is the cost for making a state (except S1) into
one that is conducive to policy switching. These results il-
lustrate that, given the degree of constrainedness, our algo-
rithms can wisely determine policy-switching states based
upon the cost c so that the total expected reward of the
agent minus the cost for making policy-switching states is
maximized.

7. SUMMARY AND FUTURE WORK
In this paper, we present algorithms for automating the

process of finding and using mission phases for constrained
agents. We analyze several variations of this problem that
correspond to different classes of important constrained-agent
problems, and show through analysis and experiments that
our techniques can increase an agent’s rewards for varying
levels of constraints on the agent and on the phases.

In the future, we plan to work on efficient approximate al-
gorithms since mixed integer programming is NP complete,
which significantly slows down when the number of states or
the number of phases becomes large. We also intend to study
the variance caused by deterministic/randomized choices of
phase policies at policy-switching states. Finally, we aim
to extend our algorithms to multi-agent environments. In
many multi-agent systems, the mission is divided into mul-
tiple phases. At the end of each phase, agents converge to
accomplish some joint task or to coordinate strategies to be
used in the next phase. Designing a multi-agent mission
phasing algorithm is thus also a promising future direction.

8. ACKNOWLEDGEMENTS
This material is based upon work supported in part by

Honeywell International and by the DARPA/IPTO COOR-
DINATORs program and the Air Force Research Labora-
tory under Contract No. FA8750–05–C–0030. The views
and conclusions contained in this document are those of the
authors, and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Govern-
ment.

The authors thank Dmitri Dolgov and three anonymous
reviewers for their helpful suggestions and comments.

9. REFERENCES
[1] E. Altman. Constrained Markov decision processes

with total cost criteria: Lagrange approach and dual
LP. Methods and Models in Operations Research,
48:387–417, 1998.

[2] E. Altman. Constrained Markov Decision Processes.
Chapman and HALL/CRC, New York, 1999.

[3] A. Bockmayr and Y. Dimopolous. Mixed integer
programming models for planning problems. In CP’98
Workshop on Constraint Problem Reformulation, 1998.

[4] W. Cook, W. Cunningham, W. Pulleyblank, and
A. Schrijver. Combinatorial Optimization. John Wiley
& Sons, New York, 1998.

[5] D. A. Dolgov and E. H. Durfee. Constructing optimal
policies for agents with constrained architectures.
Technical Report CSE-TR-476-03, University of
Michigan, 2003.

[6] D. A. Dolgov and E. H. Durfee. Constructing optimal
policies for agents with constrained architectures
(abstract). In Proceedings of the Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 974–975, 2003.

[7] E. Feinberg. Constrained discounted Markov decision
processes and Hamiltonian cycles. Mathematics of
Operations Research, 25:130–140, 2000.

[8] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean,
and C. Boutilier. Hierarchical solution of Markov
decision processes using macro-actions. In Proceedings
of Uncertainty in Artificial Intelligence, pages
220–229, 1998.

[9] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered
landmarks in planning. Journal of Artificial
Intelligence Research, 22:215–278, 2004.

[10] L. Kallenberg. Linear programming and finite
Markovian control problems. Mathematisch Centrum,
Amsterdam, 1983.

[11] H. Kautz and J. Walser. Integer optimization models
of AI planning problems. Knowledge Engineering
Review, 15(1):101–117, 2000.

[12] D. J. Musliner, E. H. Durfee, and K. G. Shin. CIRCA:
A cooperative intelligent real time control
architecture. IEEE Transactions on Systems, Man,
and Cybernetics, 23(6):1561–1574, 1993.

[13] D. J. Musliner, E. H. Durfee, and K. G. Shin. World
modeling for the dynamic construction of real-time
control plans. Artificial Intelligence, 74(1):83–127,
1995.

[14] R. Parr. Flexible decomposition algorithms for weakly
coupled Markov decision problems. In Proceedings of
Uncertainty in Artificial Intelligence, pages 422–430,
1998.

[15] J. Porteous, L. Sebastia, and J. Hoffmann. On the
extraction, ordering, and usage of landmarks in
planning. In Proceedings of the 6th European
Conference on Planning (ECP 01), pages 37–48, 2001.

[16] M. L. Puterman. Markov Decision Processes. John
Wiley & Sons, New York, 1994.

[17] P. van Beek and X. Chen. CPlan: A constraint
programming approach to planning. In Proceedings of
National Conference on Artificial Intelligence, pages
585–590, 1999.

[18] T. Vossen, M. Ball, A. Lotem, and D. Nau. On the use
of integer programming models in AI planning. In
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, Stockholm,
Sweden, pages 304–309, 1999.

[19] L. A. Wolsey. Integer Programming. John Wiley &
Sons, New York, 1998.

338

