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ABSTRACT
We propose an enhanced mechanism for selecting partners
for multi-attribute negotiation. The mechanism employs
possibilistic case-based reasoning. The possibility of suc-
cessful negotiation for each potential partner is predicted on
the basis of its behaviour in previous multi-attribute nego-
tiations. The qualitative expected utility for each potential
partner is derived and the agents are ordered according to
the values of these utilities. The order determines who is
more and who is less desirable partner for negotiation. The
proposed approach allows choosing the most prospective ne-
gotiation partners based on small sample of historical cases
of previous interactions even if the previous situations are
different from the current one. A simple example of calcula-
tions is presented to demonstrate the proposed approach.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning, Problem Solving

General Terms
Algorithms, Theory

Keywords
possibility theory, case-based reasoning

1. INTRODUCTION
Negotiation can be considered as a distributed search

through a space of potential agreements and finally coming
to mutually acceptable agreement on some object [9]. The
object that is the topic of negotiation can be multidimen-
sional in the sense that it is described by a sequence of val-
ues corresponding to its different attributes. The knowledge
of negotiation agents may be limited or uncertain and the
preferences of agents may be conflicting. There are several
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applications of automated negotiation such as: task distri-
bution, resources sharing, service composition and coalition
formation. If a number of candidates for interaction part-
ners that offer some services is small the negotiation can be
carried out with all of them and the best agreement can be
chosen or compound agreement may be derived to best sat-
isfy negotiation objectives (e.g. maximal payoff)(e.g. [11],
[10]). However, when a number of potential partners is large
then performing negotiation with all of them may be expen-
sive in terms of computational time and resources, or even
may be impractical, especially in an open dynamic envi-
ronment. An appropriate approach can be to choose from
a large set of agents some subset of partners with a high
chance of reaching a good agreement in subsequent negotia-
tion. Such a selection mechanism is very important because
of practicality and efficiency of multi-agent system interac-
tions.

The most prospective partners selection resembles a prob-
lem of coalition formation widely studied in game theory and
multi-agent interactions. However, the coalition formation
problems focus mainly on the decision making models to
determine the optimal coalition structure and the division
of payoff, with a little devotion to the negotiation partner
selection problem. Banerjee and Sen [1] consider a situation
where an agent has to choose which partnership to join for a
fixed number of interactions. It is assumed that an agent has
a model of the likelihood of different outcomes in the form
of a probability distribution and the corresponding utility
of each partnership. The classical probabilistic decision the-
ory is applied in that approach to calculate the probabilistic
expected utility that is the basis for selecting the optimal
partnership to join. This approach requires probability dis-
tribution that models the likelihood of a particular outcome.
To construct such distribution a considerable history of re-
peated interactions is required. The authors also make a
strong assumption that the payoff structure for the partner-
ship is available. Fatima et al [5] also mention the problem
of agents selection for negotiation. The authors study the
influence of an amount of information about a negotiation
partner on the negotiation equilibrium. Assuming specific
types of strategies they consider possible outcomes of nego-
tiation based on what information about the opposing agent
is available. If there is enough information about the nego-
tiation partner the negotiation outcome may be estimated
and more predictable agent can be selected for negotiation.
Also, the above approaches, do not take into account multi-
attribute behaviour of the agents.

273



In [2] the authors propose partners selection mechanism
for single attribute negotiation. They consider a situation
where the utility function is specified for the whole system of
potential partners. In this paper we extend this approach to
multi-attribute negotiation and consider situation were each
agent is modelled separately and the utility function is also
specified for each agent separately. The proposed approach
is based on multidimensional possibilistic case-based reason-
ing. It employs the principles of possibility based decision
theory [3]. The approach allows predicting the possibility
of successful negotiation with a particular agent based on
its past negotiation behaviour involving multiple attributes.
Such possibility is determined for each potential partner and
the qualitative expected utility over multi-attribute decision
space is derived. The order of potential negotiation partners
is constructed from best to worst based on the order of the
expected utilities. This method does not assume any par-
ticular payoff structure and allows selecting agents based
on small sample of historical cases of previous negotiations
even if the previous situations are different from the cur-
rent one. There is some similarity in deriving possibility
distribution for a potential partner with construction of the
distribution for choosing an appropriate bidding strategy for
an agent participating in auction [6][7]. However that appli-
cation is completely different because the possibility based
case-based reasoning is used for determining the successful
single attribute bid [6][7].

The remainder of the paper is organized as follows. Sec-
tion 2 briefly presents some preliminaries including the prob-
lem outline and the principles of possibility-based decision
theory. The possibilistic case-based decision model of the
case-based reasoning for ordering two negotiation partners
each with two attributes is detailed in Section 3. Illustra-
tive example of calculations for the two agents with two at-
tributes is presented in Section 4. Finally, Section 5 presents
the generalization of the model to multi-attribute multi-
agent ordering, and the conclusions and future work are
presented in Section 6.

2. PRELIMINARIES

2.1 Problem outline and approach
The main agent (contractor) has a task to compose its

service by a means of negotiation with a number of poten-
tial partner agents that offer different service characterised
by multiple attributes. We consider the problem of select-
ing most prospective provider agents from a set of potential
partners for the subsequent negotiation. The main contrac-
tor has to minimize the number of chosen agents simultane-
ously maximizing its utility. To be able to do this it has to
predict their likelihood towards agreement during potential
negotiation. The prediction can be based on the history of
previous negotiations and the use of possibility theory [3].
The agent performs case-based reasoning that uses a pos-
sibilistic reasoning rule stating that: ”the more similar are
situations the more possible that the outcomes are similar”.
This approach is suitable in situations when the number of
previous cases is small in opposite to the statistical approach
that requires vast history. In addition it allows for select-
ing partners for multi-attribute negotiation. The case-based
reasoning is used here because every case is a pair of situ-
ation and outcome and the situation has a big influence on
the outcome. The possibility theory is also an appropriate

tool because of its qualitative nature. The agent has to rely
on the quality of the cases and not on the quantity as the
probabilistic apporaches. In a situation of multiple identi-
cal cases they reveal the same information and therefore the
quantity is not so important. The quality of a case is deter-
mined by its similarity to current situation and is therefore
more informative in situations of sparse and non-indentical
cases.

2.2 Possibility based Decision Theory
Let X = {x1, x2, . . . , xp} be set of situations. We have

incomplete knowledge about what is the actual situation
after making decision d. This uncertainty about the actual
situation may be represented by possibility distribution πd

[3]. The function πd maps the set X to some linear valuation
scale V

πd : X → V

We will assume that V is bounded: sup(V ) = 1 and
inf(V ) = 0. The utility function u encodes preferences over
a set of outcomes X by assigning to each xi a degree of
preference

u : X → U

Similarly, sup(U) = 1 and inf(U) = 0. It is commonly as-
sumed that U = V [8]. The choice of an appropriate decision
is equivalent to determining which possibility distribution
value of some functional U is the highest. If an inequality
holds: U(πd) ≤ U(πd′) then decision d′ is preferred over a
decision d (d ¹ d′). The most popular definitions of the
functional U are optimistic and pessimistic criteria defined
as follows:

QU+(π|u) = maxx∈Xmin(π(x), u(x))

QU−(π|u) = minx∈Xmax(1− π(x), u(x))

QU−(π|u) and QU+(π|u) are also called the possibility and
neccesity measures, respectively [8].

3. POSSIBILISTIC CASE-BASED
DECISION MODEL WITH MULTIPLE
ATTRIBUTES

To apply the notion of a qualitative expected utility we
need to construct a possibility distribution over the multi-
attribute decision space describing the possibility of success-
ful negotiation with each of the agents providing components
and to specify the utility function of the main contractor.
The issues of negotiation are multiple attributes of services
(objects) offered by the agents - providers. For the sake of
simplicity let consider the main agent negotiates with two
other agents over two attributes (the generalized case of mul-
tiple agents and multiple attributes will be considered later
in this paper). For example the attributes under negotiation
may be the availability and price. In the paper we consider
all attributes rescaled to an interval [0, 1]. Let (at

1, p
t
1, a

t
2, p

t
2)

denote the negotiation outcome requirement of the main
agent in a situation t where at

j ∈ [0, 1] is the requirement of
a value of the first attribute from an agent j and pt

j ∈ [0, 1]
is the requirement of a value of the second attribute from
an agent j. Therefore, our decision space is a cartesian
product defined by a hypercube [0, 1]× [0, 1]× [0, 1]× [0, 1].
Each stored historical case i is a pair of the situation si and
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the outcome oi. Every situation consists of eight values:
si = (ai

1, p
t
1, a

i
2, p

i
2, c0, c1, c2, c3) and every outcome consists

of four values oi = (∆ai
1, ∆ai

2, ∆pi
1, ∆pi

2) where:

• ai
1, p

i
1 is the initial first and second attribute require-

ment of the main agent in the i-th negotiation with
the first agent

• ai
2, p

i
2 is the initial first and second attribute require-

ment of the main agent in the i-th negotiation with
the second agent

• ci
0, c

i
1, c

i
2, c

i
3 parameters specifying main agent’s utility

function during the i-th negotiation

• ∆ai
1, ∆pi

1 values of the first and second attribute agree-
ments after the i-th negotiation with the first agent

• ∆ai
2, ∆pi

2 values of the first and second attribute agree-
ments after the i-th negotiation with the second agent

The main contractor’s utility function may for example be
defined as a weighted sum of two utilities:

ν(x, y) = w1ν1(x) + w2ν2(y)

The utility function νk specifies the preferences about the
value of kth attribute obtained from the agent and may for
example have a form:

νk(x) = p(x)

The function p is a monotone function and its monotonicity
depends on a character of the attribute. In a case of the
availability it is increasing and may be defined as follows:

p(x) =





1 if x > ct
1

x−ct
0

ct
1−ct

0
if ct

0 ≤ x ≤ ct
1

0 if x < ct
0

For our calculations we assume that a history Ht of some
t− 1 negotiations is given as follows:

Ht−1 = {ri = (si, oi); i ≤ t− 1}
An example of a history is presented in Table 1.

We reason about the current behaviour of a potential part-
ner based on its previous behaviour. Therefore the core of
our model is a possibilistic principle: ”the more similar are
the situation description attributes, the more possible that
the outcome attributes are similar”. We predict the possi-
bility of successful negotiation based on the historical data
in a form of the possibility distribution µt(y):

µt(y) = Max(si,oi)∈Ht−1S(si, st)⊗ P (oi, y) (1)

where S and P are similarity relations [4] comparing situ-
ations and outcomes, respectively. ⊗ is a t-norm [4] which
can be defined: a ⊗ b = Min(a, b). In a case of such at-
tributes like the availability or price there is an additional
condition that should be satisfied. If we predict that an
agent agrees on some level of availability with some degree
of possibility it should also be able to agree on every smaller
level of this attribute with at least the same degree of pos-
sibility. For the price it is reverse, if an agent agrees to
sell a service for a price p with some degree of possibility
it is assumed that it will agree on every higher price with
at least the same degree of possibility. Therefore we need

to perform some modification of the function obtained by
formula (1). The modification will be described later. The
function before modification will be called a density of pos-
sibility distribution and function after modification will be
called a possibility distribution.

3.1 Case-based reasoning
We consider a situation in which there are no correla-

tions between agents - providers. For each agent separately
the possibility distribution describing the possibility of suc-
cessful negotiation is calculated. For sake of simplicity we
consider a case with two agents and two attributes. After
applying the possibilistic principle for the first agent A1 we
obtain a density function:

µt
1(x1, y1) = Max(si,oi)∈Ht−1

S((ai
1, p

i
1, c

i
0, c

i
1, c

i
2, c

i
3), (a

t
1, p

i
1, c

t
0, c

t
1, c

i
2, c

i
3))

⊗P (∆ai
1, ∆pi

1, x1, y1)

Analogously for the second agent A2:

µt
2(x2, y2) = Max(si,oi)∈Ht−1

S((ai
2, p

i
2, c

i
0, c

i
1, c

i
2, c

i
3), (a

t
2, p

i
2, c

t
0, c

t
1, c

i
2, c

i
3))

⊗P (∆ai
2, ∆pi

2, x2, y2)

Because of two attributes the functions are two dimensional
and the decision space for each agent is a square: [0, 1] ×
[0, 1]. Below we give a full description of calculations of the
distributions. First we discretize the decision space for the
first and second agents. We specify the number of m discrete
points for the first attribute interval of the first agent and
number of points q for the second attribute interval of the
first agent. Analogous discretization is done for the decision
space of the second agent.

• Agent A1,

– first attribute: ηk ∈ {η1, η2, . . . , ηm} ⊂ [0, 1]

– second attribute: κl ∈ {κ1, κ2, . . . , κq} ⊂ [0, 1]

• Agent A2,

– first attribute: θk ∈ {θ1, θ2, . . . , θp} ⊂ [0, 1]

– second attribute: λl ∈ {λ1, λ2, . . . , λn} ⊂ [0, 1]

The corresponding discrete decision spaces are defined as
follows:

• Agent A1: (ηk, κl) ∈
{η1, η2, . . . , ηm} × {κ1, κ2, . . . , κq} ⊂ [0, 1]2

• Agent A2: (θk, λl) ∈
{θ1, θ2, . . . , θp} × {λ1, λ2, . . . , λn} ⊂ [0, 1]2

Now we calculate a matrix P i
1 = P1(∆ai

1, ∆pi
1) for the out-

come (∆ai
1, ∆pi

1) of every situation i in the history corre-
sponding to the first agent as follows:

P i
1 = P1(∆ai

1, ∆pi
1) = [P (∆ai

1, ∆pi
1, ηk, κl)]k≤m,l≤q

This calculations can be done iteratively, i.e. every P i
1 can

be calculated as a auxiliary vector after negotiation number
i. Analogically we calculate the vector P i

2 = P2(∆ai
2, ∆pi

2)
corresponding to the second agent:

P i
2 = P2(∆ai

2, ∆pi
2) = [P (∆ai

2, ∆pi
2, θk, λl)]k≤p,l≤n
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Table 1: Example of history with five cases and the current situation
i si oi

ai
1 pi

1 ai
2 pi

2 ci
0 ci

1 ci
2 ci

3 ∆ai
1 ∆pi

1 ∆ai
2 ∆pi

2

1 0.9 0.4 0.8 0.4 0.2 0.6 0.4 1 0.45 0.4 0.6 0.65
2 0.6 0.4 0.6 0.3 0.35 0.5 0.3 0.9 0.5 0.5 0.4 0.4
3 0.75 0.45 0.6 0.4 0.25 0.7 0.2 1 0.5 0.5 0.5 0.55
4 0.95 0.5 0.97 0.5 0.5 0.8 0.7 0.9 0.7 0.6 0.8 0.6
5 0.9 0.4 0.8 0.4 0.2 0.6 0.4 1 0.7 0.5 0.3 0.4

t 0.9 0.4 0.8 0.4 0.2 0.6 0.4 1

where P is the similarity relation. Having the sequences of
auxiliary matrices: {P i

1}i≤t−1 and {P i
2}i≤t−1 we calculate

for our current situation si = (ai
1, p

i
1, a

i
2, p

i
2, c

i
0, c

i
1, c

i
2, c

i
3) the

sequences of comparisons with all situations in the history
for the first agent:

{Si
1}i≤t−1 =

{S((ai
1, p

i
1, c

i
0, c

i
1, c

i
2, c

i
3), (a

t
1, p

t
1, c

t
0, c

t
1, c

t
2, c

t
3))}i≤t−1

and for the second one:

{Si
2}i≤t−1 =

{S((ai
2, p

i
2, c

i
0, c

i
1, c

i
2, c

i
3), (a

t
2, p

t
2, c

t
0, c

t
1, c

t
2, c

t
3))}i≤t−1

Having the sequence of vectors P i
1 and the sequence of values

Si
1 we now make an aggregation Si

1 ⊗ P i
1 for every i ≤ t− 1

as follows:

Si
1 ⊗ P i

1 = [Si ⊗ P ((∆ai
1, ∆pi

1), (ηk, κl))]k≤m,l≤q

The same for the second agent:

Si
2 ⊗ P i

2 = [Si ⊗ P ((∆ai
2, ∆pi

2), (θk, λl))]k≤p,l≤n

The matrices are calculated for every case i in the history
Ht−1. After obtaining all the matrices we can finaly calcu-
late the functions µt

1 and µt
2 by aggregating all the vectors

(for sake of notation simplicity we state only i instead of
(si, oi)):

µt
1 = [µt

1(ηk, κl)]k≤m,l≤q =

= [MaxiS
i
1 ⊗ P (∆ai

1, ∆pi
1, ηk, κl)]k≤m,l≤q

The same for the function µt
2 corresponding to the second

agent:

µt
2 = [µt

2(θk, λl)]k≤p,l≤n =

= [MaxiS
i
2 ⊗ P (∆ai

2, ∆pi
2, θk, λl)]k≤p,l≤n

The functions µt
1 and µt

2 are called densities of possibility
distributions. These functions are predictions about the like-
lihood of the agents to agree on some levels of the attributes.
The obtained functions may also be expressed in the form
of a possibility measure Π as follows:

Π({ot
j}) = Π({∆ai

j , ∆pi
j}) = µt

j(∆ai
j , ∆pi

j)

The specific feature of an increasing attribute like the avail-
ability is that if an agent agrees on some value of the at-
tribute with a level of satisfaction α it should also agree on
every higher value with a level of satisfaction at least α. In
case of price it is reverse because the price attribute is de-
creasing. Therefore, we can modify the function µt

j for each
agent-j in order to obtain function πt

j that is monotone in
the sense of Pareto order. The new functions πt

j are called

possibility distributions and can be obtained through the
following transformation for both agents:

πt
1(o

t
1) = Π([∆at

1, 1]× [0, ∆pt
1]) =

= sup{µt
2(ηk, κl) | ηk ≥ ∆at

1, κl ≤ ∆pt
1} =

= sup{sup{µt
1(ηk, κl) ηk ≥ ∆at

1}κl ≤ ∆pt
1}

πt
2(o

t
2) = Π([∆at

2, 1]× [0, ∆pt
2]) =

= sup{µt
2(ηk, κl) | ηk ≥ ∆at

2, κl ≤ ∆pt
2} =

= sup{sup{µt
2(ηk, κl) ηk ≥ ∆at

2}κl ≤ ∆pt
2}

Having the possibility distribution of each potential partner
we can calculate the possibilistic expected utility for each
of them. The expected utility is the predicted level of sat-
isfaction of an agreement in potential negotiation for both
sides. The expected utility is derived by aggregation of the
possibility distribution π and utility function ν as follows:

e1 = Max(x1,y1)∈[0,1]2πt
1(x1, y1)⊗ νt(x1, y1)

e2 = Max(x2,y2)∈[0,1]2πt
2(x2, y2)⊗ νt(x2, y2)

The higher the value of ej the higher chance of succcesful
negotiation with an agent j. Therefore, if e1 < e2 than the
negotiation with the second agent is more beneficial than
with the first one. Later, we will generalize this criterion to
a multi-agent and multi-attribute scenario.

4. EXAMPLE OF CALCULATIONS
Now we present sample calculations for the data from Ta-

ble 1. The Figure 1 presents results for the first agent. Our
current case is (at

1, p
t
1, c

t
0, c

t
1, c

t
2, c

t
3) = (0.9, 0.4, 0.2, 0.6, 0.4, 1).

In Table 1 we can observe the full similarity between this
case and two cases in the history: s1 and s5. The outcomes
of these cases are respectively: (∆a1

1, ∆p1
1) = (0.45, 0.4) and

(∆a5
1, ∆p5

1) = (0.7, 0.5). Therefore, in these points the den-
sity function reaches the maximal value 1. The similarity to
other situations in the history is weaker but it is still visi-
ble in the graph and the matrix that around points (0.5, 0.5)
and (0.7, 0.6) the values of the function are quite high reach-
ing a value 0.6. That is because these points are outcomes
of other situations in the history: s2, s3 and s4 that have
degrees of similarity to the current situation equal to 0.6.
Figure 1 also presents the possibility distribution obtained
by transformation of the density function. Figure 2 presents
the results for the second agent. The current situation for
this agent is (at

2, p
t
2, c

t
0, c

t
1, c

t
2, c

t
3) = (0.8, 0.4, 0.2, 0.6, 0.4, 1).

In this case we can also observe two strong maxima reaching
a value 1 for points (0.6, 0.65) and (0.3, 0.4). That is because
these points are outcomes of the situations s1 and s5 that
are again fully similar to our current situation. The density
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Figure 1: Density of possibility distribution for the
first agent and its possibility distribution

function reaches value 0.6 around the point (0.5, 0.55) that
is the outcome of the situation s3. The reason for that is of
course similarity of the current situation and s3 at a level
0.6. In an area of the point (0.8, 0.6) the density function
reaches value 0.4 that is caused by a weak but still visible
similarity of the current situation and the situation s4 that
has the outcome (0.8, 0.6). The possibility distributions of
both agents have to be aggregated with utility function in
order to calculate the expected utilities. Figure 3 present
the possibility distribution of the first agent aggregated with
the utility function using a T-norm: ⊗ = min. We need to
calculate the values of the expected utilities that are de-
scribed by formulas:

e1 = Max(x1,y1)∈[0,1]2πt
1(x1, y1)⊗ νt(x1, y1)

e2 = Max(x1,y1)∈[0,1]2πt
2(x1, y1)⊗ νt(x1, y1)

We can see from Figure 3 that the highest value reached
by the function π ⊗ ν is 0.92. Therefore, e1 = 0.92. From
Figure 4 we can read the value of the expected utility for
the second agent that is 0.8. Therefore, e2 = 0.8. Because
e1 > e2 the chance of a successful agreement with the first
agent is higher then with the second one.
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Figure 2: Density of possibility distribution for the
second agent and its possibility distribution

5. GENERALIZED MULTI-ATTRIBUTE
CASE

In this section we generalize the selection of most prospec-
tive agents for the multi-agent and multi-attribute system.
Using the notion of qualitative expected utility we order the
set of candidates for negotiation A1, A2, . . . , An. In this case
we have h attributes. The utility function is specified over
a set of these h attributes and for example can be calcu-
lated as a weighted sum of the utilities νk for the particular
attributes as follows:

ν(z1, z2, . . . , zh) = w1ν1(z1) + w2ν2(z2) + · · ·+ whνh(zh)

For each of n agents we construct a h dimensional density
distribution function µj by case-based reasoning and trans-
form it to a possibility distribution πj . As previously each
historical case i consists of a situation s̄i and an outcome ōi.
In a multi-attribute scenario the situation i and the outcome
i for the specific agent j have a form:

s̄ij = (aij
1 , aij

2 , . . . , aij
h , cij

0 , cij
1 , . . . , cij

2h−1)

ōij = (∆aij
1 , ∆aij

2 , . . . , ∆aij
h )
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Figure 3: The function π1 ⊗ ν
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Figure 4: The function π2 ⊗ ν

The function µt
j is obtained:

µt
j(v1, v2, . . . , vh) = Max(s̄ij ,ōij)∈Ht−1S(s̄ij , s̄tj)

⊗ P (ōij , (v1, v2, . . . , vh))

then it is tranformed to πt
j

πt
j(z1, z2, . . . , zh) = sup(z1,z2,...,zh)¹(v1,v2...,vh)

µt
j(v1, v2, . . . , vh)

where ¹ is the Pareto order over a decision space. For each
agent we calculate the possibilistic expected utility as fol-
lows:

ej = Max(z1,z2,...,zn)∈[0,1]hπt
j(z1, z2, . . . , zh)

⊗ νt(z1, z2, . . . , zh)

We obtain a sequence of the expected utilities
(e1, e2, . . . , en). The ordering of these values from the high-
est to the lowest gives us an appropriate ordering of the
prospective agents. The further in the order the agent stands

the less beneficial is the negotiation with it according to our
prediction.

6. CONCLUSIONS AND FUTURE WORK
The possibility based case-based reasoning allows con-

structing the prediction about agent’s behaviour in potential
multi-attribute negotiation in a form of the possibility dis-
tribution. It can be derived from a history of previous in-
teractions. The constructed distribution is used to calculate
the chance of a successful agreement in a form of the ex-
pected utility. This approach gives us finally ordering of the
potential partners. The ordering tells with whom to nego-
tiate first and with whom later. In our future work we will
consider some variations of our model allowing to model the
whole system of agents with one joint possibility distribu-
tion. Such approach is useful in situations where the utility
is specified for the whole system of agents and there are
some dependencies among agents. Our future work will also
include integration the selecting agents component with the
rest of a framework currently build for discovery and negoti-
ation of composite service executions. We will also test the
component with different parameters of similarity relations.
The optimization of these parameters may be required. The
future work will also inlcude the problem of computational
complexity.
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