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ABSTRACT
This paper deals with a new approach to build a completely dis-
tributed and decentralized Intrusion Detection and Response Sys-
tem (IDRS) in computer networks. This approach is called In-
trusion Detection and Response executed with Agent Mobility or
IDReAM for short. Conceptually, IDReAM combines Mobile Ag-
ents (MAs) with self-organizing paradigms inspired by natural life
systems. The Intrusion Detection System (IDS) borrows mecha-
nisms from the immune system that protect the human body against
external aggressions. The Intrusion Response System (IRS) bor-
rows mechanisms from the stigmergic paradigm of a colony of ants.
The two natural systems exhibit a social life by the organization of
their entities (immune cells and ants) which is not possible with-
out the functionality of mobility. Thus, in a natural way, MAs are
good candidates to provide this property of mobility. After hav-
ing presented IDReAM’s conceptual model in a previous paper,
the present paper concretely describes IDReAM’s architecture and
the corresponding implementation based on the conceptual model.
The implementation is carried out with J-Seal2, a pure Java MA
platform. This paper also provides IDReAM’s assessment in term
of resource consumption and intrusion detection and intrusion re-
sponse efficiency.

Categories and Subject Descriptors
C.2.4 - D.4.6 - D.4.7 - K.6.5

General Terms
Security

Keywords
Mobile Agents, Intrusion Detection and Response

1. INTRODUCTION AND MOTIVATION
The advent of large-scale open networks and the recent emer-

gence of distributed systems enable cooperative entities to perform
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intrusions in a more effective scenario, targeting the attack on sev-
eral machines through several links. This trend in distributed intru-
sions led to the consideration some adaptation of the Intrusion De-
tection Systems (IDSs) to circumvent new intrusive behaviors and
to adapt them to the new network orientation because in such new
context traditional security mechanisms demonstrated severe weak-
nesses. One of the principal weaknesses of the protection systems
is the lack of robustness inherent in their centralized nature. Even
though most of the existing IDSs use distributed data collection
(host-based or network-based), many of them continue to perform
data analysis centrally, thereby limiting scalability. Moreover, even
if the IDS is distributed in the network, its deployed elements gen-
erally remain static. With the means available to modern attackers,
such as automated intrusion tools, these static elements are easily
accessible, making the protection system itself an easy target of
attacks. Unfortunately, system administrators cannot always react
to frequent intrusion alerts within adequate time limits. Therefore,
the need of efficient response tools is also crucial; however, the ma-
jority of IDSs that also deal with response possess static response
components, insufficient to respond to distant attacks. Moreover,
frequently the responses provided with current Intrusion Response
Systems (IRSs) exhibit a lack of flexibility which can have a nega-
tive effect on the system to be protected. An example given in [15],
is the changes of firewall rules which do not only defend against the
detected attack but may also block legitimate user access or stop le-
gitimate services. However, to date, only a few investigations have
been undertaken to develop dynamic and flexible response systems.
Thus automatic IRSs have to take over this task.
Obviously, many issues should still be solved when dealing with
Intrusion Detection (ID) and Intrusion Response (IR); we are try-
ing to use new techniques and solutions to solve some of them.
Notably, we propose a new Intrusion Detection and Response Sys-
tem (IDRS) called Intrusion Detection and Response executed with
Agent Mobility or IDReAM for short. The Mobile Agents (MAs)
are envisioned as a solution to build a distributed IDRS with a high
dynamics. To our understanding, a MA is a piece of software that
is first autonomous because it exercises control over its own ac-
tions. It owns its own execution code and some resources such
as its own data. It can move during its execution to use resources
located at another place of the network or to execute at a remote lo-
cation. IDReAM is embodied in a population of MAs1 in perpetual
movement whose furtiveness and dynamics make it more reliable.
Less occupied by its own protection, the IDRS is more available
to protect the network. In fact, several other motivations led us to

1IDReAM is implemented with J-Seal 2 which allows weak mobil-
ity only. See section 3.1
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use MAs. Among them are the fact that MAs impose a relatively
low resource overhead in the host and the hope that these small
software entities will be able to execute in near real-time, which is
highly desirable for ID and IR. Also, their dispersion through the
network makes the IDRS as a whole more resistant to attacks and to
automated tools. Regarding the response task, MAs as autonomous
entities are good candidates to perform automatic responses. But
MAs don’t have a global vision of the network activity each time;
hence ID and IR could be more difficult. Each MA is responsi-
ble for sensoring, independently from the others MAs, the part of
the network that it is currently visiting. The cooperation between
agents is inspired by the cooperative behaviors found in natural life
systems. More precisely it is inspired by the mechanisms of self-
organization because, one way to act autonomously while main-
taining a global coordinated task is what self-organizing natural
systems achieve.
The next section contains related works to agent-based approach
for ID. Section 3 describes IDReAM’s architecture and implemen-
tation. Section 4 evaluates IDReAM in term of resource consump-
tion and protection system. Section 5 draws the conclusion.

2. RELATED WORKS
Several research works have been achieved in IDRSs. To date,

only a few investigations have been undertaken to develop MA-
based IDRSs even though MA technology seems to exhibit good
properties for that: light-weight entities can react rapidly; moving
entities can react at different locations. Wayne Jansen [9] followed
by Stefano Martino [10], acted as a precursor to devote a popula-
tion of MAs to the system’s protection. In [9], he explored new re-
search ways and new paradigms to use MA technology to enhance
existing IDRSs. (AAFID) [14] proposed in 1998 an agent-based
approach where the key idea is to involve many small co-operating
autonomous agents2 whose responsibility is hierarchically decom-
posed instead of a single large IDS. Each agent, dispatched to a
host, monitors a small aspect (thus, a small quantity) of the traf-
fic and collaborates with the other agents to detect intrusion: if an
agent believes that there is a suspicious activity, it notifies the other
agents in the hierarchy about this by sending a suspicion broadcast.
Each broadcast about the same possible intrusion raises a suspi-
cion level. After several suspicion broadcasts about the same pos-
sible intrusion, the suspicion level can exceed a pre-defined thresh-
old and engage an alert. IDReAM is basically and conceptually
different from AAFID because it does not have any hierarchy. In
IDReAM, all MAs are at the same level and they notify other MAs
about a suspicious activity by depositing in the nodes they visit any
information related to this activity. This is made possible thanks
to the mobility which is not present in AAFID. More recently, [13]
proposes a new version of AAFID (namely AAFID 3) by adding
mobility; however, the heavy hierarchical structure is maintained,
which is a weakness because if one function of the hierarchy is
compromised, the entire IDS could be compromised. IDReAM
avoids overly strong hierarchical operations. Each operation should
stay simple and each MA is rather specific to one type of detection
or response. The MAs collaborate through the environment to ac-
complish the global protection task.
Another approach called MICAEL [11] extended the idea of Cros-
bie and Spafford to use autonomous agents for ID, by adding mo-
bility. Actually, the majority of the agents are rather static during
a normal processing of the IDS and the mobility is mainly used to

2AAFID is based on Crosbie and Spafford’s work [3] who previ-
ously defined an autonomous agent as a lightweight program that
observes only one small aspect of the overall system.

periodically check the integrity of the other active static agents; a
Headquarter centralizes and controls all the agents and can escape
from its location if the hosting resources decrease or if the host is
infested. Moreover, even if the data analysis is distributed among
the static agents located at different hosts, the correlation between
the different analyses also seems to be centralized on the Headquar-
ter. Like IDReAM, MICAEL tries to prevent the protection system
from being itself the target of an intrusion. In both cases, MAs
are used for that. However, in IDReAM the MAs are in perpetual
movement which increases their furtiveness whereas in MICAEL
the mobility is used only when it is specifically required to check
the agent’s integrity.
A recent interesting approach proposed in [12] is quite close to ours
because it also uses collaborating MAs for providing the ID and IR.
One of the major issues of [12] is to avoid any central coordination
and static hierarchical architecture. This IDS uses a peer-to-peer
solution where MAs periodically dispatched from each site look
for suspicious activities in their neighborhood and report back. But
at each site the analysis is accomplished by a static agent called De-
tective that coordinates the MAs and correlates the different reports
received from the previously sent MAs. In IDReAM, every dis-
patched MA walks randomly between the different nodes and the
correlation between the collected information is due to the deposits
made by previous MAs in the current node. In [12], the response
task is based on an auction mechanism where each neighbor of the
suspected site takes part in deciding if the action should be handled
or not. This auction mechanism seems particularly heavy and could
slow the response process.
[1] developed a method to trace intruders using MAs. MAs au-
tonomously migrate to target systems to collect only information
related to intrusions, eliminating the need to transfer useless sys-
tem logs to the analyzer server. In each network segment, a man-
ager dispatches a tracing MA to the target system which activates
an information-gathering MA. This latter MA collects evidence
about the intrusion on the target system and returns to the man-
ager, whereas the first tracing MA migrates to another site in an
effort to trace the path of the intrusion and identify its point of ori-
gin. The major difference with IDReAM is the existence of one
manager per network segment which analyzes reports made by the
information MAs in order to make a decision. This also constitutes
a major weakness because the decision about potential intrusion is
centralized. One similarity with IDReAM is the information left
by each tracing agent on a so-called message board on each target
system. The current tracing agent refers to this message board to
see if its trace has already been followed by another tracing agent
and to decide where to go.
In [4], Serge Fenet studied the social insect foraging behavior for
distributed applications. He took as a case study the ID applica-
tion and he also investigated how to use MAs to detect and re-
spond to attacks. His approach is quite similar to ours since the
behavior of MAs is also inspired by self-organizing ants. In [4]
the MAs also refer to pheromonal information centralized in a so-
called pheromone server3. This information is not diffused, and
here again the weakness of the approach is the pheromone server
the MAs have to refer to in order to get intrusion information. This
approach is not totally distributed even if MAs are completely dis-
patched in the network.
Apart from these agent-based approaches, we also relate to the Co-
operative Security Managers (CSM) [16] because rather early its
creators proposed a completely distributed architecture based on

3A pheromone server plays the role of a communication interface
between MAs and their hosts. The pheromone server gathers all
the information deposited locally by MAs on the host they visited.
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a cooperation model between the hosts housing local IDSs. The
collaboration is done through direct exchange of information about
users moving through the network. This allows the tracing of the
users; however, CSM does not use any agent-based approach and
does not take advantage of the mobility.

3. ARCHITECTURE AND IMPLEMENTA-
TION

To summarize, IDReAM’s conceptual model, described in [6]
and [5], borrows some functionalities that are found in natural life.
More precisely, the IDS is inspired by the behavior of the human
immune system and the IRS is inspired by the behavior of a colony
of foraging ants. Schematically, there are two main populations of
MAs:
1) The Intrusion Detection Agents (IDAs) which borrow mecha-
nisms from the immune cells. To detect attacks happening in the
network, IDAs have to be able to discriminate between normal and
abnormal activity. In the immune system it is done by T cells distin-
guishing good proteins named “selfs” from bad ones named “non-
selfs”. In the IDS the normal self activity is viewed as a good se-
quence of events, whereas the abnormal non-self activity is viewed
as a bad sequence of events. IDAs move randomly in the network
they protect like T cells in the body. When entering hosts, IDAs
check for bad sequences of events as T cells check for non-self se-
quences. Finally, IDAs report any suspicious activity by diffusing a
message through the network as T cells diffuse the sign of a disease
through the glandular system and the lymphoid organs.
2) The Intrusion Response Agents (IRAs) whose task is to respond
to detected intrusions. For that, they must locate the place where
the alert was given by the IDAs and go there. To trace the source
of the alert they mimic the mechanism employed by the foraging
ants to trace the source of food. Ants use the chemical pheromone
deposited by the other ants in the environment to trace the source
of food. The IRAs use an electronic version of the pheromone
which indicates the route to the infested node. This pheromone
is built by an IDA when it detects an intrusion and is randomly
diffused from the infested node through different nodes of the net-
work. Moreover, like in ants’ colonies, an evaporation process and
an inhibition process of the electronic pheromone limit the number
of IRAs following the same pheromonal trails if a response has al-
ready been provided. IRAs could also move directly to the source
of the alert if the information was provided in the pheromone. But
we did not insert the source address because it could be easily used
by an intruder to build a fake pheromone. It is more difficult for
an intruder to reproduce the entire pheromonal path with consistent
pheromonal fields in each deposit.

The current prototype of IDReAM is composed of a set of MAs
and services that allow us to carry out specific ID and IR tasks
on the network. In IDReAM’s architecture, each node has a MA
platform, called J-Seal2 [2], running on it. The platform hosts the
IDAs, the IRAs and the needed services in protection domains or
seals and provides resource control. Apart from the platform, the
node also houses a monitor that provides the administrator with an
interactive access to the IDRS through a graphic interface. This al-
lows the administrator to consult the current agents’ activity and to
send instructions to the agents, such as an order to terminate. The
pheromones and the different profiles are stored locally as well as in
a database for administrative operations. For each J-Seal2 platform,
there are two seals called AgentHosts: one houses and manages the
IDAs and their services and the other houses and manages the IRAs
and their services (Figure 1). The roles and functionalities of the
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Figure 1: Mobile Agent Architecture.

different types of MAs are taken from the conceptual model and
have been implemented:
1) An IDA follows the sequence of actions below:

• It moves randomly. When entering a machine it probes the
incoming events and computes the Suspicion Index (SI), tak-
ing into account the information deposited by other IDAs and
the information it previously memorized.

• If SI≥ threshold then it launches an alert, builds and diffuses
a pheromone.

• Then it continues its random walk to compute a new devia-
tion.

• When returning to the AgentHost that created it, it updates
the SI in a non-self profile of prohibited events.

Different populations of IDAs have been implemented:
The AuditIDA audits logs using an internal state machine for de-
tecting a signature of intrusion. Indeed, a set of states are intercon-
nected by possible actions and only some are “final”, i.e. set off an
alert. The incoming log events determine which state is considered
at any given moment.
The BehaviorIDA compares a sequence of traced system calls against
a clean profile. The current implementation uses the Hamming dis-
tance and the r-continuous bit distance.
The PortScanIDA is an implementation for detecting port scans. It
listens in raw mode on the TCP sockets of the host. In order to
limit resource use it obtains copies of such packets on all ports for
a limited time only.
2) An IRA follows the sequence of actions below:

• In its normal quiet state, it moves randomly, searching for
pheromonal information in the network.

• If it finds a pheromone, it switches to a tracking state and
follows the pheromone back to its source. Following the trail,
it speeds the pheromone’s evaporation as explained in [7] on
each node belonging to the current trail.

• As soon as it reaches the source of the alert, it initiates a
response to the original attack and switches to the quiet state.
Then it continues its random walk to discover another phero-
mone.
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Different IRAs have been implemented, executing different tracing
strategies. An IRATenace always follows the same pheromone until
the source of the alert, whereas an IRASI can switch to another trail
if it crosses a pheromone with a higher SI.
3) Other helper agents and services needed for the realization of the
conceptual model are described below:
The SimpleHostSeeker: its provides the IDA (or the IRA) with an
asynchronous way to obtain a travel destination. While the IDA
(or the IRA) is operating on the current host, its specially created
SimpleHostSeeker selects the next neighbor to visit according to
the moving strategy and reports back to the IDA (or the IRA). Us-
ing the information provided by the SimpleHostSeeker the IDA (or
the IRA) decides autonomously to choose preferably one direction.
Each AgentHost maintains a table of the agent visit frequencies
which is used by the AgentHost to control the different populations
of agents.
The SimplePheromonePropagator: an IDA which detects an in-
trusion builds the corresponding pheromone to diffuse the alert
through its neighborhood. The pheromone diffusion required the
implementation of the SimplePheromonePropagator. This MA de-
posits the pheromone in each host of a randomly chosen path of
the network. On each host, the intensity of the deposit is governed
by an exponential function of −t, where t is the time since the
pheromone’s creation. This latter function was chosen because it
satisfies the monotonous decreasing requirement of the pheromonal
gradient of the pheromone randomly deposited by the SimplePhero-
monePropagator. This will allow the IRAs to go up the pheromonal
gradient in the opposite direction.
The PheromoneStorage: When the pheromone is found by an IRA,
this service modifies the pheromone in the local Pheromone “con-
veyor”. This service decreases the pheromonal gradient in case of
evaporation and destroys the pheromone in case of inhibition.

3.1 Implementation Specificity
A set of packages and classes for the detection and response tasks

has been implemented. A simple description of the main packages
and classes is given below:
1) Package MobileHost
This subsystem presents a thin service layer that allows weak au-
tonomy in the agents’ movements and inter-agent communication
through method calls. This is mainly implemented here by two
classes, AgentHost and MobileAgent.
AgentHost is the topmost seal instantiated as an agent, an instance
of this class is created by the framework at start-up. AgentHost uses
three sub-classes for the creation and reception of the agents:

1. Initializer is launched at the start of AgentHost. Initializer
reads in a configuration file the number of IDAs or IRAs to
create, depending on the AgentHost and creates them using
MobileAgentStarter. It stops immediately thereafter.

2. MobileAgentStarter creates and activates all agents.

3. NetworkListener, launched in parallel to Initializer is perma-
nently listening to the network in order to receive and unwrap
the incoming agents.

MobileAgent is a common abstraction of all the IDA and the IRA
derived classes. MobileAgent receives all the necessary elements
for its creation from the AgentHost class, most notably its name. J-
Seal2 provides synchronous communication via channels and also
an asynchronous send method for asynchronous communication in
a default net service. This method is rather rudimentary; therefore,
MobileAgent provides an implementation of the moveTo method
which enhances the autonomy of a MA. The send method does not

allow an agent to decide when it moves whereas the moveTo allows
an agent to do it. Moreover, moveTo accepts the name of a seal
as parameter whereas send accepts only the content of a channel
called a capsule. Diagram 2 shows how the various objects inter-
act to allow agents to semi-autonomously move around network
hosts. Diagram 3 explains the inter-agent communication (between
an IDA and its SimpleHostSeeker), required by the collaborative
conceptual model.

AgentHost 2 NetworkListener 2

AgentHost 1

MobileAgent 1

Initializer 1
1) starts

2) runs3) wants to move

4) stops and
serializes5) sends wrapped

MobileAgent 1

6) deserialized
MobileAgent 1

Figure 2: Agent Moving Mechanism.

IDA SimpleHostSeeker AgentHost 1 AgentHost 2

getCurrentHost( )

1) IDA retrieves a reference to its own AgentHost
2) It asks it to create SimpleHostSeeker specifying a name
3) IDA sends its name to SimpleHostSeeker
4) SimpleHostSeeker asks AgentHost 1 to move it to AgentHost 2
5) SimpleHostSeeker asks AgentHost 2 to move it to AgentHost 1
6) SimpleHostSeeker retrieves the IDS’s name
7) SimpleHostSeeker sends the answer and terminates in 8

(2) create(type, seekername)

(3) getNextHost(idaName)

(4) moveTo(host2, String)
(4) network transfer

(5) moveTo(String host1, String)

(5) network transfer
(6) getMaRef(String idaName)

(7) setNextHost(String)
terminate()

(1)

(8)

Figure 3: Inter-Agent Communication.

2) Package IDSHost
This package provides the implementation of the various services
provided by stationary agents related to ID and to IR. These ser-
vices mainly include the storage of the pheromone, administrative
alerts, system logs that IDAs feed, as well as a network topology
informational service. For instance, the Neighborhood service, ini-
tiated in the start-up provides the local view of the network to all
agents.
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3.2 Mobile Agent Security Implementation Is-
sues

A major issue of MA-based systems is the protection of the MAs
and the platform from intruders who can corrupt them. This has
to be absolutely discarded in IDReAM because this would defini-
tively compromise the protection system. The MA authentication
and the MA encryption have been implemented and integrated into
IDReAM, ensuring a secure transfer of MAs between the hosts.
1) MAs’ Authentication
The authentication is based on a certification scheme using a com-
bined RSA/MD5 cipher scheme. This authentication ensures that
the agent has been created by a trusted AgentHost that owns a cer-
tificate from the Certification Authority (CA) called UnigeCA [8]:

1. Each AgentHost receives a certificate from the CA and a key
pair sent in a PKCS#12 file. This file also contains the CA
self-signed root certificate used by each intermediate Agen-
tHost to authenticate its personal certificate as being gener-
ated and signed by UnigeCA.

2. Each agent MA1 has a copy C1 of the certificate of its orig-
inal AgentHost (AH1) which created it. This copy plays the
role of (MA1) source certificate.

3. AH1 signs MA1 with its private key and sends MA1, pre-
viously encrypted, the signature (Sign1), plus C1 signed by
UnigeCA. MA1 has to deliver C1 to each intermediate Agen-
tHost that wants to transfer it.

4. The receiver AgentHost (AH2) verifies that C1 has been gen-
erated and signed by UnigeCA and verifies AH1’s signature
on MA1. If all the verifications are valid, MA1 is executed;
otherwise MA1 is destroyed.

5. Before MA1 is transferred to the next destination, AH2 wraps
MA1 and signs the wrapped MA1 plus the original certifi-
cate C1 together with its private key and adds its certificate
C2. Then AH2 sends the whole to AH3. This ensures that
at any moment of MA1’s life, its creator (AH1) can be iden-
tified.

6. AH3 receives the packets and verifies C2 with UnigeCA root
certificate. It verifies AH2’s signature (Sign2) with the pub-
lic key included in C2. If Sign2 or C2 are not valid, MA1

is destroyed. Otherwise, C1 is verified with UnigeCA root
certificate. If C1 is valid, MA1 is unwrapped and executed.

Step 5 and step 6 are repeated at each new transfer. An intruder
who wants to inject a bad MA requires an original AgentHost cer-
tificate signed by UnigeCA because it is verified by each interme-
diate AgentHost. Moreover, each certificate is stored locally in a
protected PKCS#12 file and the administrator should ensure that
the certificates are in order before starting the MAs.
2) MAs’ Encryption
The encryption of the agents uses 3-DES. The wrapped MA, its
signature and the certificate are encrypted with a symmetric key
shared by the AgentHosts. A first step negotiation between AH1

and AH2 allows the sharing of the common symmetric key gen-
erated for AH1 stored in a secure location and also protected in
a PKCS#12 format; AH1 recovers AH2’s certificate and encrypts
the symmetric key with AH2’s public key with RSA and sends it
to AH2.

4. APPROACH’S ASSESSMENT
The port scan demonstration scenario used for IDReAM is de-

tailed in [6]. This section presents IDReAM’s assessment in terms
of resource consumption and discusses its scalability. It also ob-
serves IDReAM’s reaction when facing an increasing number of
port scans and the effect of the pheromonal information on the
IRAs’ behavior according to the moving strategy.

4.1 Mobile Agents’ Performance
First, the CPU overhead introduced by the main agents’ classes

has been measured in a machine housing IDReAM, named Pctele-
com69 which has the following charateristics: Pentium 2 - 400MHz
- RAM 128 MB - Disk 4 GB - Linux Mandrake 9.0 - Java version
2.
A special MA called SyntheticIDA has been configured so that it
is greedier in resource than a classical PortScanIDA. In compari-
son with PortScanIDA, it does not sleep between two consecutive
probes of the TCP/IP packets’ arrival, but it spends its time comput-
ing the successive dividers of a big natural number. Table 1 shows
the effect of increasing the number of SyntheticIDAs on PCtele-
com69: the average percentage of SyntheticIDAs which succeed in
executing their computing task when their number increases. The
measure is repeated 20 times for each population of SyntheticIDAs
running for 20 minutes on Pctelecom69. When the population of
SyntheticIDAs increases, we also increase the time allotted to carry
out their work. Table 2 gives the different sizes in bytes of a sam-

Number of SyntheticIDAs Success in %
1 95.21

20 72.22
60 48.40
80 45.99

Table 1: Scale’s Effect of an IDAs’ Population.

Name of the Agent Size in Bytes
PortScanIDA 39226
SyntheticIDA 16329
IRATenace 23291

IRASI 23875

Table 2: Agents’ Size in Bytes.

ple of MAs chosen among the biggest ones. This size has been ob-
tained from the serialization of the wrapped agent in Pctelecom69
sent to another machine when calling the moveTo method. Table 3

Number of SyntheticIDAs % of CPU
1 -
20 4.97
60 18.51
80 50.25

Table 3: CPU Consumption of SyntheticIDAs.

gives the CPU consumption of the population of SyntheticIDAs of
the Table 1 when the JVM has been used in profiling mode. The
result expresses the consumption of all the processes relating to the
SyntheticIDAs compared to all the processes of the JVM. This mea-
sure is an average of 20 runnings of 20 minutes each performed in
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Pctelecom69.
Comparing Table 1 with Table 3, it seems that when the number of
greedy MAs managed by a single AgentHost increases, the success
rate decreases because the CPU allocated by the JVM and by J-
Seal2 is controlled. In fact, the detail of the profiling mode, not pre-
sented here, shows that the majority of the resources are consumed
by J-Seal2 micro-kernel, the AgentHost and the first created MAs.
The following MAs are attributed a smaller part of the CPU. Under
20 MAs, the consumption is negligible and does not appear during
the profiling. Moreover, Table 2 shows that the bandwidth con-
sumed by the MAs is not very high even for the biggest MAs. All
these measures lead us to conclude that the issue of scalability of
IDReAM depends mainly on the number of MAs currently present
a the same location because they are managed by the same Agen-
tHost. Since we optimized the code, we think that this is mainly
due to the way J-Seal2 manages the resources consumed by the
seals. However, in IDReAM the MAs are completely distributed
and furtive, with a small chance to have 20 MAs simultaneously at
the same host; this can help to make IDReAM more scalable.

4.2 Detection and Response Performance
In [6], an IBM mainframe has been used for the port scan sce-

nario which runs 15 Linux virtual machines. These machines have
been configured such that the logical network of neighbor nodes is
a meshed network. In the following, IDReAM is observed in the
presence of an increasing number of intrusions generating many
pheromonal traces.
1) Average Detection Time
Table 4 shows the average time needed by a population of Portscan-
IDAs between two alerts when a distributed port scan is remotely
targeted to the 15 virtual machines of the IBM mainframe, from 3
real machines configured like Pctelecom69. Nmap is used as scan-
ner on each of the 3 real machines. Nmap has been configured to
scan all the 15 machines with a frequency of 6 seconds (center)
between two scans and also with a frequency of 1 second (right)
between two scans in an intensive port scan scenario. From this

PortScanIDAs Time in Seconds Time in Seconds
1 21.23 5.32
2 14.93 4.4
5 12.62 1.87

Table 4: PortScanIDAs Average Time Between 2 Alerts with
Nmap (6s) and (1s).

second series of measures, obviously the PortScanIDAs are more
stressed with an intensive port scan. However, this test shows the
positive effect of increasing the population of PortScanIDAs which
decreases the average time between two alerts, meaning that the
whole population detects more scans since the frequency of Nmap
is maintained fixed during the test.

2) Average Response Time
Table 5 gives the average response time of a population of IRATe-

naces and a population of IRASIs according to the number of phero-
monal traces. The different traces of pheromones have been ob-
tained from a population of PortScansIDAs. The pheromone has
been diffused at a distance of 3 hops in the same meshed network
of 15 virtual machines. The measure with each IRA population
has been repeated 20 times, replacing at each time the pheromonal
traces at the same locations. The time is started when the first
pheromone is discovered and is stopped when all the pheromonal

IRAs Traces IRATenace Time IRASI Time
1 1 2.48 2.32
5 5 2.86 9.18

10 10 2.91 20.8

Table 5: Average Response Time (in Sec) According to the
Number of Traces and IRAs.

traces have evaporated.
With the IRATenaces, on average each pheromone seems to have
the same propensity to be chosen. The fact that the average re-
sponse time is not exactly the same is certainly due to the time
needed by each IRATenace to find a pheromonal trace because the
population is randomly dispatched in the network. This is ampli-
fied by the non-homogeneous dispersion of the pheromone through
the network. With the IRASIs, the suspicion indices vary from 4 to
9 in the case of 5 pheromonal traces and from 1 to 10 to in the case
of 10 pheromonal traces. The extreme effect of the IRASI strat-
egy appears obvious: the average response time increases consid-
erably when the number of traces increases, even if the population
of IRASI increases . This is due to the fact that the IRASIs are per-
manently changing their direction to trace a new pheromone. This
is accentuated by the amplitude of the suspicion indices.

3) Effect of the Control Mechanism
A mechanism to control the population of MAs has been imple-
mented in IDReAM, which destroys and regenerates MAs accord-
ing to their frequency at each node. Table 6 shows the effect of
the control mechanism when all the pheromone is concentrated at
a part of the network. For this test, only 10 virtual machines have
been used. The pheromonal traces have been deposited artificially
such that there are uniquely 5 pheromonal traces leading to an alert
located at each of the machines 1 to 5 (group 1). The distance of
the pheromone’ s diffusion is 3. There is no pheromone located
at the machines 6 to 10 (group 2). Before the pheromones are de-
posited, two IRAs are launched: one from the machine 5 and one
from the machine 10. Each IRA duplicates every time it crosses a
node with several pheromones. Table 6 expresses the percentage of
destruction and generation of the IRAs by the population control
mechanism and per group of machines. The results are collected
during the time spent between the first pheromonal deposit and the
disappearance of the last pheromone. The measure is repeated 20
times. The parameters have been chosen so that during one minute
a machine is visited by 6 IRAs: if there are more than 6 IRAs
per minute, the surplus of MA is destroyed by the host. If there
are less than 6 IRAs per minute, new IRAs are generated by the
host. Obviously, the nodes where the MAs are destroyed are mainly

Group 1 Group 2
Percentage of Destruction 68.57 31.43
Percentage of Generation 28.8 71.2

Table 6: Percentage of Destruction and Generation of IRAs at
the 2 Groups of Machines.

those where the pheromones have been concentrated because the
IRAs have a greater propensity to go there. The nodes where new
IRAs are created are mainly those where the pheromones are absent
because the IRAs have a smaller propensity to go there. However,
we note here the dangerous effect that the pheromone can have if
it is controlled by an intruder. An injection of a false pheromone
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to increase its concentration at certain locations of the network can
destabilize the system. Therefore, the control mechanism enforced
by the permanent process of evaporation and inhibition inherent in
the way the pheromone has been built is crucial for the “social”
regulation of the MAs’ populations, which of course reinforces the
survival of IDReAM.

5. CONCLUSION
The combination of the MA paradigm with two natural life paradi-

gms is the driving force behind IDReAM. In the present paper the
entire description of IDReAM architecture and implementation is
given. The IDS and the IRS are totally separated in an architectural
point of view but can communicate through primitives and mecha-
nisms derived from the conceptual model such as the communica-
tion through the pheromone. The implementation of the different
agents and services is quite generic, with mechanisms dedicated
to the two main populations of agents (IDAs and IRAs). This is
the case, for instance, of the moving mechanism. But there is also
a specialization of the agents’ role such as the PortScanIDA’s role.
The implementation has been thought to be sufficiently flexible and
modular: new populations of agents can be easily declined from
the generic classes according to the protection’s needs. We also
assessed IDReAM’s reliability to detect and respond to intrusions
and we measured its cost in term of resource consumption: the ser-
vices and agents are lightweight software entities which avoid too
much CPU and bandwidth consumption. In an intensive port scan,
PortScanIDAs are more stressed and detect more scans, and the
IRAs’ response time differs considerably with the tracing strategy.
Moreover, the population control mechanism avoids the network
being flooded by its own protection system.
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