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ABSTRACT
We consider a multiagent system whose task is to aid component-
centered design by collaborative designers in a supply chain. In
the earlier work, collaborative design networks are proposed as a
decision-theoretic framework for such a system. In this work, we
analyzes how choice of agent interface affects the computational
complexity of collaborative design. Based on the analysis, we pro-
poses a set of algorithms that allow agents to produce an overall
optimal design by autonomous local evaluation of local designs.
We show that these algorithms reduce the complexity exponentially
from that of an exhaustive centralized design.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
J.6 [Computer-Aided Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Design

Keywords
Collaborative Design, Optimal Design, Supply Chain, Graphical
Models, MSBNs

1. INTRODUCTION
Most research on collaborative design focuses on information

sharing mechanisms among distributed designers but not on mak-
ing design choices, e.g., [3]. Collaborative optimization [1] de-
composes a design domain into a number of subdomains. These
design subsystems are organized into a star architecture and work
cooperatively to provide design solutions. However, collaborative
optimization only produces locally optimal solutions and does not
guarantee globally optimal design.

We consider component-centered design in which a final product
is designed as a set of components supplied by manufacturers in a
supply chain. We interpret design under broad design-for-X (DFX)
concepts including design for assembly, manufacture, disassembly,
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environment, recyclability, etc. The objective is to produce an over-
all optimal performance while taking into account diverse sources
of uncertainty such as materials, manufacturing tolerance, operat-
ing environment, etc.

In the previous work [12], a decision-theoretic graphical model
for collaborative design in a supply chain was proposed. The model
encodes knowledge of distributed designers on the uncertain depen-
dence among design choices and between design and performance.
It represents preference of multiple manufacturers and end-users
such that optimal decision-theoretic designs are well-defined. It
shows that such distributed design knowledge can be represented as
a multiagent multiply sectioned Bayesian network (MSBN), called
a collaborative design network. This allows multiagent collabo-
rative design to be investigated through rigorous algorithmic study.
In the current work, we develop multiagent decision algorithms that
yields optimal designs in collaborative design networks.

Our approach differs from multiagent influence diagrams (MAIDs)
[10, 7, 4]. In MAIDs, each agent maintains its own representation
on other agents. It infers about other agents in much the same way
as single-agent reasoning. That is, it observes others’ behavior and
updates its own belief accordingly. While in an MSBN-based mul-
tiagent system, agents exchange beliefs on shared variables in a
much more cooperative way.

Collaborative design can also be viewed as a type of distributed
constraint optimization problem (DCOP). We are given a complex
design problem with many variables and design constraints as welll
as a global objective function - to maximize the expected utility
of the design. What distinguishes DCOPs from traditional combi-
natorial optimization problems is that portions of the problem are
distributed among multiple agents who must work together collab-
oratively to maximize the objective. Recent work in DCOPs has
built upon earlier work in solving distributed constraint satisfaction
problems (DCSPs) [15, 14]. There the problem is coordinating ef-
forts of multiple agents to find a globally satisficing solution to a set
of distributed constraints over shared variables. Research issues in-
clude defining effective coordination protocols among agents and
maximizing the asynchrony of agents during search. Complete
methods using asynchronous backtracking schemes typically ex-
hibit significant idle times for agents higher in the backtrack order-
ing [8]. Distributed local search methods can better utilize agent
resources during search but without any guarantees of finding a so-
lution.

DCOP research extended DCSP work by adding a global objec-
tive function to be optimized by agents collectively. The ADOPT
system of Modi et al. [6] is perhaps the most cited DCOP system
which can find optimal solutions while attempting to maximize the
utilization of individual agents within a branch-and-bound proto-
col among agents. Another recent optimal approach [5] is based
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on a cooperative mediation protocol where agents find solutions to
overlapping subproblems and recommend value changes to their
neighbouring agents.

Collaborative design shares similarities with DCOP research as
noted above. Both attempt to maximize an objective function in
a distributed environment. But collaborative design has additional
decision-theoretic complexity. Agents have local utility functions
to optimize and only have uncertain knowledge of the states of
their neighbouring agents. Each agent must make design decisions
solely by evaluating a local design problem within the context of
the probable design decisions of its neighbours.

The remainer of the paper is organized as follows: Section 2 in-
troduces background knowledge from previous work on MSBNs
and collaborative design networks. Section 3 considers optimal
design with two agents and analyzes their effectiveness when al-
ternative agent interfaces are used. Algorithm 1 uses performance-
based interface, which produces optimal design but does not re-
duce computational complexity relative to exhaustive centralized
design. Algorithm 2 uses instead partial design-based interface.
It not only produces optimal design but also improves complexity
significantly. This analysis suggests that effective general design
algorithms should use agent interfaces that are based on partial de-
signs. An example run of such algorithms with four agents is then
presented in Section 4, followed in Section 5 by Algorithms 3, 4
and 5 for optimal design in general collaborative design networks.
In Section 6, we draw conclusion and indicate our direction for fur-
ther extension.

2. BACKGROUND

2.1 Multiply Sectioned Bayesian Networks
A Bayesian Network (BN) [9] S is a triplet (V, G, P ) where V

is a set of domain variables, G is a DAG whose nodes are labeled
by elements of V , and P is a joint probability distribution (jpd)
over V , specified in terms of a distribution for each variable x ∈ V
conditioned on the parents π(x) of x in G. An MSBN M is a
collection of Bayesian subnets that together define a BN.

To ensure exact, distributed inference, subnets in an MSBN are
required to satisfy certain conditions. To describe these conditions,
we introduce the terminologies first. Let Gi = (Vi, Ei) (i = 0, 1)
be two graphs (directed or undirected). G0 and G1 are said to be
graph-consistent if the subgraphs of G0 and G1 spanned by V0∩V1

are identical. Given two graph-consistent graphs Gi = (Vi, Ei)
(i = 0, 1), the graph G = (V0 ∪ V1, E0 ∪ E1) is called the union
of G0 and G1, denoted by G = G0 ∪ G1. Given a graph G =
(V, E), a partition of V into V0 and V1 such that V0 ∪ V1 = V and
V0 ∩ V1 6= ∅, and subgraphs Gi of G spanned by Vi (i = 0, 1), G
is said to be sectioned into G0 and G1. Note that if G0 and G1 are
sectioned from a third graph, then G0 and G1 are graph-consistent.
The union of multiple graphs and the sectioning of a graph into
multiple graphs can be similarly defined.

Graph sectioning is useful in defining the dependence relation
between variables shared by agents. It is used to specify the fol-
lowing hypertree condition which must be satisfied by subnets in
an MSBN:

DEFINITION 1. Let G = (V, E) be a connected graph sec-
tioned into subgraphs {Gi = (Vi, Ei)}. Let the subgraphs be
organized into an undirected tree Ψ where each node is uniquely
labeled by a Gi and each link between Gk and Gm is labeled by
the non-empty interface Vk ∩ Vm such that for each i and j,
Vi ∩ Vj is contained in each subgraph on the path between Gi and

Gj in Ψ. Then Ψ is a hypertree over G. Each Gi is a hyper-
node and each interface is a hyperlink.
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Figure 1: A trivial MSBN with subnets G1 through G5 orga-
nized into hypertree Ψ.

Fig. 1 shows a hypertree. The hypertree represents an organiza-
tion of agent communication, where variables in each hypernode
are local to an agent and variables in each hyperlink are shared by
agents. Agents communicate in an MSBN by exchanging their be-
liefs over shared variables.

We use nodes and variables interchangeably when there is no
confusion. Nodes shared by subnets in an MSBN must form a d-
sepset, as defined below:

DEFINITION 2. Let G be a directed graph such that a hypertree
over G exists. A node x contained in more than one subgraph with
its parents π(x) in G is a d-sepnode if there exists at least one
subgraph that contains π(x). An interface I is a d-sepset if
every x ∈ I is a d-sepnode.

The interface between G1 and G2 contains 3 variables indicated
in Fig. 1. The structure of an MSBN is a multiply sectioned DAG
(MSDAG) with a hypertree organization:

DEFINITION 3. A hypertree MSDAG G =
�

i Gi, where
each Gi is a DAG, is a connected DAG such that (1) there exists a
hypertree Ψ over G, and (2) each hyperlink in Ψ is a d-sepset.

An MSBN is then defined as follows. Uniform potentials (con-
stant distributions) are used to ensure that knowledge about the de-
pendence strength are not doubly specified.

DEFINITION 4. An MSBN M is a triplet (V, G,P). V =
�

i Vi

is the domain where each Vi is a set of variables. G =
�

i Gi (a
hypertree MSDAG) is the structure where nodes of each DAG
Gi are labeled by elements of Vi. Let x be a variable and π(x) be
all the parents of x in G. For each x, exactly one of its occurrences
(in a Gi containing {x} ∪ π(x)) is assigned P (x|π(x)), and each
occurrence in other DAGs is assigned a uniform potential. P =�

i Pi is the jpd, where each Pi is the product of the potentials
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associated with nodes in Gi. A triplet Si = (Vi, Gi, Pi) is called
a subnet of M . Two subnets Si and Sj are said to be adjacent if
Gi and Gj are adjacent on the hypertree MSDAG.

MSBNs provide a framework for uncertain reasoning in coop-
erative multiagent systems. Each agent holds a partial perspec-
tive (a subnet) of the domain, reasons autonomously as well as
through limited communication [11]. The framework is not acci-
dental. From a few high level requirements, (1) exact probabilistic
measure of agent belief, (2) agent communication by belief over
small sets of shared variables, (3) a simpler agent organization, (4)
DAG domain structuring, and (5) joint belief admitting agents’ be-
lief on private variables and combining their beliefs on shared vari-
ables, it has been shown [13] that the resultant representation of a
cooperative multiagent system is an MSBN.

2.2 Collaborative Design Network
A Collaborative Design Network (CDN) is an MSBN syntac-

tically, but semantically it represents uncertain design knowledge
and preference of a set of designers in a supply chain, who collab-
oratively design a complex product made out of multiple compo-
nents. Each distributed designer is equipped with a subnet. The
domain V is the union of disjoint sets, D, M, T, U , of variables.
The product to be designed is associated with an overall design
space described by design parameters D. Objective functionali-
ties of a designed product is described by performance measures
M . The environment in which the product operates is described
by environmental factors T . Subjective preferences of distributed
designers are represented by utility functions U . We assume that
variables in D, M and T are discrete.

Only five types of arcs are legal. Arcs among design parame-
ters represent design constraints. Arcs from design parameters to
a performance measure signify the dependence of the performance
on these parameters. An arc from an environmental factor to a per-
formance measure signifies the corresponding dependence. Arcs
from several performance measures to still another means that the
later is a composite performance. Finally, arcs from performance
measures to a utility node signify that the utility function depends
on these performances.

Conditional probability distribution at each node is assigned ac-
cording to its semantics in a straightforward manner, except for
utility nodes. A utility node ui with parents Mi represents a util-
ity function Ui(Mi), which is encoded in CDN as follows: The
domain of ui is {y, n}, the distribution at ui is P (ui = y|Mi) =
Ui(Mi) and P (ui = n|Mi) = 1−P (ui = y|Mi). Under additive
independence assumption [2], the overall utility function U(M)
is U(M) = � i ki Ui(Mi), where each weight ki ∈ (0, 1) and� i ki = 1.

Given a valid overall design (violating no design constraints) d

(a configuration of D), belief propagation produces, at node ui,
ui-based expected utility [12]

EUi(d) = P (ui = y|d) = �
mi

Ui(mi)P (mi|d), (1)

where mi is a configuration of Mi. The expected utility of overall
design d is

EU(d) = �
i

ki EUi(d).

More details on CDN can be found in [12]. We illustrate with a
simple example for customerized PC design. Figure 2 shows the
hypertree of a CDN of six distributed designers. Figure 3 and Fig-
ure 4 show subnets corresponding to cpu and motherboard design-
ers.

Video Card

MonitorCPU
Motherboard

PCPower Supply

Figure 2: Hypertree of a simple CDN.

u_costm_cost

m_perf

d_clock_rate

d_chipset

d_cache
u_perf

d_voltage

Figure 3: Subnet for cpu designer.

u_cost

u_perf

d_memory

u_stability

t_humidity
t_temperatured_12v

d_c_voltage

d_c_chipset

m_io_perf m_costu_io_perf

d_b_chipset
d_io_controler

m_perf

m_stability

Figure 4: Subnet for motherboard designer.

3. OPTIMAL DESIGN WITH TWO AGENTS
CDNs provide a rigorous framework for optimal collaborative

design. Given a CDN, optimal design amounts to finding an overall
design d

∗ that maximizes EU(d) = � i ki EUi(d).
Consider the simplest case of two agents A0 and A1, with corre-

sponding subdomains Vi (i = 0, 1). Denote the number of design
parameters in Vi as ni. Assume that all design parameters are bi-
nary. Hence, there are 2ni possible local designs in subdomain
Vi and a total of 2n0+n1 possible overall designs. In Ai’s design
space, we denote jth local design as d

j

i .
Through local evaluation, Ai can obtain local expected utility

of d
j

i , denoted as

EV j
i = �

x

kix EUix(dj

i),

where EUix is the local expected utility according to utility vari-
able uix, uix is a utility variable in Vi, and kix is the weight asso-
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ciated with uix. Similar to Eqn (1),

EUix(dj

i) = �
mix

Uix(mix)Pi(mix|d
j

i), (2)

where Pi is the local distribution of Ai.
We develop a method for agents to obtain an optimal overall de-

sign by autonomous optimal local designs and their integration.
The efficiency of such collaboration depends highly on what in-
formation they exchange. We analyze two extreme cases below.

3.1 Performance As Agent Interface
In the first case, the agent interface I01 consists of q performance

measures. Consider the following agent actions:

ALGORITHM 1.

1. For each local design d
j
0, A0 computes distribution P j

0 =

P0(I01|d
j
0) and sends P j

0 to A1.

2. For each P j
0 received from A0, A1 does the following:

• For each local design d
m
1 , update belief P1(V1|P

j
0 ,dm

1 )

and compute local expected utility EV
m|j
1 .

• Compute distribution P
m|j
1 = P1(I01|P

j
0 ,dm

1 ) and

sends P
m|j
1 and EV

m|j
1 to A0.

3. After receiving P
m|j
1 from A1, A0 updates belief to

P0(V0|P
m|j
1 ,dj

0) and computes local expected utility EV
j|m
0 .

4. After receiving each P
m|j
1 from A1 for each d

j
0, A0 does the

following:

• Compute MEV = maxj,m (EV
j|m
0 + EV

m|j
1 ).

• From indexes j and m that attain the value MEV (break-
ing ties arbitrarily), label local design d

j
0 as d

∗
0 and

send m to A1.

5. A1 labels d
m
1 as d

∗
1.

PROPOSITION 5. The overall design defined by d
∗
0 and d

∗
1

through Algorithm 1 is optimal.

Proof: For each overall design d = (dj
0,dm

1 ), we have

EU(d) = �
i

k0i EU0i(d) + �
j

k1j EU1j(d).

First, we show that � j k1j EU1j(d) = EV
m|j
1 obtained by A1.

This amounts to show that for each utility node uk in A1, distribu-
tion P1(Mk|d

m
1 ) used in local evaluation (Eqn (2)) is identical to

P (Mk|d) in (Eqn (1)). This is true because I01 makes V0 and V1

conditionally independent and we have

P1(V1|P
j
0 ,dm

1 ) = P (V1|d
j
0,dm

1 ) = P (V1|d).

Second, we show that � i k0i EU0i(d) equals to EV
j|m
0 ob-

tained by A0. This is true by an argument similar to the above such
that

P0(V0|P
m|j
1 ,dj

0) = P (V0|d
j
0,dm

1 ) = P (V0|d).

Therefore, MEV is the maximum expected utility overall all
overall designs, and the overall design defined by d

∗
0 and d

∗
1 is

optimal.
2

Note that agents exchange their beliefs and local evaluations over
their interface but not the local designs. This helps protect privacy

of each agent. However, the cardinality of the local design space is
revealed.

The complexity for A0 according to step 1 is O(2n0 ). The com-
plexity for A1 according to step 2 is O(2n0+n1 ). That for A0 ac-
cording to steps 3 and 4 is also O(2n0+n1 ). Hence, the overall
complexity is O(2n0+n1).

In summary, collaborative design using performance as agent in-
terface allows optimal design, but does not reduce computational
complexity relative to exhaustive centralized design.

3.2 Partial Design As Agent Interface
In the second case, agent interface I01 consists of q design pa-

rameters. In the design space of I01, there are 2q partial designs.
We denote kth partial design as e

k.
Given a partial design e

k, there are 2ni−q corresponding local
designs in the design space of Ai. All of them share the value over
I01 with e

k. These local designs are said to be consistent with
e
k. Given e

k, remaining variables in V0 and V1 are conditionally
independent. Hence, for each overall design d = (dj

0,dm
1 ), where

d
j
0 is a local design in subdomain V0 and d

m
1 is a local design in

V1, such that both are consistent with a partial design over I01, we
have

EU(d) = �
x

k0x EU0x(dj
0) + �

y

k1y EU1y(dm
1 )

= EV j
0 + EV m

1 .

For a given e
k, denote the maximum local expected utility over

the 2ni−q consistent local designs in Vi as MEV k
i . A local de-

sign with its expected utility equal to MEV k
i is selected, breaking

ties arbitrarily, and denoted as d
k∗
i . Consider the following agent

actions:

ALGORITHM 2.

1. For each local design d
j

i , Ai computes EV j
i . For each par-

tial design e
k, Ai obtains MEV k

i and d
k∗
i .

2. For each partial design e
k, A0 sends MEV k

0 to A1.

3. A1 computes

MEV = maxk (MEV k
0 + MEV k

1 ),

where maximization is over each partial design e
k, labels a

local design corresponding to MEV as d
∗
1, and sends the

partial design e
k∗ that is consistent with d

∗
1 to A0.

4. A0 labels local design corresponding to MEV k∗
0 as d

∗
0.

The following proposition establishes optimality of Algorithm 2.
Given the descriptions before the algorithm and step 3 in the algo-
rithm, its proof is trivial.

PROPOSITION 6. The overall design defined by d
∗
0 and d

∗
1 through

Algorithm 2 is optimal.

Note that local designs in each agent beyond the partial design
over shared variables are not disclosed. Furthermore, unlike Algo-
rithm 1, the cardinality of the local design space is not revealed.

The complexity of step 1 in Algorithm 2 is O(2ni ) for agent
Ai. The complexity of message passing in step 2 is O(2q) and so
is that of step 3. Hence, the overall complexity of Algorithm 2 is
O(2n0 + 2n1 ). This is a significant reduction from O(2n0+n1),
the complexity of an exhaustive, centralized design (also that of
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Algorithm 1). For instance, if n0 = n1 = 20, then the complexity
reduction ratio is (2n0+n1 )/(2n0 + 2n1 ) = 219.

In summary, collaborative design using partial design as agent
interface allows optimal design with significant complexity improve-
ment over its counterpart based on performance interface.

4. EXAMPLE: DESIGN IN GENERAL CDNS
Before presenting general algorithms for optimal design using

CDNs, we illustrate the operations involved with a trivial example.
The example CDN consists of 4 agents A1 through A4. Their cor-
responding subnets are shown in Figure 5. Variables labeled di are

G1

ds

u4

4m

3 43s

3u

3d

(a) (b)

(d)(c)

2G

4G
3G

u1

1m

1d s1

m 3

s2
1s

u2

2m

2d s2

Figure 5: A trivial CDN.

private design parameters known only to the corresponding agent.
For instance, d1 is only known to A1. Variables labeled sj are
shared design parameters. For instance, s2 is known to both A2

and A3. We assume that all design parameters are binary with the
domain {0, 1}. Variables labeled mk are performance measures
and are private. Variables labeled ul are utility nodes and are also
private.

1 V2

V4

s1

s

s

V

2

3

V3

Figure 6: The hypertree of trivial CDN.

Figure 6 shows the hypertree and agent interfaces. Based on
analysis in Section 3.2, each interface consists of design parameters
only.

After local evaluation at each agent Ai, the local expected utility
EV j

i for each local design d
j

i is obtained. For readability, we have
scaled each EV j

i up to an integer and we label them as EV luj
i to

avoid confusion. Tables 1 and 2 show local expected utilities.

s1 d1 EV lu1

0 0 15
0 1 14
1 0 17
1 1 16

s2 d2 EV lu2

0 0 6
0 1 8
1 0 10
1 1 7

Table 1: Local expected utilities in V1 and V2.

s1 s2 s3 d3 EV lu3

0 0 0 0 15
0 0 0 1 13
0 0 1 0 10
0 0 1 1 9
0 1 0 0 11
0 1 0 1 17
0 1 1 0 9
0 1 1 1 8
1 0 0 0 12
1 0 0 1 9
1 0 1 0 15
1 0 1 1 13
1 1 0 0 8
1 1 0 1 10
1 1 1 0 11
1 1 1 1 14

s3 d4 EV lu4

0 0 5
0 1 6
1 0 8
1 1 9

Table 2: Local expected utilities in V3 and V4.

An agent on the hypertree is arbitrarily selected as a communica-
tion root. We assume that it is A4. The operations then starts from
the leaf agents, A1 and A2.

From local evaluation result (Table 1, left), A1 determines the
maximum expected utility relative to each partial design over the
variables it shares with the neighbor agent A3. In this example,
the only shared variable is s1. The result is shown in the following
table (left) and is sent to A3 as a message.

s1 MEVlu
0 15
1 17

s2 MEVlu
0 8
1 10

Similarly, A2 determines the maximum expected utility relative
to each partial design over variable s2. The result is shown in the
above table (right) and is sent to A3 as a message.

Based on the two messages, A3 re-evaluates each local design,
taking into account the messages. For each local design, it selects
a consistent partial design from each message and adds the corre-
sponding utility in the message to its local expected utility. For
instance, the local design

(s1 = 0, s2 = 1, s3 = 0, d3 = 1)

has local expected utility 17 (Table 2, left). It is consistent with
partial design s1 = 0 from A1. Hence, the corresponding utility
15 in the message is added to 17. It is also consistent with partial
design s2 = 1 from A2. Hence, the corresponding utility 10 in the
message is added. This gives the updated expected utility value 42,
as shown in the following table.
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s1 s2 s3 d3 EV lu′
3

0 0 0 0 15 + 15 + 8 = 38
0 0 0 1 13 + 15 + 8 = 36
0 0 1 0 10 + 15 + 8 = 33
0 0 1 1 9 + 15 + 8 = 32
0 1 0 0 11 + 15 + 10 = 36
0 1 0 1 17 + 15 + 10 = 42
0 1 1 0 9 + 15 + 10 = 34
0 1 1 1 8 + 15 + 10 = 33
1 0 0 0 12 + 17 + 8 = 37
1 0 0 1 9 + 17 + 8 = 34
1 0 1 0 15 + 17 + 8 = 40
1 0 1 1 13 + 17 + 8 = 38
1 1 0 0 8 + 17 + 10 = 35
1 1 0 1 10 + 17 + 10 = 37
1 1 1 0 11 + 17 + 10 = 38
1 1 1 1 14 + 17 + 10 = 41

From the updated local evaluation, A3 determines the maximum
expected utility relative to each partial design over variable s3 (see
table below) and sends to A4.

s3 MEVlu
0 42
1 41

A4 re-evaluates each local design, taking into account the mes-
sage:

s3 d4 EV lu′

0 0 5 + 42 = 47
0 1 6 + 42 = 48
1 0 8 + 41 = 49
1 1 9 + 41 = 50

It determines that the maximum expected utility is 50 and the
optimal local design is

(s3 = 1, d4 = 1).

It sends s3 = 1 to A3.
From the message, A3 determines its optimal local design

(s1 = 1, s2 = 1, s3 = 1, d3 = 1).

A3 then sends s1 = 1 to A1 and s2 = 1 to A2.
From the message, A1 determines its optimal local design

(s1 = 1, d1 = 0).

Similarly, A2 determines its optimal local design

(s2 = 1, d2 = 0).

As a result, the optimal overall design is

(s1 = 1, s2 = 1, s3 = 1, d1 = 0, d2 = 0, d3 = 1).

Note that no single agent needs to know what the overall optimal
design is.

5. OPTIMAL DESIGN IN GENERAL
COLLABORATIVE DESIGN NETWORK

We present two recursive algorithms executed by each agent and
one algorithm executed by the system coordinator. The example
presented above is a trace of these algorithms. Without losing gen-
erality, we denote the agent executing the algorithms as A0. The

execution is activated by a caller, denoted as Ac, which is either
an adjacent agent of A0 or the system coordinator. Exactly one
agent will be called by the coordinator. The interface between Ac

(if an agent) and A0 is denoted as Ic. If A0 has additional adjacent
agents, they are denoted as A1, A2, ..., Aw and their interface with
A0 are denoted as I1, I2, ..., Iw, respectively. Based on the analysis
in Section 3.2, we assume each Ii consists of only design parame-
ters. The kth partial design in the design space of Ii is denoted as
ek

i and that relative to Ic is denoted as ek
c .

The following algorithm, when executed by each agent, prop-
agates utility evaluation of local designs inwards on the hypertree.
During execution, A0 will receive a vector message from each adja-
cent agent Ai. Elements of the vector are indexed by partial designs
over Ii. The kth element of the vector, indexed by ek

i , is denoted
as MEV k

i . When Ai is a leaf agent on the hypertree (whose only
adjacent agent is A0), MEV k

i corresponds to the maximum local
expected utility in Section 3.2, but otherwise its interpretation is
different as is seen below. The vector message sent from Ai to A0

is denoted as MEVi and that sent from A0 to Ac is denoted as
MEVc.

ALGORITHM 3 (COLLECTUTILITY). When agent A0 is called
by Ac to CollectUtility, if Ac is the only adjacent agent, it does the
following:

1. For each local design d
j
0, compute EV j

0 .

2. For each partial design e
k
c , compute

MEV k
c = maxjk

EV
jk
0 ,

where maximization is over each local design d
jk
0 that is

consistent with e
k
c , and label a local design that reaches the

value MEV k
c by d

k∗
c , breaking ties arbitrarily.

3. Send MEVc to Ac.

Otherwise (A0 has more adjacent agents), for each adjacent
agent Ai (i = 1, ..., w), A0 calls CollectUtility in Ai. After each
Ai has returned with MEVi, A0 does the following:

4. For each local design d
j
0, compute

EV
′j
0 = EV j

0 + �
i

MEV
kj

i ,

where MEV
kj

i is indexed by partial design e
kj

i and e
kj

i is
consistent with d

j
0.

5. If Ac is an adjacent agent, for each partial design e
k
c , A0

computes

MEV k
c = maxjk

EV
′jk
c ,

where maximization is over each local design d
jk
0 that is con-

sistent with e
k
c , labels a local design that reaches the value

MEV k
c by d

k∗
c , breaking ties arbitrarily, and sends MEVc

to Ac.

Note that in the computation of EV
′j
0 at step 4, a unique e

kj

i

exists that is consistent with d
j
0. Note also that when Ac is the

coordinator, only step 4 of the algorithm will be executed.
The next algorithm, when executed by each agent, propagates

utility evaluation MEV of an optimal overall design outwards on
the hypertree. As the propagation progresses, each agent identifies
its local design which corresponds to the optimal overall design.
This is achieved by propagating an optimal partial design over the
agent interface.
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ALGORITHM 4 (DISTRIBUTEUTILITY). When agent A0 is
called by Ac to DistributeUtility, if Ac is the coordinator, it does
the following:

1. Compute

MEV = maxjEV
′j
0 ,

where EV
′j
0 is obtained during CollectUtility (step 4), and

label a local design corresponding to MEV as d
∗
0, breaking

ties arbitrarily.

2. For each adjacent agent Ai (i = 1, ..., w), call DistributeU-
tility in Ai and send MEV and partial design e

k
i that is

consistent with d
∗
0 to Ai.

Otherwise (Ac is an adjacent agent), A0 does the following:

3. Receive MEV and partial design e
k
c from Ac.

4. Label local design corresponding to MEV k
c as d

∗
0.

5. For each adjacent agent Ai (i = 1, ..., w), call DistributeU-
tility in Ai and send MEV and partial design e

k
i that is

consistent with d
∗
0 to Ai.

The following algorithm combines the above two algorithms and
is executed by the system coordinator.

ALGORITHM 5 (COMMUNICATEUTILITY).

1. Select an agent A arbitrarily.

2. Call CollectUtility in A.

3. Call DistributeUtility in A.

THEOREM 7. After CommunicateUtility, the overall design de-
fined by local design d

∗ at each agent is optimal.

Proof: We refer to the agent selected in CommunicateUtility as
the root agent. Given the root, the hypertree can be effectively
viewed as a rooted tree. We define its depth as the length of the
longest path from root to a leaf.

It suffices to show that MEV obtained by the root agent from
DistributeUtility is the maximum expected utility over all possible
overall designs. Once this is established, it follows that the restric-
tion of an overall design, that attains this maximum expected utility,
to each subdomain is d

∗ labelled by the corresponding agent dur-
ing DistributeUtility. We prove by induction on the depth of the
rooted hypertree.

When depth = 1, the root has one or more child nodes, each of
them is a leaf. Let the root agent be A0 and its adjacent agents be
Ai (i = 1, ..., w). From step 1 of DistributeUtility executed by root
A0, we have

MEV = maxj EV
′j
0 ,

where maximization is over each local design d
j
0. From step 4 of

CollectUtility executed by root A0, we have

MEV = maxj (EV j
0 + �

i

MEV
kj

i ).

From step 5 of CollectUtility executed by each leaf Ai, each
MEV

kj

i above is the result of maximization over all local designs
in subdomain Vi that are consistent with d

j
0 relative to the interface

between A0 and Ai. Therefore, as j runs through possible values,

the above maximization is performed effectively over all possible
overall designs.

Next, we assume that the theorem is true when depth ≤ m.
Consider the case where depth = m + 1. Let the root agent be
A0 and its adjacent agents be Ai (i = 1, ..., w). The subtree rooted
at each Ai has a depth ≤ m. By assumption, if CollectUtility is
called on each Ai by the coordinator, followed by a call of Dis-
tributeUtility on Ai, the design defined by d

∗ at each agent in the
subtree is optimal.

The actual execution of CommunicateUtility differs from this
scenario as follows: Instead of performing step 1 of DistributeUtil-
ity, Ai performs step 5 of CollectUtility. In other words, instead of
maximization over all designs over the subtree, Ai performs maxi-
mization over all designs that are consistent with a partial design on
its interface with A0, and it does this for each such partial design.
If we regard the union of all subdomains on the subtree rooted at
Ai as a single subdomain, what Ai performed is maximization over
all local designs in this subdomain that are consistent with a partial
design over its interface with A0.

From this perspective, operations performed by A0 and Ai (i =
1, ..., w) are equivalent to the case where depth = 1 . Using the
argument on that case, the theorem follows.

2

Let the total number of agents in a CDN be g and the total num-
ber of design parameters be n. Then on average, an agent has n/g
design parameters in its subdomain. Let q be the maximum number
of design parameters in an agent interface. During CollectUtility,
each agent evaluates O(2n/g) local designs and sends a message
of size O(2q) to the caller agent. Hence, the computational com-
plexity of optimal design using CDN based on CommunicateUtility
is

O(g 2n/g + (g − 1) 2q) = O(g (2n/g + 2q)).

Normally, q is much smaller than n/g and hence the complexity
O(g 2n/g). This result can be compared with a centralized optimal
design that evaluates all overall designs exhaustively. The com-
plexity will be O(2n). Using multiagent CommunicateUtility, the
complexity is reduced exponentially by a ratio of

1

g
2
(1− 1

g
) n

.

Let n = 200 and g = 10, we have 2n = 1.61×1060 and g 2n/g =
1.05 × 107 .

6. CONCLUSION
In the precursor [12], collaborative design networks were pre-

sented as a decision-theoretic framework to represent collaborative
design knowledge as multiagent graphical models. In this work,
we analyze the impact of choice of agent interfaces on the com-
putational complexity of collaborative design. The analysis shows
that interfaces made of design parameters allow significant reduc-
tion of complexity relative to centralized design, while interfaces
made of performance measures do not reduce complexity at all.

Based on this analysis, we present algorithms that allow agents in
a collaborative design network to obtain an overall design by local
evaluations of local designs and by exchanging only evaluations of
partial designs on their interfaces. We show that the computation
is autonomous and the resultant overall design is globally optimal.
The computational complexity is reduced exponentially from that
of an equivalent centralized design.

Our current effort is on identification of conditions that allow fur-
ther reduction of the complexity in evaluating local designs at each
agent. The goal is to provide multiagent algorithms that achieve
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global design optimality and are efficient on such well behaved de-
sign cases.
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