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ABSTRACT
A directed agent implies an agent with high constraints in
both recognition and motion. Because of the embodied re-
strictions, the directed agent perceives a sense of subjective
distance according to its position and direction, which is
not asymmetry unlike the physical distance. The directed
agent can take advantage of this asymmetry of this sense of
distance, synthesizing Interaction Network, which is intro-
duced to represent a cooperative and competitive form based
on the directed graph network. Each node corresponding to
the agent has a variable number of links to the neighboring
nodes depending on the internal state and local interactions
characterized by activation and inhibition. Simulation re-
sults illustrate an efficient team play and analysis.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
multi-agent, directed agent, cooperation, interaction net-
work

1. INTRODUCTION
Cooperative or competitive relationship in multi-agent sys-

tems is often depicted by a graph, which features a collec-
tive behavior. The collective behavior has been analyzed
under a specific form of interaction, such as a team play
in the soccer agents and a formation in multi-robot sys-
tems [1, 2]. However, a relational structure among agents is
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generally specified in advance. While, some research repre-
sents a relationship in the group organization by evolution-
ary graph network [3, 4, 5], where the functional interpreta-
tion of graph is not explicitly discussed. We have proposed
Interaction Network in order to stress a functional mean-
ing of the graph and provide an evolutionary mechanism of
cooperation structure [6]. Also, it has been extended to a
model of the mobile nodes, which can exhibit dynamic adap-
tation of the cooperation form in multi-agent behavior [7].
In this paper, we further extend Interaction Network to a
directed multi-agent model. One of the examples for the
directed agent is a canoe polo player. Canoe polo is a kind
of canoe sports, which is like handball on the water. Un-
like soccer and handball players, the motions of canoe polo
player is strictly restricted because of the water resistance
and strongly directed shape of the canoe. For this reason,
it is especially important to realize a team play rather than
individual play to win the game. Many of the conventional
works have modeled the multi-agent as points, hence, po-
sitioning and motion are primary factors of the discussion
[8, 9, 10]. On the other hand, in the canoe polo player, the
motion and positioning are influenced not only the position
but also the direction of the player. For this reason, the
notion of directed agent is introduced. Also, due to the em-
bodied constraints, sense of the distance in directed agent
is considered to be subjective depends on the direction of
agent. Even if the physical distance between the agents
is equivalent, sense of the distance will not be symmetric.
In this paper, we describe the subjective distance which is
subjectively perceived by the directed agent, and present
a model Interaction Network to deal with a team play in
the collective game for the directed agents, where decision-
making mechanism to enhance efficient organized behavior
is discussed. We also evaluate the tradeoff between the team
play and the individual play through some simulations.

2. DIRECTED AGENT

2.1 Definition of Directed Agent
We firstly define the directed agent in the motif of the

canoe polo player. The directed agent has state of position
and direction. Let Ui be a directed agent i, and the position
of Ui at step t is defined by vector pi(t) which is represented
in the absolute coordinate system, and the direction of Ui

is also defined by unit vector ui(t). We assume here that
the directed agent changes its position and direction by one
motion per one step. We consider nine motions shown in

207



Table 1: Motion of directed agent
velocity angular velocity

k Motion(k) vk[m/step] ωk[rad/step]
1 stop 0 0
2 spin left 0 π/6
3 spin right 0 -π/6
4 forward 2 0
5 back -1 0
6 spin left 0 π/3
7 spin right greatly 0 -π/3
8 forward greatly 3 0
9 back greatly -2 0
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Figure 1: Relationship of position and direction be-
tween Ui and Uj.

Table1 as a motion of the directed agent. When Ui chooses
the motion(k) from Table1, its position and direction in next
step are determined respectively as follows,

pi(t+ 1) = pi(t) + vkui(t), (1a)

ui(t+ 1) =
h

cosωk − sinωk

sinωk cosωk

i
ui(t). (1b)

2.2 Definition of Subjective Distance
Interactions are dependent on the direction of agent. Even

if the physical distance is equivalent in the agents, the sense
of distance is not necessarily the same. For example, an
agent placed in front is perceived much closer than the agent
in the back. We define the subjective distance perceived by
the directed agent Ui in the position p as follows,

D(pi,p) = ‖p− pi‖ exp(−κ(ui · P (pi,p))), (2a)

P (pi,p) =
p− pi

‖p− pi‖ , (2b)

where, κ > 0 is coefficient. Figure2 illustrates the subjective
distance by a contour map, where the position vector and
the direction vector of specific directed agent are set to (0, 0)
and (1, 0) respectively. The black portion in fig.2 indicates
that the subjective distance from specific directed agent is
close. Eq.(2a) implies that the subjective distance in front
of the directed agent is closer to the agent in the back. The
value of κ relates to the directivity of agent; if it takes larger
value, the directivity becomes stronger. Appropriate value
should be verified with the actual players, but it is not a
scope of this paper.

-10 -5 0 5 10
-10

-5

0

5

10

x

y

(a) κ = 1.0.
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(a) κ = 1.5.

Figure 2: Result of calculation of subjective dis-
tance.
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Figure 3: Concept of Interaction Network and Transi-
tion Diagram

3. INTERACTION NETWORK
Interaction Network is defined as a relational structure

representing cooperation and competition in collective agent
systems, which is formulated by bidirectional directed sim-
ple graph with N nodes. Nodes indicate autonomous di-
rected agents, and directed links correspond to the interac-
tions between agents. Figure 3 depicts the conceptual dia-
gram of proposed model, where Transition Diagram repre-
sents flow in the system by the relational structure. Features
of Interaction Network are summarized as follows:

• The internal state of the node is determined by inter-
actions from the neighborhood nodes and the graph
structure of local Interaction Network.

• Action attribute named activation and inhibition is
given in the interaction between nodes. Activation en-
hances the internal state of the connected agents, on
the other hand, inhibition weaken the internal state.

• The variable number of interactions (out-degree of node
in graph theory) are defined in each agent dependent
on the level of the internal state of agent.

• Each agent updates its graph structure of local In-
teraction Network by changing the interaction agents,
where the number of interactions is also variable ac-
cording to a situation.

We define some notations for formulation. Firstly, surround-
ing condition of the agents is recognized by the subjective
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(a) Interaction Network before updating.
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(b) Interaction Network after updating.

Figure 4: Correspondence of the updating local In-
teraction Network to adjacency matrix. The full line
arrow and the dashed line indicate activation and
inhibition respectively.

distance. A set of agents within R-neighborhood of Ui is
given by,

Si(t) =
n
Uj

ŕŕŕDi(pj(t)) < R, i 6= j
o
. (3)

Since every relation of the interactions is locally recognized
from the viewpoint of Ui, we introduce the local description
of Interaction Network. Assuming that there exist Ni(t)[=
|Si(t)|] agents within the neighborhood of Ui, we define Uij ,
(j = 1, · · · , Ni(t)) as the jth nearest agent from Ui, where
Ui recognizes itself as Ui0. Then, the interaction between
Uij and Uik is defined as follows,

ai,jk(t) =

8
><
>:

+1 activation,

−1 inhibition,

0 no interaction.

(4)

Note that we consider Ni = Ni(t) in the following argument.
The graph structure of local Interaction Network of Ui is
represented by adjacency matrix Ai(t),

Ai(t) =

0
BB@

0 ai,01(t) · · · ai,0Ni
(t)

ai,10(t) 0 · · · ai,1Ni
(t)

.

.

.
.
..

. . .
.
..

ai,Ni0(t) ai,Ni1(t) · · · 0

1
CCA . (5)

In this model, we do not consider activation and inhibition
to itself, hence, the diagonal part of Ai is set to 0. More-
over, Ui can change a target of interactive agent as well as
action attributes. The change of interactions corresponds to
the change of the first row in Ai. An example is depicted
in fig.4. The internal state Ei(t) of agent Ui is decided by
received activation and inhibition actions from the neigh-

borhood agents in Si(t) as follows,

Ei(t) = Φ

"
NiX
j=0

ai,j0(t) + Ebase

#
, (6a)

Φ(ξ) =

8
><
>:

Emax if ξ > Emax,

Emin if ξ < Emin,

ξ else.

(6b)

where, Ebase is default value of the internal state, and Emax

and Emin are maximal and minimal internal state respec-
tively. Ei(t) determines the upper bound of the number of
interactions to the neighborhood agents. The actual num-
ber of interactions is called as the interaction degree of free-
dom (interaction DOF) bi(t) which takes integer value set
{0, 1, · · · , Ei(t)} according to a surrounding situation. If the
agent receives more activating interactions, it can take larger
interaction DOF, while if the agent receives more inhibiting
interactions, it can be reduced to zero. Using these variable
Ei(t) and bi(t), the index xi(t) ≥ 0 is defined to represent
the remaining level of autonomy, the resource to be used for
own actions as follows,

xi(t) = Ei(t)− bi(t). (7)

Larger value of xi(t) implies higher ability of autonomous
behavior, however, it may reduce the variation of interac-
tions to the neighborhood agents. Under the constrain of
Ei(t), the balance of bi(t) and xi(t) is a primary concern for
the effective graph network.

4. SIMULATION MODEL

4.1 Design of collective game by Interaction
Network

Formation play is a straightforward model to exemplify
functional connectivity. In this paper, a simple collective
game is considered employing Interaction Network. Suppose
that there are one ball and N agents on the game field, and
agent Ui, (i = 1, · · · , N) belong to one of the two groups G(1)

and G(2). Each agent moves on the field and passes the ball
to the goal area, and also it prevents plays of the opponent
group. One game will be over if either team takes 20 point
at first. As shown in Fig.3, we define Transition Diagram
which is generated by Interaction Network as a destination
of ball transition. If agent Ui holds the ball, the destination
of ball is decided stochastically from the neighborhood of Ui.
We denote in the meaning that pi = pi(t) in the following

discussion. Let z(l) be position vector of the goal point for
the group G(l), (l = 1, 2). In the case of Ui ∈ G(l), the
intentional pass direction mi(t) for Ui is decided as follows,

mi(t) =
z(l) − pi

‖z(l) − pi‖2 +M1

X

Uij∈G(l)

pij − pi

‖pij − pi‖2

− M2

X

Uik /∈G(l)

pik − pi

‖pik − pi‖2 . (8)

where M1,M2 > 0 are constant respectively. Here, the first
term denotes vector of the goal direction, and the second
term indicates vector of the direction of supporter agents
and the third term indicates avoiding vector from the op-
ponent agents. So the intentional pass direction is decided
by the linear combination of these three vectors as shown in
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Figure 5: Relationship between the direction of pass
mi(t) and the angle ψij

fig.5. Then, the angle ψij(t) of agent Uj ∈ Si(t) from the
pass direction mi(t) is calculated as follows,

ψij(t) = arccos

¡
mi(t) · (pj − pi)

‖mi(t)‖‖pj − pi‖
¿
. (9)

The transition probability wij of the ball from Ui to Uj is
generated by

wij(t)=
Ψij(t) exp(xj(t)− xi(t))X

Uk∈Si(t)

Ψik(t) exp
ą
xk(t)− xi(t)

ć , (10a)

Ψij(t)=
1

D(pj ,pj)
exp(−σψij(t)

2). (10b)

Where, σ > 0 is constant, and the transition probability to
Uk /∈ Si(t) is wik(t) = 0. The probability reflects influence
of the directivity of pass direction and uncertainty due to the
subjective distance between Ui. The cooperation structure
becomes a variable node probability network, which is gen-
erated by the graph structure of Interaction Network and
the agent distribution. Therefore, each agent attempts to
reconfigure the cooperation structure Interaction Network
so as to improve dominant rate of the ball. To do this, each
agent behaves according to the following procedures:

(1) Agents are assigned to the Game Field.

(2) Ui, (i = 1, · · · , N) decides the interaction DOF bi and
remaining level of autonomy xi, based on Interaction
Network.

(3) The agent moves on the field, and updates the graph
structure of Interaction Network within the neighbor-
hood by bi(t).

(4) Transition probability is generated by xi(t).

(5) Destination of the ball is decided stochastically by tran-
sition probability.

Where (1) is an initialization of collective game. Then,
repeat the procedure from (2) to (5) until either of group
makes a score.

4.2 Decision-making Mechanism of Agent

4.2.1 Evaluation on Positioning
We consider the positioning of agent as a set of position

and direction, and it changes according to own motions.
Also it depends on the dominance rate of the ball. Let
position of the ball be r and a candidate of the positioning
of Ui be (p̃i, ũi). Then we define the evaluation function for
positioning of agent fi(p̃i) using the subjective distance as
follows,

fi(p̃i, ũi) =

8
>>><
>>>:

exp(−α D(p̃i, z
(l))2)− Vi (p̃i) ,

for Ui has a ball,

exp(−β D(p̃i, r(t))2)− Vi (p̃i) ,

for Ui doesn’t has a ball.

(11a)

Vi(p) =

NiX
j=1

exp(−γ ‖pij − p‖2). (11b)

Where α, β, γ > 0 are constant, and Vi is the evaluation for
collision avoidance to the neighborhood agents.

4.2.2 Reconfiguration of the Graph Structure
As shown in fig.4, reconfiguration of local Interaction Net-

work of Ui is conducted by changing only the first row of
adjacency matrix Ai in eq.(5). So, a candidate of updated

graph structure ãi and corresponding matrix eAi are given
as

ãi = (ãi,01, · · · ãi,0Ni) , (12a)

eAi(ãi) =

0
BB@

0 ãi,01 · · · ãi,0Ni

ai,10(t) 0 · · · ai,1Ni
(t)

...
...

. . .
...

ai,Ni0(t) ai,Ni1(t) · · · 0

1
CCA .

(12b)

A candidate of updated graph structure is evaluated so that
it can improve the dominant rate of the ball in the immedi-
ate future. In order to obtain such a predicted condition for
each of candidate of the graph in a limited calculation, we
employed the stationary solution of stochastic process pro-
duced by the local Transition Diagram. The agent Ui forms
a local Transition Diagram according to the decision rule
of the transition probability of eq.(10a). However, Ui can-
not recognize the remaining level of autonomy and the path
directions for Uij , (j = 1, · · · , Ni) accurately because these
are information based on the internal state of each agent.
So, Ui estimates xij(t) for Uij , (j = 1, · · · , Ni) from eq.(6b),
eq.(7), and eq.(12b) as follows,

xij(t) = Φ

"
NiX

k=1

ai,kj(t)+ãi,0j + Ebase

#
−

NiX

k=0

|ai,jk(t)|. (13)

The first term of eq.(13) relates to estimation from each
agent’s internal state based on eq.(6b), and the second term

indicates interaction DOF from adjacency matrix eAi. Also,
the pass direction mij(t) for Uij is estimated by eq.(8), (9),
and angle ψi,ij(t) of the agent Uij from the pass direction of
mij(t) is calculated with eq.(9). Therefore, the transition
probability wi,jk(t), (j, k = 0, · · · , Ni) of the ball from Uij
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to Uik is supposed by

wi,jk(t) =
Ψi,jk(t) exp(xik(t)− xij(t))

NiX
n=0

Ψi,jn(t) exp(xin(t)− xij(t))

, (14a)

Ψi,jk(t) =
1

D(pij ,pik)
exp(−σψ2

i,jk). (14b)

The local Transition Diagram of Ui is represented as the
transition probability matrix Wi(ãi) as follows,

Wi(ãi) =

0
BB@

wi,00(t) wi,01(t) · · · wi,0Ni
(t)

wi,10(t) wi,11(t) · · · wi,1Ni
(t)

..

.
..
.

. . .
...

wi,Ni0(t) wi,Ni1(t) · · · wi,NiNi
(t)

1
CCA . (15)

Since wi,jk(t) > 0 for ∀j, k in Wi, the transition process
is modeled as regular Markov chain, therefore, we see that
the unique stationary distribution exists for the transition
process of Wi, which is given by

πi(ãi) = πi(ãi)W (ãi), (16)

where, πij , (j = 0, · · · , Ni) is interpreted as expected value
of the acquisition probability for Uij . From location of the
agents and evaluation on the efficiency of pass, evaluation
function hi(ãi) for Ui ∈ G(l)(Ui /∈ G(L)) is defined by the
followings according to both cases of offense mode and de-
fense mode;

hi(ãi) =

8
>>>>>>>><
>>>>>>>>:

X

Uij∈G(l)

πijexp(−α D(pij , z
(l))2),

for offense mode,X

Uij∈G(L)

1−πij

Ni−1
exp(−α D(pij , z

(L))2),

for defense mode.

(17)
Where, in the offense mode, evaluation value of eq.(17) be-
comes high when the acquisition probability of the ball is
high for the agents in G(l) which is near the goal z(l).

5. SEARCH ALGORITHMS
Agent Ui searches the best solution from candidates of po-

sitioning (p̃i, ũi) and the graph structure ãi employing the
genetic algorithms (GA) for every time step. Firstly, ten
individuals to candidate of (p̃i, ũi) and ãi are created re-
spectively. Then, the adaptation value is calculated for the
candidate set of individual. According to adaptation value,
the selected candidate sets are reproduced in the next gener-
ation with the genetic operation. In this genetic operation’s
parameter, crossover probability and mutation probability
are set to 0.5 and 0.1 respectively. The best solution is se-
lected from candidate sets when the search is repeated until
tenth generation; therefore, computation is light.

5.1 Adaptation Function for GA search
The positioning and pass-play are evaluated with eq.(11a)

and eq.(17) respectively. The adaptation function is defined
according to eq.(11a) and eq.(17) as follows,

yi(p̃i, ũi, ãi) = ϕihi(ãi) + (1− ϕi)fi(p̃i, ũi). (18)

Where, ϕi ∈ [0, 1] is strategy parameter denoting tendency
between team-play and individual play. If yi(p̃

∗
i , ũ

∗
i , ã

∗
i )

takes the largest value, it provides the best solution (p̃∗i , ũ
∗
i , ã

∗
i ).

ρ(1) · · · ρ(k) · · · ρ(n)
(a) positioning

Agent Number : s(1) · · · s(k) · · · s(Ni)
Connection : qs(1) · · · qs(k) · · · qs(Ni)

(b) graph structure

Figure 6: The genotype of positioning and graph
structure

5.2 Individual Expression and Genetic Oper-
ation of Positioning

For calculating a best positioning, the binarly code as
shown in fig.6-(b) is used as the genotype of GA. This geno-
type indicates the number of motion in Table1. The con-
version rule of decimal number from the binary code ξ is
represented as D(ξ), the decoding of a genotype is also de-
fined as follows,

K × D(ρ)

2n
+ 1, (19)

where, K indicates the total number of motion (K = 9).
When integral part eq.(19) is k, the candidate of positioning
(p̃i, ũi) is given according to the motion(k) as follows,

p̃i = pi(t) + vkui(t), (20a)

ũi =

ů
cosωk − sinωk

sinωk cosωk

ÿ
ui(t). (20b)

Moreover, the uniform crossover and mutation of bit reversal
are used as genetic operation of the reproducing individuals.

5.3 Individual Expression and Genetic Oper-
ation to Graph Structure

For calculation of the best graph structure with GA, a
candidate of the graph structure is coded as shown in fig.6-
(b). In this genotype, the number of agent which is able
to interact with Ui, is assigned to s(k), (k = 1, · · · , Ni) by
random sequence, and lower row element qs(k) is defined by,

qs(k) =

(
1 for action to Uis(k),

0 for no action to Uis(k).
(21)

As a constraint on the candidate of graph structure ãi,
interaction DOF of Ui is given according to the number of
agents within its neighborhood and internal state Ei. Hence,
the genotype(s, q) is decoded by the algorithm with fig.7.
In this genetic operator of crossover method, the partial
matched crossing method is adopted, and new individuals
to the candidate of graph structure X∗ and Y ∗ are repro-
duced from the individuals X and Y (Fig.8-(a)). Also, the
inversion is employed as a mutation method(Fig.8-(b)).

6. SIMULATION RESULTS

6.1 Simulation Conditions
Simulations are conducted to illustrate cooperative net-

work formation in the directed multi-agent. Suppose G(1)

and G(2) indicate the offense side and the defense side re-
spectively, and one game will end when either G(1) or G(2)

make a score. Figure9 shows the game field for the simula-
tion, where the size of game field is 90[m] × 60[m].
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Algorithm Decoding of individual.
sum← 0
for k = 1 to Ni do

if sum < Ei then
sum← sum+ qs(k)

if Ui, Uis(k) ∈ G(l) then
ãi,0s(k) ← +1× qs(k)

else
ãi,0s(k) ← −1× qs(k)

end if
else
ãi,0s(k) ← 0

end if
end for
bi ← sum
end Algorithm

Figure 7: Decoding Algorithm of individual

Table 2: Parameter set for simulation
N number of agent 8

Emax maximal internal state 5
Emin minimal internal state 0
Ebase default internal state 3
R radius of neighborhood circle 20
Rv maximal distance 5
α evolution coefficient to goal 0.277× 10−3

β evolution coefficient to ball 1.09× 10−3

γ reflection coefficient to Vi 4.43× 10−3

σ directivity parameter to wij 0.632

The result is evaluated based on the total score of G(1) in
the consecutive 20 games. Also, we employ the average of
10 trials for later discussion. ϕ(l) defined in eq.(18) is pa-

rameter for decision-making of the agent in G(l), (l = 1, 2),

which implies tendency of the strategy; ϕ(l) = 1 corresponds
to team-play oriented strategy and ϕ(l) = 0 corresponds to
the individual play strategy. By changing the set of pa-
rameter values of (ϕ(1), ϕ(2)), we compare the difference of
performance of the collective game and evaluate cooperation
structures. The other parameters are listed in Table2.

6.2 Evaluation of Cooperation Structure by
Interaction Network

In this section, dependency of the strategy parameter ϕ
is examined for various situations, which are made by the
difference in the value of coefficient κ determining the fea-
ture of subjectivity distance in eq.(2a). Figure10 depicts two
dimensional histogram for four conditions, where the value
of each histogram indicates the average goal score of group
G(1) according to the values of (ϕ(1), ϕ(2)).
Figure 10-(c) shows simulation results in the case that the

subjective distance is determined with κ = 3, where the
agents have strong directivity in the recognition of the sub-
jective distance in the collective game. From the simulation
results as shown in fig.10-(c), in the case that the strat-

egy parameter ϕ(1) takes large value, the goal score of G(1)

tends to be larger. However, this does not mean that entire
team play is the best strategy because strategy parameter of

X

Y

X'

Y

X

Y'

X*

Y*

Crossover point

(a) Partially Matched Crossover

Mutation point

(b) Inverse

Figure 8: GA Operator of individual

the best score is found to be (ϕ(1), ϕ(2)) = (0.7, 0.9). Also,
figure 10-(b) shows the simulation results in the case that
the subjective distance is determined with κ = 2. From
this result, if the strategy parameter ϕ(1) takes intermedi-
ate value, the goal score of G(1) tends to be high. And, figure
10-(a) shows the simulation result when the subjective dis-
tance is determined with κ = 1. This situation means that
the agents perceive the subjective distance with the weakest
directivity compared to the other cases. As shown in fig.10-
(a), in the case that strategy parameter ϕ(1) takes smaller

value and ϕ(2) takes larger value, we can see that goal score
of G(1) tends to be high. Therefore, when using directed
agents which perceive the subjective distance with weak di-
rectivity, the individual play strategy becomes more effective
than the team play strategy. The number of neighborhood
agents seems to relate to the result. The front parts be-
comes very close in the subjective distance in the case that
κ is large value, so the number of perceivable agents tends
to be large, while it tends to be smaller in the case that κ is
small value, which makes it rather difficult to achieve well
organized team play.
On the other hand, figure 10-(d) shows the simulation result
in the case of the subjective distance with κ = 4, which cor-
responds to the case of the strongest directivity. From the
result of fig.10-(d), the combination of strategy parameter

(ϕ(1), ϕ(2)) seems to have little relevance to the score.

7. CONCLUSIONS
This paper presented the subjective distance which is a

sense of distance subjectively perceived for directed agent.
The collective game is modeled using Interaction Network,
and the decision-making mechanism is proposed based on
the evaluation for the surrounding relation and self-behavior.
From simulation results, we confirmed that effective coop-
eration structure is formed, when strategy parameter ϕ is
large and κ is large. However, in the case that the coeffi-
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Figure 9: Game field of collective game. Left-hand
cone and right-hand cone represent the directed
agent belonging to G(1) and G(2) respectively.

cient κ of the cognitive distance is too large, we observed
that a strategy parameter ϕ is rather meaningless. In the
present work, agents cannot change ϕ dynamically depend-
ing on the game phase, so dynamical adaptation for team
play strategy remains to be solved.
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