
A Multiagent System Manages Collaboration in Emergent
Processes

John Debenham
Faculty of Information Technology
University of Technology, Sydney

NSW, Australia

debenham@it.uts.edu.au

ABSTRACT
Emergent processes are non-routine, collaborative business
processes whose execution is guided by the knowledge that
emerges during a process instance. In so far as the pro-
cess goal gives direction to conventional business processes,
the continually evolving process knowledge gives direction
to emergent processes. Emergent processes may involve in-
formal interaction, and so there is a limit to the extent to
which the processes can be “managed”. The collaboration
however can be managed. Managing collaboration needs an
intelligent agent that is guided not by a process goal, but
by observing the performance of the other agents. Each
agent has process knowledge — that is information either
generated by the individual users or is extracted from the
environment, and performance knowledge — that describes
how the other agents, together with their ‘owners’, perform
— including how reliable they are. The integrity of the infor-
mation derived from past observations decays in time, and
so they have an inference mechanism that can cope with
information of decaying integrity. An agent is described
that achieves this by using ideas from information theory.
The agents’ internal representation language is probabilistic
first-order logic. They derive models of the other agents us-
ing entropy-based inference that is based on random worlds.
Maximum entropy inference is used to construct these mod-
els that are then refreshed as new information is received
using minimum relative entropy inference.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Keywords
Business process management, negotiation, collaboration

1. INTRODUCTION
Emergent processes are business processes that are not pre-
defined and are ad hoc. These processes typically take place
at the higher levels of organisations [9], and are distinct
from production workflows [5]. Emergent processes are op-
portunistic in nature whereas production workflows are rou-
tine [3]. How an emergent process will terminate may not
be known until the process is well advanced. The tasks in-
volved in an emergent process are typically not predefined
and emerge as the process develops. Those tasks may be car-
ried out by collaborative groups as well as by individuals [15]
and may involve informal meetings, business lunches and so
on. Further, the goal of an emergent process instance may
mutate as the instance matures. So unlike “lower-order”
processes, the goal of an emergent process instance may not
be used as a focus for the process management system. An
emergent process may have a fixed goal such as “maximise
profits” — but it is unlikely that a process management
agent, or a human agent, will have an executable plan to
achieve such a goal. Emergent processes may involve infor-
mal interaction, and so there is a limit to the extent to which
the processes can be “managed”. The collaboration however
can be managed, and that is addressed here.

The term “business process management” [14] is generally
used to refer to the simpler class of workflow processes [5],
although there are notable exceptions [11]. From the man-
agement perspective, emergent processes are “knowledge-
driven”. A knowledge-driven process is guided by its “pro-
cess knowledge” and “performance knowledge”. Process
knowledge is information either generated by the individ-
ual users or is extracted from the environment, and includes
background information. Performance knowledge describes
how the other agents together with their ‘owners’ perform,
including how reliable they are.

In so far as the process goal gives direction to goal-driven
processes, the continually evolving process knowledge gives
direction to knowledge-driven processes. So plan-based agent
architectures such as BDI [17] are not directly suitable. To
manage knowledge-driven process with such an architecture
would require machinery to manage the mutations of the
process goal. The agent architecture described here man-
ages the collaboration in the processes, and not the pro-
cesses themselves. This architecture is based on ideas from
information theory.

175

2. PROCESS MANAGEMENT
Following [5] a business process is “a set of one or more
linked procedures or activities which collectively realise a
business objective or policy goal, normally within the con-
text of an organisational structure defining functional roles
and relationships”. Implicit in this definition is the idea
that a process may be repeatedly decomposed into linked
sub-processes until those sub-processes are activities which
are atomic pieces of work. [viz [5] “An activity is a descrip-
tion of a piece of work that forms one logical step within a
process.”].

A particular process is called a (process) instance. An in-
stance may require that certain things should be done; such
things are called tasks. Three classes of business process are
defined in terms of their management properties.

• A task-driven process has a unique decomposition into
a — possibly conditional — sequence of activities. Each
of these activities has a goal and is associated with a
task that “always” achieves this goal. These process
are often called production workflow. They may be
managed by reactive agents — and do not necessar-
ily require deliberative agents or intricate management
machinery.

• A goal-driven process has a process goal, and achieve-
ment of that goal is the termination condition for the
process. The process goal may have various decom-
positions into sequences of sub-goals where these sub-
goals are associated with (atomic) activities and so
with tasks. Some of these sequences of tasks may work
better than others, and there may be no way of know-
ing which is which [15]. The possibility of task fail-
ure is a feature of goal-driven processes. In any case,
a goal-driven process management system requires a
mechanism for selecting plans for sub-goals. A simpli-
fied view of goal-driven process management is shown
in Fig. 1. In that figure “SC” refers to the success
condition that is a procedure at the end of each path
through a plan that determines whether or not the
plan has achieved its goal. Activities are atomic sub-
processes.

• A knowledge-driven process may have a process goal,
but the goal may be at a high-level, or may be vague
and may mutate [3] leading to a revised process goal.
Mutations are determined by the knowledge generated
during the process. At each stage in the performance
of a knowledge-driven process, the “next goal” is iden-
tified using the process knowledge. So in so far as the
process goal gives direction to goal-driven — and task-
driven — processes, the process knowledge gives direc-
tion to knowledge-driven processes. A simplified view
of knowledge-driven process management is shown in
Fig. 2.

The complete representation, never mind the maintenance,
of the process knowledge may be complex. However, in a
process management system, or in an Electronic Institution
[4], much of that knowledge may be readily available. Per-
formance knowledge is not difficult to capture, represent and
maintain. For example, measurements of how long another
agent took to complete a sub-process, and measurements of
how reliable the other agents are.

Figure 1: Goal-driven processes.

Process Goal
(what we are trying
to achieve over all)

Performance
Knowledge

(knowledge of how
effective plans and

activities are)

Process Knowledge
(knowledge of what has

been achieved so far)

Next-Goal
(what to try to
achieve next)

Plan

Initialise

New Performance Knowledge

Add to

New Process Knowledge

Add to

?not SC and
not activity goal?

Select

Identify

Back-up Identify

?SC?
?activity

goal?

Activity

Do it

Select

Evaluate it

3. EMERGENT PROCESS MANAGEMENT
SYSTEM

In the system described here each human player is assisted
by an agent. As emergent processes may involve informal
interaction between players, there is a limit to the extent
to which the processes themselves can be “managed”. This
is in contrast to task-driven processes, or production work-
flow, where a management system prescribes what should
happen next — agents are “asked” to do things and are “ex-
pected” to comply. For emergent process the collaboration
can be managed. The questions that an emergent process
agent considers include: “who to ask to assist”, “who can
I rely on”, “who works well with who”, “who do I want to
build a relationship with”. The answers to these questions
are inferred by observing the dynamics of the collaboration
between the agents. So an agent for emergent process man-
agement needs to be able to observe and evaluate the col-
laboration — what appears to work and what does not —
and has to make sense out of this diverse information.

The act of an agent joining a real or virtual group for some
purpose is fundamental to collaboration. Another act is one
agent delegating responsibility for a sub-process to another.
The product of group activity, or process delegation, is some
information being generated, and so to the act of informa-
tion being passed from one agent to another. The system

176

Figure 2: Knowledge-driven processes.
Process Goal

(what we believe we
are trying

to achieve over all)

Performance
Knowledge

(knowledge of
how effective
activities are)

Process
Knowledge

(knowledge of
what has been

achieved so far)

Now-Goal
(what to try to
achieve next)

Activity
(what to do

next)

Decompose
(in the context of the
process knowledge)

Do it —
(until termination
condition
satisfied)

New Performance
Knowledge

New Process
Knowledge

Add to

Revise

Select

Add to

aims to implement these three types of act intelligently. It
consists of the set of agents {Xi}n

i=0 — the description fol-
lowing is written from the point of view of agent X0 that
interacts with the other n agents. In the text, the agent Xω

is “an other” agent — i.e. ω 6= 0.
The agent architecture extends the agent described in [2].

It is driven by the contents of a knowledge base that rep-
resents the agent’s world model represented in probabilistic
first-order logic. The system attempts to manage the col-
laboration using the information that is generated both by
and because of it. To achieve this, it draws on ideas from
information theory. As with the agent described in [2], X0

makes assumptions about: the way in which the integrity of
information will decay, and some of the preferences that its
collaborators may have for some agreements over others. It
also assumes that unknown probabilities can be inferred us-
ing maximum entropy inference [12], ME, which is based on
random worlds [7]. The maximum entropy probability dis-
tribution is “the least biased estimate possible on the given
information; i.e. it is maximally noncommittal with regard
to missing information” [10]. In the absence of knowledge
about the other agents’ allegiances, X0 assumes that the
“maximally noncommittal” model is the correct model on
which to base its reasoning.

X0 decides what to do — such as what message to send
— on the basis of its past observations, the current integrity
of which is expressed as degrees of belief. X0 uses this in-
formation to calculate, and continually revise, probability
distributions for that which it does not know. One such dis-
tribution, over the set of all possible actions, expresses X0’s
belief in the suitability to herself of performing that action.
Other distributions attempt to predict the behaviour of an-
other agent — such as what agreements she might accept.
X0 is purely concerned with the other agents’ behaviours —
what they actually do — and not with assumptions about
their motivations. This somewhat detached stance is ap-

propriate for emergent process management in which each
agent represents the interests of it owner, whilst at the same
time attempting to achieve social goals.

4. EMERGENT PROCESS AGENT X0

X0 operates in an information-rich environment that in-
cludes the Internet. One source of X0’s information is the
signals received from Xω. These include proposals from Xω

to X0, the acceptance or rejection by Xω of X0’s proposals,
and information that Xω sends to X0. Incoming information
is augmented by X0 with sentence probabilities that repre-
sent the strength of her belief in its truth. If Xω refused
to assist X0 two days ago then what is X0’s belief now in
the proposition that Xω will assist her now? Perhaps it is
around 0.1. For simplicity, a linear model is used to model
the integrity decay of these beliefs, and when the probability
of a decaying belief approaches its maximum entropy value
the belief is discarded.

4.1 Interaction Protocol
An agreement is a pair of commitments δX0:Xω (x0, xω) be-
tween an agent X0 and another agent Xω, where x0 is X0’s
commitment and xω is Xω’s commitment. A = {δi}D

i=1 is
the agreement set — ie: the set of all possible agreements.
If the context is clear then the subscript “X0 : Xω” is omit-
ted. These commitments may involve multiple issues — not
simply a single issue such as time to complete a task. The
set of terms, T , is the set of all possible commitments that
could occur in an agreement a ∈ A.

An agent may have a real-valued utility function: U : T →
<, that induces an ordering on T . For such an agent, for
any agreement δ = (x0, xω) the expression U(xω) −U(x0)
is called the surplus of δ, and is denoted by L(δ) where
L : T × T → <. For example, the values of the function U
may expressed in units of time. It may not be possible to
specify the utility function either precisely or with certainty.
This is addressed in Sec. 5.

The agents communicate in an illocutionary language, C,
that has the illocution particle set:

ι = {Delegate, Join, Accept, Reject, Inform, Quit}

with the following syntax and informal meaning:

• Delegate((X0, ρ), (Xω, Gi)) means “X0 proposes to rec-
ompense Xω with ρ if Xω agrees to take responsibility
for an individual goal Gi”.

• Join((X0, ρ), (Xω, Gi)) means “X0 proposes to recom-
pense Xω with ρ if Xω agrees to contribute to co-
operative goal Gj”.

• Accept(δ) means “the sender accepts your proposed
agreement δ”.

• Reject(δ) means “the sender rejects your proposed agree-
ment δ”.

• Inform((X0, Ik), Xω) means “X0 offers information Ik

to Xω”.

• Quit(·) means “the sender quits — the interaction ends”.

So for these predicates, and in this discussion, an agreement
δ has the form ((X0, ρ), (Xω, Gi)).

177

The communication predicates described in the previous
paragraph introduce a number of concepts. In the interest of
brevity these are only described here informally. The notion
of one agent recompensing another [i.e. ρ] refers to both the
informal “thanks, I owe you one”, and to the formal “take
the rest of the day off”, or some sum of money. An individual
goal has the form of: information Ik will be sent to agent Xr

by time t. An cooperative goal has the form of: the assembly
of information Ik will be co-ordinated by agent X0 by time
t. The expression of the information requires some ontology
— that is not described here.

4.2 Agent Architecture
X0 uses the language C for external communication, and the
language L for internal representation. One predicate in L
is: Accd(((X0, ρ), (Xω, Gi))). The proposition (Accd(δ) | It)
means: “X0 will be comfortable accepting the delegation
agreement δ with agent Xω given that X0 knows informa-
tion It at time t”. The idea is that X0 will accept delegation
agreement δ if P(Accd(δ) | It) ≥ α for some threshold con-
stant α. The precise meaning that X0 gives to Accd(δ) is
described in Sec. 5. Similarly Accj for Join(·) agreements.
The probability distribution P(Aggd((X0, ρ), (Xω, Gi))) is
agent X0’s estimate of the probability that agent Xω will
agree to the Delegate agreement δ [or Aggj(·) for Join(·)
agreements] — it is estimated in Sec. 6.

Each incoming message M from source S received at time
t is time-stamped and source-stamped, M[S,t], and placed in
an in box, X , as it arrives. X0 has an information repository
I, a knowledge base K and a belief set B. Each of these
three sets contains statements in a first-order language L.
I contains statements in L together with sentence proba-
bility functions of time. It is the state of I at time t and
may be inconsistent. At some particular time t, Kt con-
tains statements that X0 believes are true at time t, such
as ∀x(Accept(x) ↔ ¬Reject(x)). The belief set Bt = {βi}
contains statements that are each qualified with a given sen-
tence probability, B(βi), that represents X0’s belief in the
truth of the statement at time t. The distinction between
the knowledge base K and the belief set B is simply that K
contains unqualified statements and B contains statements
that are qualified with sentence probabilities. K and B play
different roles in the method described in Sec. 4.3; Kt ∪ Bt

is required by that method to be consistent.
X0’s actions are determined by its “strategy”. A strategy

is a function S : K × B → A where A is the set of actions.
At certain distinct times the function S is applied to K and
B and the agent does something. The set of actions, A,
includes sending Delegate(·), Join(·), Accept(·), Reject(·),
Inform(·) and Quit(·) messages to Xω. The way in which
S works is described in Secs. 6. Two “instants of time” be-
fore the S function is activated, an “import function” and
a “revision function” are activated. The import function
I : (X × It−) → It clears the in-box, using its “import
rules”. An import rule takes a message M , written in lan-
guage C, and from it derives sentences written in language
L to which it attaches decay functions, and adds these sen-
tences together with their decay functions to It− to form It.
These decay functions are functions of the message type, the
time the message arrived and the source from which it came
— an illustration is given below. An import rule has the
form: P(S | M[Xω,t]) = f(M, Xω, t) ∈ [0, 1], where S is a
statement, M is a message and f is the decay function. Then

the belief revision function R : It− → (It×Kt×Bt) deletes
any statements in It− whose sentence probability functions
have a value that is ≈ 0.5 at time t. From the remaining
statements R selects a consistent set of statements, instanti-
ates their sentence probability functions to time t, and places
the unqualified statements from that set in Kt — the qual-
ified statements, together with their sentence probabilities,
are placed in Bt.

X0 uses three things to construct proposals: an estimate
of the likelihood that Xω will accept any agreement [Sec. 6],
an estimate of the likelihood that X0 will, in hindsight, feel
comfortable accepting any particular agreement [Sec. 5], and
an estimate of when Xω may quit and leave the interaction
— see [2].

4.3 Inference
X0 employs maximum entropy inference and minimum rel-
ative entropy inference to derive expectations of future per-
formance from prior, sparse observations. Let G be the set
of all positive ground literals that can be constructed using
the symbols in L. A possible world is a valuation function
V : G → {>,⊥}. V denotes the set of all possible worlds,
and VK denotes the set of possible worlds that are consistent
with a knowledge base K [7].

A random world for K is a probability distribution WK =
(pi) over VK = (Vi), where WK expresses an agent’s degree
of belief that each of the possible worlds is the actual world.
The derived sentence probability of any σ ∈ L, with respect
to a random world WK is (∀σ ∈ L):

PWK(σ) ,
X

n

{ pn : σ is> in Vn } (1)

A random world WK is consistent with the agent’s beliefs
B if: (∀β ∈ B)(B(β) = PWK(β)). That is, for each belief
its derived sentence probability as calculated using Eqn. 1
is equal to its given sentence probability.

The entropy of a discrete random variable X with prob-
ability mass function {pi} is [12]: H(X) = −

P
n pn log pn

where: pn ≥ 0 and
P

n pn = 1. Let W{K,B} be the “max-
imum entropy probability distribution over VK that is con-
sistent with B”. Given an agent with K and B, maximum
entropy inference states that its derived sentence probability
for any sentence, σ ∈ L, is:

(∀σ ∈ L)P(σ) , PW{K,B}(σ) (2)

Using Eqn. 2, the derived sentence probability for any belief,
βi, is equal to its given sentence probability. So the term
sentence probability is used without ambiguity.

If X is a discrete random variable taking a finite number
of possible values {xi} with probabilities {pi} then the en-
tropy is the average uncertainty removed by discovering the
true value of X, and is given by H(X) = −

P
n pn log pn.

The maximum entropy distribution: arg maxp H(p), p =
(p1, . . . , pN), subject to M + 1 linear constraints:

gj(p) =

NX
i=1

cjipi −B(βj) = 0, j = 1, . . . , M.

g0(p) =

NX
i=1

pi − 1 = 0

(3)

where cji = 1 if βj is > in vi and 0 otherwise, and pi ≥
0, i = 1, . . . , N , is found by introducing Lagrange multipli-

178

ers, and then obtaining a numerical solution using the mul-
tivariate Newton-Raphson method. In the subsequent sub-
sections we’ll see how an agent updates the sentence prob-
abilities depending on the type of information used in the
update.

Given a prior probability distribution q = (qi)
n
i=1 and a

set of constraints, the principle of minimum relative entropy
chooses the posterior probability distribution p = (pi)

n
i=1

that has the least relative entropy with respect to q:

arg min
p

nX
i=1

pi log
pi

qi
(4)

and that satisfies the constraints. The principle of minimum
relative entropy is a generalisation of the principle of max-
imum entropy. If the prior distribution q is uniform, the
relative entropy of p with respect to q differs from −H(p)
only by a constant. So the principle of maximum entropy
is equivalent to the principle of minimum relative entropy
with a uniform prior distribution.

5. ACCEPTABILITY OF A PROPOSAL.
Why would X0 accept a Delegate(·) or a Join(·) proposal?
Each deal, δ = ((X0, ρ), (Xω, Gi)), contains provision for an
incentive ρ. However it is more realistic [16] to assume that
the agents in an emergent process management system are
benevolent [8] — that is, they will accept a responsibility for
a process if they believe that they can achieve the process
goal. So X0 needs machinery to estimate the probability
that if it takes responsibility for goal Gi then it will achieve
it. Sec. 6 considers the converse problem: that is, how X0

estimates the probability distribution over all possible re-
sponses that Xω will respond in various ways.

The proposition (Accd((X0, ρ), (Xω, Gi)) | It) was intro-
duced in Sec. 4.2. This section describes how the agent
estimates P(Accd(δ) | It) — i.e. the probability that X0

attaches to the truth of this proposition for various δ. This
is described for delegations only — Join(·) is dealt with sim-
ilarly.

X0 forms its future expectations on the basis of past ob-
servations, including the expectations that it has about it-
self. Sec. 6 following describes how X0 forms its expec-
tations about a collaborator. The same approach is used
estimate P(Accd((X0, ρ), (Xω, Gi)) | It) — the integrity of
past observations is continually discounted, new observa-
tions are fed in using minimum relative entropy inference
— Eqn. 4. This yields a probability distribution over all
possible outcomes that could occur if X0 were to commit
to a Delegate(·) proposal. X0 then uses this distribution to
decide whether or not to commit on the basis of the simple
criterion: P(Accd((X0, ρ), (Xω, Gi)) | It) > α for some per-
sonal ‘comfort factor’ α. The details of how this probability
distribution is derived is the same as for Aggd(·) — this is
described following.

6. INTERACTION
X0 interacts with its collaborators {Xi}n

i=1. It is assumed
that goals are initially triggered externally to the system.
For example, X0’s ‘owner’ may have an idea that she be-
lieves has value, and triggers an emergent process to explore
the idea’s worth. The interaction protocol is simple, if X0

sends a Delegate(·) or a Join(·) message to Xω then an inter-
action has commenced and continues until one agent sends

an Accept(·) or a Quit(·) message. This assumes that agents
respond in reasonable time which is fair in an essentially co-
operative system.

To support the agreement-exchange process, X0 has do
two different things. First, it must respond to proposals re-
ceived from Xω — that is described in Sec. 5. Second, it
must construct proposals, and possibly information, to send
to Xω — that is described now. Maximum entropy infer-
ence is used to ‘fill in’ missing values with the “maximally
noncommittal” probability distribution. To illustrate this
suppose that X0 proposes to delegate a process to Xω. This
process involves Xω delivering — using an Inform(·) mes-
sage — u chapters for a report in so-many days v. This
section describes machinery for estimating the probabilities
P(Aggd((X0, u), (Xω, Gv)) where the predicate:

• Aggd((X0, u), (Xω, Gv)) means “Xω will accept X0’s
delegation proposal ((X0, u), (Xω, Gv))”.

X0 assumes the following two preference relations for Xω,
and K contains:

κ11 : ∀x, y, z((x < y) →
(Aggd((X0, y), (Xω, Gz)) → Aggd((X0, x), (Xω, Gz))))

κ12 : ∀x, y, z((x < y) →
(Aggd((X0, z), (Xω, Gx)) → Aggd((X0, z), (Xω, Gy))))

As noted in Sec. 4.3, these sentences conveniently reduce
the number of possible worlds. The two preference relations
κ11 and κ12 induce a partial ordering on the sentence prob-
abilities in the P(Aggd((X0, u), (Xω, Gv))) array. There are
fifty-one possible worlds that are consistent with K.

Suppose that X0 has the following historical data on sim-
ilar dealings with Xω. Three months ago Xω asked for ten
days to deliver four chapters. Two months ago X0 pro-
posed one day to deliver three chapters and Xω refused. One
month ago Xω asked for eight days to deliver two chapters.
B contains:

β11 : Aggd((X0, 4), (Xω, G10)),

β12 : Aggd((X0, 3), (Xω, G1)) and

β13 : Aggd((X0, 2), (Xω, G8)),

and assuming a 10% decay in integrity for each month:
P(β11) = 0.7, P(β12) = 0.2 and P(β13) = 0.9

Eqn. 3 is used to calculate the distribution W{K,B} which
shows that there are just five different probabilities in it.
The probability matrix for the proposition:

Aggd((X0, u), (Xω, Gv))

is:

v � u 1 2 3 4 5
11 0.9967 0.9607 0.8428 0.7066 0.3533
10 0.9803 0.9476 0.8330 0.7000 0.3500
9 0.9533 0.9238 0.8125 0.6828 0.3414
8 0.9262 0.9000 0.7920 0.6655 0.3328
7 0.8249 0.8019 0.7074 0.5945 0.2972
6 0.7235 0.7039 0.6228 0.5234 0.2617
5 0.6222 0.6058 0.5383 0.4523 0.2262
4 0.5208 0.5077 0.4537 0.3813 0.1906
3 0.4195 0.4096 0.3691 0.3102 0.1551
2 0.3181 0.3116 0.2846 0.2391 0.1196
1 0.2168 0.2135 0.2000 0.1681 0.0840

179

In this array, the derived sentence probabilities for the three
sentences in B are shown in bold type; they are exactly their
given values.

X0’s interaction strategy is a function S : K × B → A
where A is the set of actions that send Delegate(·), Join(·),
Accept(·), Reject(·), Inform(·) and Quit(·) messages to Xω.
If X0 sends any message to Xω then she is giving Xω infor-
mation about herself.

6.1 ‘Even-handed’ collaboration
An agent may be motivated to act for various reasons —
three are mentioned. First, if there are costs involved in
the interaction due either to changes in the value of the
interaction object with time or to the intrinsic cost of con-
ducting the interaction itself. Second, if there is a risk of
breakdown caused by a collaborator dropping out of a ne-
gotiation. Third, if the agent is concerned with establishing
a sense of trust [13] with the collaborator — this could be
the case in the establishment of a business relationship. Of
these three reasons the last two are addressed here. The
risk of breakdown may be reduced, and a sense of trust may
be established, if the agent appears to its collaborator to be
“approaching the interaction in an even-handed manner”.
One dimension of “appearing to be even-handed” is to be
equitable with the value of information given to the collabo-
rator. Various interaction strategies, both with and without
breakdown, are described in [2], but they do not address
this issue. An interaction strategy is described here that
is founded on a principle of “equitable information gain”.
That is, X0 attempts to respond to Xω’s messages so that
Xω’s expected information gain similar to that which X0

has received.
X0 models Xω by observing her actions, and inferring

beliefs about her future actions in probability distributions
such as P(Aggd). X0 measures the value of information
that it receives from Xω by the change in the entropy of
this distribution as a result of representing that information
in P(Aggd). It is X0’s information base at time t. Suppose
that X0 then receives a message µ giving It+1 at time t+1.
Then the information in µ with respect to the information
base It is:

I(µ | It) = H(Aggd(It))−H(Aggd(It+1))

where the argument of Aggd(·) denotes the state of the in-
formation base from which it was derived, and H(Aggd(·)) is
the entropy of the underlying probability distribution from
which Aggd is aggregated. An alternative way of measur-
ing the value of information is as the Kullback-Leibler dis-
tance between the prior and the posterior distributions. If
(pi)

n
i=1 is the underlying probability distribution from which

Aggd(It)) was aggregated and (qi)
n
i=1 the distribution for

Aggd(It+1)) then:

I(µ | It) =

nX
i=1

pi log
pi

qi

More generally, X0 measures the value of information re-
ceived in a message, µ, by the change in the entropy in its
entire representation, Jt = Kt∪Bt, as a result of the receipt
of that message; this is denoted by: ∆µ|J Π

t |, where |J Π
t |

denotes the value (as negative entropy) of X0’s information
in J at time t. Although both X0 and Xω will build their
models of each other using the same data — the messages
exchanged — the observed information gain will depend on

the way in which each agent has represented this informa-
tion. It is “not unreasonable to suggest” that these two
representations should be similar. To support its attempts
to achieve “equitable information gain” X0 assumes that
Xω’s reasoning apparatus mirrors its own, and so is able to
estimate the change in Xω’s entropy as a result of sending
a message µ to Xω: ∆µ|J Ω

t |. Suppose that X0 receives a
message µ = Delegate(·) from Xω and observes an informa-
tion gain of ∆µ|J Π

t |. Suppose that X0 wishes to reject this
agreement by sending a counter-proposal, Delegate(·), that
will give Xω expected “equitable information gain”. This is
achieved by:

δ = {arg max
δ

P(Accd(δ) | It) ≥ α |

(∆Delegate(δ)|J Ω
t | ≈ ∆µ|J Π

t |)}

That is X0 chooses the most acceptable agreement to herself
that gives her collaborator expected “equitable information
gain” provided that there is such an agreement. If there is
not then X0 chooses the best available compromise

δ = {arg max
δ

(∆Delegate(δ)|J Ω
t |) | P(Accd(δ) | It) ≥ α}

provided there is such an agreement — this strategy is rather
generous, it rates information gain ahead of personal accept-
ability. If there is not then X0 quits.

7. COLLABORATION
The mechanism that X0 uses for managing process delega-
tion is described in full. Join(·) messages are managed simi-
larly. This next section discusses the sorts of payoff measures
and estimates that are available, and that are combined to
give a value for the expected payoff vector νi for each agent.
Let P(A �) denote A is the ‘best choice’ in terms of some
combination of the parameter estimates described follow-
ing. These measurements are then used by agent X0 to
determine P(Xi �), and then in turn to determine the del-
egation strategy (pi)

n
i=1.

7.1 The Performance Parameters
Agent X0 continually measures the performance of itself and
of other agents in the system using four measures. Three are:
time, cost and likelihood of success which are attached to all
of its delegations-in and delegations-out. The last one is a
value parameter that is attached to other agents. Time is
the total time taken to termination. Cost is the actual cost
of the of resources allocated. For example, the time that
the agent — possibly with a human ‘assistant’ — actually
spent working on that process. The likelihood of success is
the probability that an agent will deliver its response within
its constraints. The value parameter is the value added to
a process by an agent. Unfortunately, value is often very
difficult to measure — it is treated here by a subjective
estimate delivered by users of the system.

The three parameters time, cost and likelihood of success
are observed and recorded every time an agent, including
X0, delivers, or fails to deliver, its commitments. This gen-
erates a large amount of data whose significance can rea-
sonably be expected to degrade over time. So a cumula-
tive estimate only is retained. The integrity of information
‘evaporates’ as time goes by. If we have the set of observable
outcomes as O = {o1, o2, . . . , om} then complete ignorance
of the expected outcome means that our expectation over

180

these outcomes is 1
m

— i.e. the unconstrained maximum
entropy distribution. This natural decay of information in-
tegrity is offset by new observations.

Given one of the parameters, u, with m possible out-
comes1, suppose that Pt(u′ | δ) is the estimate at time t
of the probability that the actual outcome u′ will be ob-
served given that the agent being observed has committed
to δ. Suppose that X0 observes the actual outcome r, on
the basis of this outcome X0 believes that the probability of
r being observed at the next time is gr. Then let Pt

gr
(u′ | δ)

be the posterior minimum relative entropy distribution cal-
culated using Eqn. 4 with prior distribution Pt(u′ | δ) and
satisfying the constraint that Pt

gr
(r | δ) = gr. Then update

Pt(u′ | δ) with:

Pt+1(u′ | δ) =
1− ρ

n
+ ρ ·Pt

gr
(u′ | δ) (5)

This equation determines the development of Pt(u′ | δ) for
some large ρ ∈ [0, 1].

X0 uses the method in Eqn. 5 to update its estimates for
all probability distributions representing each of the agents
that it deals with. For example, if Pt(·) is X0’s estimate of
the time that Xω will take to deliver on a particular type of
agreement. Suppose that at time t, Xω delivers her response
after having taken time u. Then X0 attaches a belief (i.e. a
sentence probability) to the proposition that this is how Xω

will behave at time t + 1. This becomes the constraint in
the minimum relative entropy calculation and then Eqn. 5
gives Pt+1(·).

The process delegation problem belongs to the class of re-
source allocation games which are inspired by the ‘El Farol
Bar’ problem — see [6] for recent work.

7.2 Choosing the ‘best’ collaborator
The probability distributions described above may be used
to determine the probability that one agent is a better choice
than another by calculating the probability that one ran-
dom variable is greater than another in the usual way. This
method may be extended to estimate the probability that
one agent is a better choice than a number of other agents.
For example, if there are three agents to choose from, A, B,
and C, then:

P(A �) = P((A � B) ∧ (A � C))

= P(A � B)×P((A � C) | (A � B))

The difficulty with this expression is that there is no direct
way of estimating the second, conditional probability. This
expression shows that:

P(A � B)×P(A � C) ≤ P(A �) ≤ P(A � B)

By considering the same expression with B and C inter-
changed:

P(A � B)×P(A � C) ≤ P(A �) ≤ P(A � C)

and so:

P(A �) ≤ min[P(A � B),P(A � C)]

1The success parameter has only two possible outcomes ‘suc-
ceed’ and ‘fail’.

So for some τA ∈ [0, 1]:

P(A �) = P(A � B)×P(A � C)+

τA × [min[P(A � B),P(A � C)]−
P(A � B)×P(A � C)]

Similar expressions may be constructed for the probabilities
that B and C are the best agents respectively. This is as
far as probability theory can go without making some as-
sumptions. To proceed assume that: τA =τB =τC =τ ; this
assumption is unlikely to be valid, but it should not be “too
far” from correct. Either A or B or C will be the best plan,
so the sum of the three expressions for the probabilities of
A, B and C being the “best” plan will be unity. Hence:

τ =
1− d

q − d
where:

d =[(P(A � B)×P(A � C))+

(P(B � C)×P(B � A)) + (P(C � A)×P(C � B))]

q =[min[P(A � B),P(A � C)] +

min[P(B � C),P(B � A)]+

min[P(C � A),P(C � B)]]

This expression for τ is messy but is easy to calculate. The
probability that each of the three agents A, B and C is the
“best” choice is P(A �), P(B �) and P(C �).

An alternative to the above is simply to use Eqn. 2 to
estimate the probability of the propositions that each of the
agents is the ‘best’ collaborator. That is, for agent A:

P(A �) = PW{K,B}(A �)

To calculate this probability then requires the calculation of
the maximum entropy distribution that is consistent with
K and B, and then simply adding up the probabilities in
that distribution that are associated with possible worlds
in which agent A is the ‘best’. This alternative approach
involves a maximum entropy calculation whereas the above
approach does not.

7.3 Delegation Strategy
A delegation strategy is a probability distribution {pi}n

i=1

that determines who from {Xi}n
i=1 to offer responsibility to

for doing what. The delegation strategy determines “who
does what” stochastically by determining the {pi}n

i=1 where
pi is the probability that the i’th agent will be selected. The
choice of the agent to delegate to is then made with these
probabilities. The expression of the delegation strategy in
terms of probabilities enables the strategy to balance con-
flicting goals, such as achieving process quality and process
efficiency.

A greedy strategy best picks the agent that promises great-
est returns:

pi =

(
1
m

if Xi is such that P(Xi �) is maximal

0 otherwise

where m is such that there are m agents for whom P(Xi �)
is maximal. This strategy attempts to maximise expected
payoff but it is short-sighted in that it rewards success with
work — although it is not uncommon in practice. Another
strategy prob also favours high payoff, but gives all agents a
chance to prove themselves, sooner or later, and is defined
by: pi = P(Xi �). The strategy random is equitable, and
picks agents by: pi = 1

n
.

181

An admissible delegation strategy has the properties:

if P(Xi �) > P(Xj �) then pi > pj

if P(Xi �) = P(Xj �) then pi = pj

(∀i)pi > 0 and
X

i

pi = 1

So best and random are not admissible strategies but prob
is admissible.

P(Xi �) is the probability that Xi is the ‘best’ choice.
The strategy best that continually choses the ‘best’ on the
basis of historic data is flawed because an agent who “goes
through a bad patch” may never be chosen — this means
that if an agent wants “the quiet life” then all it would
have to do is to make a series of mistakes. The delegation
strategy prob is a compromise between being equitable and
utility optimisation — it chooses agents with probability
pi = P(Xi �). That is, the probability that X0 will attempt
to delegate a process to Xω is equal to the probability that
X0 estimates Xω to be the ‘best’ choice for the job.

8. CONCLUSION
Emergent processes are collaborative business processes whose
execution is determined by the prior knowledge of the agents
involved and by the knowledge that emerges during a pro-
cess instance. In an emergent process, the process goal may
mutate, and so does not provide clear direction for pro-
cess management. As emergent processes may involve in-
formal interaction, there is a limit to the extent to which
the processes per se can be “managed”. However, the col-
laboration can be managed. The solution proposed builds on
ideas from information theory and entropy-based inference.
These inference methods are logic-based and so operate with
multi-issue interaction with ease — this is particularly sig-
nificant for the interactions involved in these high-level pro-
cesses. The establishment of a sense of trust contributes
to the establishment of business relationships and to pre-
venting breakdown during interaction. This is addressed by
the agents attempting to exhibit ‘fair play’ by applying the
principle of equitable information revelation.

To manage collaboration the agent is equipped with:
Delegate(·), Join(·), Accept(·), Reject(·), Inform(·) and
Quit(·) interaction predicates. This discussion has focussed
on the Delegate(·) predicate. Join(·) is dealt with similarly.
Inform(·) is used to satisfy a delegation goal, and the re-
maining predicates are necessary to support the interaction.

The agents in the system are ‘essentially benevolent’ —
they do no necessarily require motivation to contribute to
a collaborative group or to take responsibility for a sub-
process. Despite this, the agents also have a responsibility
to their own user. So our agent does not attempt to second-
guess the motives of the other agents in the system. Instead
it takes advantage of the large amount of readily available
information concerning past performance to estimate, using
maximum entropy methods, expectations about future per-
formance. The information in the system is based on past
observations and so its integrity is in a permanent state of
decay [1]. The agent selects its collaborators from the sys-
tem by using a stochastic strategy. This strategy identifies
a collaborator with a probability that is equal to the agent’s
estimate that she is the ‘best’ choice. This strategy provides
a reasonable balance between getting things done in the best
way and spreading the work around.

9. REFERENCES
[1] D. Bernhardt and J. Miao. Informed trading when

information becomes stale. The Journal of Finance,
LIX(1), February 2004.

[2] J. Debenham. Bargaining with information. In
N. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors, Proceedings Third International Conference on
Autonomous Agents and Multi Agent Systems
AAMAS-2004, pages 664 – 671. ACM, July 2004.

[3] P. Dourish. Using metalevel techniques in a flexible
toolkit for CSCW applications. ACM Transactions on
Computer-Human Interaction (TOCHI), 5(2):109 –
155, June 1998.

[4] M. Esteva, J. Padget, and C. Sierra. Formalizing a
languages for institutions and norms. In J. Meyer and
M. Tambe, editors, Intelligent Agents VIII, pages 348
– 366. Springer-Verlag, Berlin, Germany, 2002.

[5] L. Fischer. The Workflow Handbook 2003. Future
Strategies Inc., 2003.

[6] A. Galstyan, S. Kolar, and K. Lerman. Resource
allocation games with changing resource capacities. In
Proceedings of the second international joint
conference on Autonomous agents and multiagent
systems AAMAS-03, pages 145 – 152, 2003.

[7] J. Halpern. Reasoning about Uncertainty. MIT Press,
2003.

[8] M. Huhns and M. Singh. Managing heterogeneous
transaction workflows with cooperating agents. In
N. Jennings and M. Wooldridge, editors, Agent
Technology: Foundations, Applications and Markets,
pages 219 – 239. Springer-Verlag: Berlin, Germany,
1998.

[9] A. Jain, M. Aparicio, and M. Singh. Agents for
process coherence in virtual enterprises.
Communications of the ACM, 42(3):62 – 69, 1999.

[10] E. Jaynes. Probability Theory — The Logic of Science.
Cambridge University Press, 2003.

[11] N. Jennings, P. Faratin, T. Norman, P. O’Brien, and
B. Odgers. Autonomous agents for business process
management. Int. Journal of Applied Artificial
Intelligence, 142(2):145 – 189, 2000.

[12] D. MacKay. Information Theory, Inference and
Learning Algorithms. Cambridge University Press,
2003.

[13] S. Ramchurn, N. Jennings, C. Sierra, and L. Godo. A
computational trust model for multi-agent interactions
based on confidence and reputation. In Proceedings
5th Int. Workshop on Deception, Fraud and Trust in
Agent Societies, 2003.

[14] M. Singh. Business Process Management: A Killer Ap
for Agents? In N. Jennings, C. Sierra, L. Sonenberg,
and M. Tambe, editors, Proceedings Third
International Conference on Autonomous Agents and
Multi Agent Systems AAMAS-2004, pages 26 – 27.
ACM, July 2004.

[15] H. Smith and P. Fingar. Business Process
Management (BPM): The Third Wave. Meghan-Kiffer
Press, 2003.

[16] W. van der Aalst and K. van Hee. Workflow
Management: Models, Methods, and Systems. The
MIT Press, 2002.

[17] M. Wooldridge. Multiagent Systems. Wiley, 2002.

182

