
Dynamic Epistemic Logic with Assignment

H.P. van Ditmarsch
Computer Science
University of Otago

New Zealand

hans@cs.otago.ac.nz

W. van der Hoek
Computer Science

University of Liverpool
United Kingdom

wiebe@csc.liv.ac.uk

B.P. Kooi
Philosophy

University of Groningen
the Netherlands

barteld@philos.rug.nl

ABSTRACT
We add assignment operators to languages for epistemic ac-
tions, so that change of knowledge and change of facts can
be combined in specifications of multi-agent system dynam-
ics. We make a distinction between ‘public assignment’ and
‘atomic assignment’. Public assignment means that the en-
tire group of agents is aware of the factual change. This op-
eration combines well with public announcement. We pro-
pose semantics for the logic of public announcements and
public assignments, and we give a relevant valid principle.
Atomic assignment means that only facts are changed, so
that it can be expressed independently in the language how
agents are aware of this factual change. Atomic assignment
and ‘test’ (the truth of a formula) are the two basic con-
structs in a logic of epistemic actions. We propose seman-
tics for this logic of epistemic actions and atomic assignment.
The logic of public announcements and public assignments
is a special case of this logic. Examples include card games
where cards change hands.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Languages, Theory

Keywords
agent communication, assignment, dynamic epistemic logic

1. INTRODUCTION
This contribution combines dynamic epistemic logic, i.e.,

the logic of reasoning about change of knowledge, with a
standard framework for assignment.

Epistemic logic, or the logic of knowledge, started with
[14], and has been investigated since in philosophy [16], com-
puter science [8], artificial intelligence [17], and game theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

[2]. The latter three application areas made it apparent that
in multi-agent systems higher-order information, knowledge
about other agents’ knowledge, is crucial.

Change of knowledge, and of belief, has been put on the
agenda by Alchourrón et al. [1], and has since developed
strongly. Standard issues include modelling differences be-
tween belief revision and belief updates [15], and the prob-
lem of iterated belief change [7]. In such approaches the
dynamics is studied on a level above the informational level,
and not incorporated in the logical language. This made it
hard, if not impossible, to model the knowledge an agent
has about other agents’ knowledge.

In dynamic epistemics one can describe knowledge change
in the logical language, one can also describe knowledge an
agent has about other agents’ knowledge, and one can de-
scribe change of knowledge, all in one. Publications in this
area include [20, 9, 24, 22, 3, 25]. The basic idea behind
knowledge change in this field is that it can be modelled
as an action or program that induces an information state
transformation. In other words, it can be modelled as an
operation that, given a relational structure that represents
what agents know, and what they know about each other,
transforms that structure into a ‘new information state’, i.e.,
a similar relational structure, that represents the new state
of information.

Assignment is a primitive operation in programming lan-
guages. Given program variables of a certain type, for ex-
ample natural numbers or booleans, an assignment has the
form p := e, for ‘variable p becomes expression e’. This
means that the value of p becomes (is assigned) the value
of e, presuming that e can be evaluated in that program-
ming language. See [10]. Highlights are the Hoare calcu-
lus of correctness of programs [6], in which assignment is
the primitive program command, and the dynamic logic of
Harel and collaborators [11], wherein programs such as as-
signments are the parameters of dynamic modal operators
that express their pre- and postconditions.

In an epistemic setting the analogue of a ‘set of state vari-
able values’, is a ‘valuation of atomic propositions’, i.e., a
‘state of the world’ or factual description. Now if it were only
that, we could proceed as in dynamic logic. But instead of
programs inducing (factual) state transitions, in dynamic
epistemic logic we have programs inducing epistemic or in-
formation state transitions. An epistemic state is, roughly,
nothing but a multi-set of factual state descriptions, with
relations between them that describe how agents can distin-
guish between those states. The assignments now take the
form p := ϕ, for ‘(in every state of the domain) the value of

141

atomic proposition p becomes the value of epistemic formula
ϕ (in that state)’. The epistemic formula ϕ is interpreted in
an epistemic state. The epistemic state transitions induced
by assignments are similar to those induced by epistemic
actions.

There are many multi-agent system scenarios where change
of knowledge, i.e., actions or observations, and change of
facts, interact and cannot be separated. Distributed sys-
tems, of which the ‘toy’ Muddy Children Problem is a very
simple form, and card games where cards change hands, are
introduced in the examples below. Detailed specifications of
such systems are relevant for other aspects of their descrip-
tion as well, and possibly for other disciplines, such as the
computation of optimal strategies for such card games [19].
Other fields of application are the modelling of speech acts
and presuppositions in dialogue (www.fipa.com), and mod-
elling negotiations and contractual agreement, in particular
when that involves complex communicative acts [21].

We present two examples where assignment and knowl-
edge interact: in the setting of the ‘Muddy Children Prob-
lem’ [18], we consider the action of washing a child; and
in the setting of players holding cards [24], we consider the
action of swapping cards.

Suppose that there are three children, Anne, Bill, and
Cath, two of which have mud on their foreheads, suppose
Anne and Bill. It is commonly known that children can only
see the forehead of other children. Father comes forward and
announces “At least one of you is muddy”. Father happens
to be carrying a bucket of water and now empties it over
Anne. (This is not part of the standard problem.) Anne
is now clean, and this is publicly known. Father then says:
“Let those who know whether they are muddy please step
forward”. Instead of no-one stepping forward, which is the
case in the standard version of the problem, Anne now steps
forward, because she knows that she is not muddy. Father
asks again: “Let those who know whether they are muddy
please step forward”. What happens? And what if instead
of just emptying the bucket over Anne, he had said at that
same time “Anne, you dirty child, let’s do something about
this”. What would have happened in this case after father’s
second request? And what if Bill and Cath had been muddy
instead of Anne and Bill, at the beginning?

Note that not just facts may change, such as the value
of ‘Anne is muddy’, but also knowledge about facts, such
as the value of ‘Bill knows that Anne is muddy’, but even
knowledge about others’ knowledge, such as the value of
‘Anne knows that Bill knows whether she is muddy’.

We continue with the card game example. There are three
players Anne, Bill, and Cath, and three cards Wheat, Flax,
and Rye. The cards are shuffled and every player draws
a card from the stack. Suppose Anne draws Wheat, Bill
draws Flax, and Cath draws Rye. Players only know their
own card. Anne and Bill now swap their cards. What do the
players know about each other in the resulting game state?
What if Anne had two cards instead of one? What is the
difference, in the last case, between letting Bill draw a card
from her hand, and Anne handing Bill a card? And in the
first case?

Again, note that not just facts may change, such as the
value of ‘Anne holds Wheat’, but also knowledge, such as
the value of ‘Anne and Bill know the card deal’, and even
knowledge about the knowledge of other players, such as
the value of ‘Cath knows that Anne and Bill know the card

deal’.
An assignment operation can be added in a natural way

to both the logic of public announcements and the ‘full’ dy-
namic epistemic logic. The first we call public assignment
and the second atomic assignment. The first is easier to
explain informally. It is an atomic program p := ϕ that
changes the value of atom p into that of the formula ϕ –
and assumes that all the agents are aware of this change.
In the case of father cleaning Anne in the first example, the
assignment executed is ma := ⊥. Atom ma stands for ‘Anne
is muddy’, and ⊥ for the false proposition, so that ma := ⊥
stands for ‘all agents learn that it becomes false that Anne
is muddy’. We can use this assignment in dynamic modal
operators that express the result of epistemic state transfor-
mation, e.g., in the formula [ma := ⊥]Ka¬ma. This stands
for ‘after all agents learn that it becomes false that Anne is
muddy, Anne knows that she is not muddy’. This does not
assume that Anne was muddy before the assignment.

Section 2 presents the logic of public announcements and
public assignments. Section 3 presents the logic of epis-
temic actions and atomic assignment. We give no proof
systems of the logics presented. We focus on examples and
applications in multi-agent systems of actions involving both
change of knowledge and factual change. Section 4 takes a
cursory glance at concurrent actions, multiple assignments,
and change of belief.

2. PUBLIC ASSIGNMENT
The logic of public announcements and public assignments

contains both epistemic and dynamic modal operators. With
epistemic operators we express individual knowledge, for an
arbitrary agent, and public (common) knowledge, for the
entire group of agents. With dynamic modal operators we
express the effect of public announcements, i.e., public (and
truthful) announcements of formulas in the language, and
the effect of public assignments. The parameters that play
a static role throughout the semantic and syntactic defini-
tions are a set of agents N and a set of propositional atoms
P .

An epistemic model M = 〈S,∼, V 〉 consists of a domain S
of factual states or just states, accessibility ∼: N → P(S×S)
which for each agent n ∈ N defines a binary accessibility
relation (that is an equivalence relation) ∼n on S, and a
valuation V : P → P(S) which for each atom p ∈ P defines
a valuation Vp ⊆ S. If M is an epistemic model, and s ∈
D(M) (s is in the domain of M), then the pointed model
(M, s) is an epistemic state.

Definition 1 (Logical language) The formulas are induc-
tively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CNϕ | [ϕ]ψ | [p := ϕ]ψ

We assume familiarity with the propositional connectives
and with notational abbreviations. Formula Knϕ stands
for ‘agent n knows ϕ’, and CNϕ stands for ‘it is common
knowledge in group N that ϕ’. The construct [ϕ]ψ stands
for ‘after truthful public announcement of ϕ, it holds that
ψ’. Instead of ‘ϕ is a public and truthful announcement’
we say ‘ϕ is an announcement’. The expression [p := ϕ]ψ
stands for ‘after (all agents learn that) p becomes ϕ, it holds
that ψ’.

142

Definition 2 (Semantics) Given are an epistemic model
M = 〈S,∼, V 〉 and a state s ∈ S. We define (M, s) |= ϕ by
induction on ϕ. Write [[ϕ]]M for {s ∈ S | (M, s) |= ϕ}.

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= Knϕ iff for all t : s ∼n t implies M, t |= ϕ

M, s |= CNϕ iff for all t : s ∼N t implies M, t |= ϕ

M, s |= [ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

M, s |= [p := ϕ]ψ iff Mp:=ϕ, s |= ψ

where ∼N :=
S

n∈N ∼n)∗ (i.e., the reflexive transitive closure
of the union of all ∼n), where M |ϕ := 〈S′,∼′, V ′〉 is defined
as

S′ = [[ϕ]]M
∼′

n = ∼n ∩ ([[ϕ]]M × [[ϕ]]M)
V ′

p = Vp ∩ [[ϕ]]M

and where Mp:=ϕ = 〈S,∼, V ′〉 is as M except that V ′
p =

[[ϕ]]M (i.e., for all q 6= p, we have that V ′
q = Vq). a

In other words: the model M |ϕ is the model M restricted
to all the states where ϕ holds, including access between
states, and the valuation of states. The model Mp:=ϕ is
the model M but wherein the value of the atom p takes
the extension of the formula ϕ in the model M (and where
all else remains the same). Unlike public announcements,
that can only be executed when true, the public assigment
action is always executable. We can therefore see it as an
operation on the model underlying the epistemic state. We
write Mp:=ϕ for the model resulting from that assignment.
Validity, and validity in models, are defined as usual.

2.1 Example involving public assignment
Public assignment is an action that changes facts that de-

scribe states in the model, in a way that is public to all
agents. Consider the introductory example of father emp-
tying a bucket of water over Anne, in view of all children,
after his announcement that at least one of them is muddy,
but before his request to step forward if you know whether
you are muddy. Atom ma describes that Anne is muddy,
etc. The top left model (Cube, 110) in Figure 1 represents
the epistemic state where Anne and Bill are muddy, before
Father’s announcements. The name 101 stands for the state
where Anne and Cath are muddy, and Bill is not muddy, etc.
The part 011—a—111 means that Anne cannot distinguish
between the states 011 and 111 (because she cannot see her
own forehead), etc. The actual state 110 is underlined: Ac-
tually, Anne and Bill are muddy.

As the result from father’s announcement that at least
one child is muddy, state 000 (where no-one is muddy) is
eliminated from public consideration. As the result of exe-
cuting assignment ma := ⊥ in that epistemic state only the
valuation of fact ma is changed, namely into ‘false’: all 1s
in the first position of all states now have become 0s. Note
that the state 010 where Anne was formerly clean is epistem-
ically different from the state 010 where Anne was formerly
muddy: in the first case Bill knows that he is muddy, but
in the second case he does not know that. After father’s
request, only Anne steps forward. Not surprisingly: it is
now common knowledge that Anne is clean. Therefore she
knows whether she is muddy: namely ‘not’. We have

Cube, 110 |= [ma ∨mb ∨mc]¬(Kama ∨Ka¬ma)
Cube, 110 |= [ma ∨mb ∨mc][ma := ⊥]Ka¬ma

000 100

010 110

001 101

011 111

a

a

c c

b b

b b

a

c c

a

100

010 110

001 101

011 111

a

c

b

b b

a

c c

a

000

010 010

001 001

011 011

a

c

b

b b

a

c c

a

000

010

001

011 011

c

b

b

c

a

000

010

001

011

c

b

b

c

Figure 1: A version of the muddy children problem that

includes cleaning them. States that cannot be distin-

guished by agent n have an n-link between them. The

actual states are underlined. Clockwise, from the top

left corner: the initial configuration; after father says

that at least one is muddy; after father hosed Anne with

water; after those who know whether they are muddy

step forward (and Anne steps forward); after that re-

quest is repeated (eliminating that only Bill and Cath

were muddy).

Because Bill and Cath do not step forward at the same time
as Anne, the leftmost state 010 and 001 in the bottom-right
model are eliminated. Unlike in the ‘traditional’ analysis
of the Muddy Children Problem, state 000 (formerly 100)
can not be eliminated from the model, as the reason for
Anne to step forward is unknown to Bill and Cath: she may
have stepped forward because she already knew that she was
muddy – for the original case 100 – or she may have stepped
forward because she has just been cleaned. After father
repeats his request, the left-most 011 in the bottom-middle
model of the figure is eliminated. This corresponds to the
situation where instead of Anne and Bill, Bill and Cath had
been muddy at the outset. No further repetitions of Father’s
request will change that epistemic state: it remains unclear
to Bill and Cath whether they are muddy. Without the
‘cleaning’, Bill would have learnt that he is muddy after the
first request, and step forward (with Anne) at its repetition.

What ‘sort’ of actions that regularly recur in multi-agent
systems can be made by combining public announcements
and public assignments? We defer a discussion of that to
Section 3.2, where they can be contrasted with other epis-
temic actions. More complex actions often involve subgroup
interaction that cannot be described with public announce-
ments and assignments only, such as the action where father
throws a bucket with dirty water over Anne, so that she may
or may not become clean.

2.2 Reduction axiom for assignment
What is the principle relating truth of formulas before and

after the assignment? Let ψ(p/ϕ) stand for the substitution
of ϕ for all occurrences of p in ψ. The Hoare-calculus for

143

program correctness contains a rule for assignment

{ψ(p/ϕ)} p := ϕ {ψ}

to which corresponds a dynamic principle

ψ(p/ϕ)→ [p := ϕ]ψ

which suggests the reduction axiom

ψ(p/ϕ)↔ [p := ϕ]ψ

But this principle is unsound (invalid), because of the inter-
action of assignment and announcement, and the peculiar
phenomenon that some formulas expressing ignorance be-
come false because they are announced. (In other words,
unlike ‘standard’ program semantics, the evaluation of an
expression depends on more than the set of state values, but
just like the standard setting, the result is after all only the
reset of a state value. This discrepancy causes the problem.)

For example, imagine that I were to say “You do not know
that I am going to the movies tonight”. The superficial log-
ical structure of that announcement is ¬Kp, where p de-
scribes the atomic proposition ‘I am going to the movies
tonight’ and where K is the epistemic operator describing
your knowledge. A presupposition in such a dialogue is also
that p is true, therefore the actual announcement is p∧¬Kp.
As a result of this announcement, you know that I am going
to the movies tonight: Kp. In other words, the formula of
the announcement became false, because it was announced.

We can capture this scenario in an epistemic state (M, 1)
such thatM = 〈{0, 1},∼, V 〉 with Vp = {1} and ∼= {0, 1}×
{0, 1}. The instance

p ∧ ¬Kp↔ [p := p ∧ ¬Kp][p]p

of the supposed reduction axiom (wherein we have applied
the substitution) is false in (M, 1), so that it must be invalid.
One can easily see that

(M, 1) 6|= p ∧ ¬Kp

but that

(M, 1) |= [p := p ∧ ¬Kp][p]p

The result of the announcement p ∧ ¬Kp is the single-state
model consisting of state 1 only, in which the announced
formula is false; whereas the result of the assignment p :=
p∧¬Kp is (M, 1) itself again, in which after announcement
of p, p is still true.

The ‘principle of public assignment’ ψ(p/ϕ) ↔ [p := ϕ]ψ
is valid if ϕ is a preserved formula. The preserved formulas
are those preserved under restriction to arbitrary submodels,
i.e., if M ′ ⊆ M , then for all s ∈ D(M): if M, s |= ϕ then
M ′, s |= ϕ. This entails that for arbitrary formulas χ that
are true in s, if M, s |= ϕ then M |χ, s |= ϕ.

We consider completeness and proof theory – although
fascinating and important topics – outside the scope of this
contribution, and merely report on progress in this matter.
The principle of public assignment appears not useful for
a proof system for this logic, because a syntactic charac-
terization of the rather semantic notion of ‘preservation’ is
not available. Instead, one adds reduction axioms by case
distinction on the structure of ψ in [p := ϕ]ψ.

The logic of public announcements without assignment is
proved sound and complete in [3], with precursors in [20,
9]. The logic of multi-agent epistemic logic (i.e., without
announcements) with public assignment can easily be seen

to be complete, with or without common knowledge. Re-
duction axioms are sufficient in that case. The logic without
common knowledge, with public announcements, and with
public assignments, is also complete. We then use that there
is a ‘rewrite system’ from the logic of public announcements
without common knowledge to that logic without announce-
ments. But the completeness of the logic presented in this
paper is still a conjecture: the interaction between common
knowledge, announcement, and assignment, creates one dif-
ficulty too much to be easily resolved.

3. ATOMIC ASSIGNMENT
We now introduce a more expressive logic, of which the

logic of public announcements and public assignments is a
special case. To a standard multiagent epistemic language
with common knowledge, for a set N of agents and a set
P of atoms [17, 8], we add dynamic modal operators for
epistemic actions. Actions may change the knowledge of
the agents involved, and, if the actions involve assignments,
they may also change the value of facts. The structures on
which this logic is interpreted, are the same as for the logic
of public announcements and public assignments. We need
one more concept: given an epistemic model M = 〈S,∼, V 〉,
the set of agents N is called the group (gr) of this model,
for which we write gr(M) = N .

Definition 3 (Logical language) The formulas are defined
by

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [α]ϕ

The actions are defined by

α ::= ?ϕ | p := ϕ | LGα | (α ! β) | (α ¡ β) | (α ; β) | (α∪ β)

The formulas and actions in bold carry extra constraints,
that have been deleted in this presentation. In CGϕ and
in LGα, group G is an arbitrary subset of the set N of all
agents. Remove brackets whenever convenient. The con-
struct [α]ψ stands for ‘after every execution of action α, it
holds that ψ’. The dual of [α] is 〈α〉, so that 〈α〉ψ stands
for ‘after some execution of α, it holds that ψ’.

Action ?ϕ is a test. Action p := ϕ is an atomic assign-
ment. We write this the same as public assignment, as there
is no source of ambiguity in action expressions. Action LGα

is pronounced as ‘group G learn α’ and this is called a learn-
ing action. Action (α ; β) is sequential execution, and (α∪β)
is nondeterministic choice. Action (α ! β) is called (left) lo-
cal choice, and (α ¡ β) is its dual, right local choice. Local
choice (α ! β) may be seen as ‘from α and β, choose the first
locally’ and local choice (α ¡ β) as ‘from α and β, choose
the second locally’. In an action of the form LG(α ! β),
everybody in G and not in α or β (i.e., not in learning op-
erators occurring in α or β) is unaware of the choice for α.
Therefore we call the choice ‘local’: only agents in α or β
may be aware of it. Instead of (α ! β) we generally write
(!α ∪ β). This expresses more clearly that given choice be-
tween α and β, the agents involved in those actions choose
α, whereas that choice remains invisible to the agents that
learn about these alternatives but are not involved. Simi-
larly, instead of (α ¡ β) we generally write (α∪ !β). If we
replace all ‘!’ and ‘¡’ operators in an action α by ∪ operators,
we get the type t(α) of that action. The use of ‘!’ and ‘¡’
operators merely allows us to constrain the interpretation of
a possibly non-deterministic action to a deterministic one.

144

To interpret actions and formulas we need a notion of
equivalence between epistemic states. We lift equivalence of
factual states in the domain of an epistemic state to equiv-
alence of epistemic states, in the obvious way:

(M, s) ∼n (M, t) iff s ∼n t

(M, s) ∼n (M ′, s′) iff there is a t ∈M such that (M, t)
↔ (M ′, s′) and (M, s) ∼n (M, t)

The symbol ↔ stands for ‘is bisimilar to’, see [17, 5].
Epistemic states occur as factual states in clause LGα of
the following definition of the interpretation of formulas and
actions. Equivalence of such epistemic states determines
equivalence of the corresponding factual states.

Definition 4 (Semantics) Given a model M = 〈S,∼, V 〉
and an s ∈M . The interpretation |= of a formula ϕ in (M, s)
and the interpretation [[·]] of an action α beteen epistemic
states are defined by simultaneous induction.

(M, s) |= p iff s ∈ Vp

(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= Knϕ iff for all t : s ∼n t implies (M, t) |= ϕ

(M, s) |= CGϕ iff for all t : s ∼G t implies (M, t) |= ϕ

(M, s) |= [α]ϕ iff for all (M ′, s′) : (M, s)[[α]](M ′ , s′)
implies (M ′, s′) |= ϕ

(M, s)[[?ϕ]](M ′, s′) iff M ′ = 〈[[ϕ]]M , ∅, V ∩ [[ϕ]]M 〉
and s′ = s

(M, s)[[p := ϕ]](M ′, s′) iff M ′ = 〈S, ∅, V ′〉 and s′ = s

(M, s)[[LGα]](M ′, s′) iff M ′ = 〈S′,∼′, V ′〉 and
(M, s)[[α]]s′

[[α ; β]] = [[α]] ◦ [[β]]
[[α ∪ β]] = [[α]] ∪ [[β]]
[[α ! β]] = [[α]]

In the clause for ‘assignment’: V ′ is as V except that Vp =
[[ϕ]]M . In the clause for ‘learning’, M ′ is such that: S′ =
{(M ′′, t′′) | ∃u ∈M : (M,u)[[t(α)]](M ′′, t′′)}; for an arbitrary
agent n: if (M, s)[[t(α)]](M ′′

1 , s
′′) and (M, t)[[t(α)]](M ′′

2 , t
′′),

then (M ′′
1 , s

′′) ∼′
n (M ′′

2 , t
′′) iff (M ′′

1 , s
′′) ∼n (M ′′

2 , t
′′) (where

∼n means equivalence of epistemic states) or (n 6∈ gr(M ′′
1)∪

gr(M ′′
2) and s ∼n t); and for an arbitrary atom p and factual

state (M ′′, s′′) (with valuation V ′′) in the domain of M ′:
(M ′′, s′′) ∈ V ′

p iff s′′ ∈ V ′′
p . a

A test results in an epistemic state without access for any
agent. This is appropriate: how knowledge changes is only
expressed in ‘learning’, so before we encounter an L oper-
ator we cannot say anything at all about the knowledge of
the agents in the epistemic state resulting from action exe-
cution. One might as well say that, while compositionally
interpreting an action, the computation of agents’ knowl-
edge is deferred until L operators are encountered. Note
that this is different from public announcement, where all
access is retained on the restriction of the domain to the
ϕ-states.

Assignments always succeed and change the value of atoms.
Just as for tests, and for the same reason, it results in an
epistemic state without access. Note that this is different
from public assignment, where all access is retained.

Learning LGα is defined in terms of t(α). This is how
local choice constructions α ! β get their ‘real’ meaning,

even though [[α ! β]] = [[α]] suggests that the ‘!’ connec-
tive is superfluous. Note that [[LG(α ! β)]] is computed from
[[t(α ! β]] = [[t(α)∪t(β)]] = [[t(α)]]∪ [[t(β)]], and therefore from
both [[α]] and [[β]]. To execute an action LGα in an epistemic
state (M, s), we do not just have to execute the actual action
α in the actual epistemic state (M, s), but also any other ac-
tion of the same type t(α) as α in any other epistemic state
(M, t) with the same underlying model M . The results are
epistemic states that serve as factual states in the domain
of the epistemic state that results from executing LGβ in
(M, s). Such factual states cannot be distinguished from
each other by an agent n ∈ G, if they are either indistin-
guishable as epistemic states, or if the agent does not occur
in these epistemic states but could not distinguish between
the epistemic states before execution of the actions.

Bisimilarity of epistemic states is preserved under execu-
tion of epistemic actions. A proof system for a version of this
logic without assignments and with concurrency is proposed
in [25]. The logic of epistemic actions with assignments is
under investigation and a proof system is yet to be provided.
We also mention that public assignment p := ϕ is equivalent
to the epistemic action LN (p := ϕ) (where p := ϕ is now
atomic assignment), and that public announcement of ϕ is
equivalent to the epistemic action LN?ϕ.

3.1 Example involving atomic assignment
For an example, we model that Anne and Bill swap their

cards, in a situation where Anne, Bill, and Cath (a, b, c)
each hold one of the cards Wheat, Flax, and Rye (w, x, y),
respectively, and where players only know their own card.
Atoms qn describe that the card named q is held by player
n, e.g., wa describes that Anne holds Wheat. This situation
is modelled by the epistemic state (Hexa,w.x.y), see Figure
2.

The action where Anne swaps a card q for a card q′ of
Bill, in such a way that Cath cannot see which cards are
swapped, is described as follows.

Swap(a, b)(q, q′) = ?(qa ∧ q
′
b) ; qa := ⊥ ; qb := > ;

q′b := ⊥ ; q′a := >
LearnSwap(a, b)(w, x) = Labc(!LabSwap(a, b)(w, x)∪

LabSwap(a, b)(w, y)∪
LabSwap(a, b)(x,w)∪
LabSwap(a, b)(x, y)∪
LabSwap(a, b)(y,w)∪
LabSwap(a, b)(y, x))

We read this action as follows: Anne, Bill and Cath learn
(Labc) that one from six alternatives is executed: either
Anne and Bill learn (Lab) that ‘they swap one card namely
w and x’ (Swap(a, b)(w, x)), or ..., or ...; and the first of
these six alternatives really happens (but only Anne and
Bill learn that). The Swap action consists of five parts, take
Swap(a, b)(w, x) for example. We then get ?(wa∧xb) ; wa :=
⊥ ; wb := > ; xb := ⊥ ; xa := >. The first part tests
whether Anne holds Wheat and Bill holds Flax. If so, then
four assignments are executed. That is the actual swap-
ping of those two cards. The order of the four assignments
is irrelevant. In this case, it reads as: make it false that
Anne holds Wheat, then make it true that Bill holds Wheat.
(That completes tranferring the ownership of Anne’s Wheat
card.) Then, make it false that Bill holds Flax, and after
that make it true that Anne holds Flax. The four assign-
ments must be kept together, so that the cards are traded

145

y.w.x

x.w.y

w.x.y w.y.x

y.x.w

x.y.w

a

a

a

b b

bc

c c

.wy.x

.wx.y

.wx.y .wy.x

.xy.w

.xy.w

a

a

a

b b

bc

c c

w.y.x

w.x.y

x.w.y y.w.x

x.y.w

y.x.w

a

a

a

b b

bc

c c

w.y.x

w.x.y

x.w.y y.w.x

x.y.w

y.x.w

b b

bc

c c

w.y.x

w.x.y

x.w.y y.w.x

x.y.w

y.x.w

c

c c

a to b

facedown

b to a facedown

a picks up card

b picks up card

LearnSwap(a, b)(w, x)

Figure 2: Top-left: the epistemic state (Hexa, w.x.y)

where three players Anne, Bill and Cath (a, b, c) each

hold one card namely Wheat, Flax, and Rye (w,x, y),

respectively. The actual deal w.x.y is underlined. Clock-

wise, from top-left: Anne puts her Wheat card facedown

on the table in front of Bill; Bill puts the card that he

knows, i.e., his Flax card, facedown on the table in front

of Anne. Then, Anne looks at her card. Then, Bill looks

at his card. We can also model this sequence as one

action LearnSwap(a, b)(w, x).

simultaneously and not one after the other: if a player gives
a card to another player and then that other player returns
a card, that may have been the card that the other player
had just been given. The Swap parts must be bound by Lab:
from the point of view of Anne and Bill, the action is public
(to them), only from Cath’s point of view it isn’t.

The result of the action LearnSwap(a, b)(w, x) is pictured
in the transition between the top-left and the bottom-left
model in Figure 2 (unrelated to the other transitions in the
figure). We refrain from giving details of the computation of
the interpretation of this action and only mention that, e.g.,
the factual state x.w.y in the resulting model is actually
the epistemic state (Hexa, w.x.y)[[LabSwap(a, b)(w, x)]] (we
use a postfix functional notation for the unique epistemic
state resulting from executing that action in that state). As
agent c does not occur in this state, nor in factual state
w.x.y of the resulting model that really is epistemic state
(Hexa, x.w.y)[[LabSwap(a, b)(x,w)]], these two epistemic states
are the same for Cath as factual states in the resulting
model, because before execution of these actions, w.x.y was
the same for Cath as x.w.y (because she holds Rye in both
deals). Etc.

We can also model the action of trading cards as a se-
quence of four different actions. This is also pictured in
Figure 2. For the sake of generality, we do this from a per-
spective where players might hold more than one card from

a set of cards Q. First, Anne puts her card facedown in front
of Bill (and for a general perspective, we let her choose the
cards that she gives to Bill, and not blindly draw one of her
cards); then Bill puts a card that he knows to hold (in that
way excluding the card just handed to him by Anne, that
he also ‘holds’ but that he does not know yet) facedown in
front of Anne; then Anne picks up her new card (this is the
card ‘that she does not know yet’); then Bill picks up his
new card. The types of these actions are

Labc

S
q∈Q

La(?qa ; qa := ⊥ ; qb := >)

Labc

S
q∈Q

Lb(?Kbqb ; qb := ⊥ ; qa := >)
Labc

S
q∈Q

La?(qa ∧ ¬Kaqa)

Labc

S
q∈Q

Lb?(qb ∧ ¬Kbqb)

If Anne blindly chooses one of her cards to give to Bill the
description is

Labc

S
q∈Q

(?qa ; qa := ⊥ ; qb := >)

The difference between the previous description is the ab-
sence of the La constructor. Without it, Anne is not aware
of the card she is handing to Bill. In other words, this has
become the action where Bill draws one of Anne’s cards.

3.2 Ontology of epistemic assignment actions
If we abstract from the formulas occurring in actions, and

therefore regard their communicative structure only, most
epistemic assignment actions in multi-agent systems fall in
one of a small number of categories. A tentative overview is
the following. We only give action types, and for simplicity
assignments are to false or true only. They are on occasion
followed by examples. The first two action types have equiv-
alent descriptions in the logic of public announcements and
public assignments.

1. A fact (‘de re’) becomes false:S
p∈P LN (p := ⊥)

Father throws a bucket of water over Anne:
Labc(ma := ⊥)

2. A true fact (‘de re’) becomes false:S
p∈P

LN (?p ; p := ⊥)

3. A fact (‘de dicto’) becomes false:
LN

S
p∈P

(p := ⊥)

4. A true fact (‘de dicto’) becomes false:
LN

S
p∈P

(?p ; p := ⊥)

Father says “I just saw (all) mud fall from one of your
foreheads”:
Labc

S
n=a,b,c

(?mn ; mn := ⊥)

5. A subgroup of agents observes an action:
LN

S
α
LGα

Anne and Bill swap a card:
Labc

S
q,q′ LabSwap(a, b)(q, q′)

Father throws a bucket of dirty water over Anne:
Labc(Lbc(ma := ⊥) ∪ Lbc(ma := >))

The difference between ‘de re’ and ‘de dicto’ in items 1. and
3. can be paraphrased as follows: in the ‘de re’ case, there
is a fact, such that all agents learn that that fact becomes
false. In the ‘de dicto’ case, all agents learn that there is
a fact that becomes false (but they might not know which
fact). Similarly for the difference between items 2. and 4.

146

We close this section with a two slightly more detailed
examples.

Two agents Alice (a) and Bob (b) fix and communicate a
private key q from a set of possible keys P in the presence
of an eavesdropper Eve (e):

Labe(!Lab(q := >) ∪
S

p6=q∈P Lab(p := >))

Anne and Bill reach contractual agreement by interme-
diation of a solicitor in the following way: Anne (a) signs
the contract (p) in the presence of witnesses a1 and a2 and
solicitor c. Then Bill (b) signs the contract in the presence
of witnesses b1 and b2 and the solicitor:

Laa1a2bb1b2c?
V

p∈P
¬p ;

Laa1a2bb1b2c

S
p∈P Laa1a2c(p := >) ;

Laa1a2bb1b2c

S
p∈P

Lbb1b2c?p

After the action, it is public knowledge (i.e., legally estab-
lished) that Anne and Bill share common knowledge of the
content of the contract (‘the value of p’).

Cabq ∧ Caa1a2bb1b2c(
W

p∈P Cabp)

In other words, the contract has become in force. This has
been achieved, even though Anne, but not Bill, actively par-
ticipated in the second of the three actions (a occurs in
Laa1a2c), and Bill, but not Anne, actively participated in
the third of the three actions (b occurs in Lba1a2c).

4. CONCLUSIONS, FURTHER RESEARCH
Multiple assignment A language with multiple (con-
current) assignment – optionally including precondition(s) –
is an alternative to the action primitives ‘test’ and ‘atomic
assignment’ in the above. But this amounts to the same
thing. A precondition for an assignment is nothing but a
test preceding it. In other words, a construct (ϕ : p := ψ) is
equivalent to a sequence ?ϕ ; p := ψ. Multiple assignments
can be made sequential by interleaving and adding a new
atomic variable r to the language. For example, the mul-
tiple assignment p, q := q, p where the values of two atoms
are swapped, can be simulated the sequence of three actions
r := p ; p := q ; q := r, after introducing a new atom
r in the language. A description of Swap(a, b)(w, x) with
multiple assignment is

?(wa ∧ xb) ; (wa, wb, xa, xb := wb, wa, xb, xa)

Concurrent actions There is no relation between con-
current epistemic actions [25] and ‘concurrent’ assignments.
The first is ‘true’ concurrency, i.e., the execution of an ac-
tion in an epistemic state can result in a set of concurrent
epistemic states. But the second is, as already mentioned,
‘intersection’ or interleaving concurrency. For the difference
between the two types of concurrency, see also [12]. An el-
egant description in concurrent dynamic epistemic logic of
(the type of the action of) swapping cards, before picking
up those cards, is

Labc(
S

q∈Q
La(?qa ; qa := ⊥ ; qb := >) ∩S

q∈Q
Lb(?qb ; qb := ⊥ ; qa := >))

Belief We have only modelled the interaction of changing
knowledge and changing facts. Belief is weaker than knowl-
edge: one may believe something that is not true. To model
private actions, we also need to incorporate belief. For ex-
ample, Anne and Bill swap Wheat and Flax without Cath

noticing it, so that Cath incorrectly believes that Anne (still)
holds Wheat. There are obvious generalization of the logics
presented here in that direction.

Other approaches Various work investigates the com-
bination of knowledge, change of knowledge, and change of
facts. We mention results by Jérôme Lang and others [13],
by Alexandru Baltag and others [4], and by Jan van Eijck
and others [26, 23].

Conclusions We gave a language and a semantics for
an epistemic logic with public announcements and public
assignments. We also gave a language and a semantics for
an epistemic logic with epistemic actions and atomic assign-
ments, of which the first logic is a special case. We gave an
overview of types of epistemic action involving assignment
including examples in distributive systems and games.

5. ACKNOWLEDGMENTS
We thank the anonymous AAMAS referees for their com-
ments.

6. REFERENCES
[1] C. Alchourrón, P. Gärdenfors, and D. Makinson. On

the logic of theory change: partial meet contraction
and revision functions. Journal of Symbolic Logic,
50:510–530, 1985.

[2] R. Aumann and A. Brandenburger. Epistemic
conditions for nash equilibrium. Econometrica,
63:1161–1180, 1995.

[3] A. Baltag and L. Moss. Logics for epistemic programs.
Synthese, 139:165–224, 2004. Knowledge, Rationality
& Action 1–60.

[4] A. Baltag, L. Moss, and S. Solecki. The logic of public
announcements, common knowledge, and private
suspicions. Technical report, Centrum voor Wiskunde
en Informatica, Amsterdam, 1999. CWI Report
SEN-R9922.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge University Press, Cambridge, 2001.
Cambridge Tracts in Theoretical Computer Science 53.

[6] O. Dahl, E. Dijkstra, and C. Hoare. Structured
Programming. Academic Press, London, 1972.

[7] A. Darwiche and J. Pearl. On the logic of iterated
belief revision. Artificial Intelligence, 89(1-2):1–29,
1997.

[8] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge
MA, 1995.

[9] J. Gerbrandy. Bisimulations on Planet Kripke. PhD
thesis, University of Amsterdam, 1999. ILLC
Dissertation Series DS-1999-01.

[10] D. Gries. The Science of Programming. Springer,
Berlin, 1981.

[11] D. Harel. Dynamic logic. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical
Logic, volume II, pages 497–604, Dordrecht, 1984.
Kluwer Academic Publishers.

[12] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, Cambridge MA, 2000. Foundations of
Computing Series.

147

[13] A. Herzig, J. Lang, and P. Marquis. Revision and
update in multiagent belief structures. Manuscript,
2005.

[14] J. Hintikka. Knowledge and Belief. Cornell University
Press, Ithaca, NY, 1962.

[15] H. Katsuno and A. Mendelzon. On the difference
between updating a knowledge base and revising it. In
Proceedings of the Second International Conference on
Principles of Knowledge Representation and
Reasoning, pages 387–394, 1991.

[16] W. Lenzen. Recent work in epistemic logic. Acta
Philosophica Fennica, 30:1–219, 1978.

[17] J.-J. Meyer and W. van der Hoek. Epistemic Logic for
AI and Computer Science. Cambridge Tracts in
Theoretical Computer Science 41. Cambridge
University Press, Cambridge, 1995.

[18] Y. O. Moses, D. Dolev, and J. Y. Halpern. Cheating
husbands and other stories: a case study in
knowledge, action, and communication. Distributed
computing, 1(3):167–176, 1986.

[19] M. Osborne and A. Rubinstein. A Course in Game
Theory. MIT Press, Cambridge MA, 1994.

[20] J. Plaza. Logics of public communications. In
M. Emrich, M. Pfeifer, M. Hadzikadic, and Z. Ras,
editors, Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems,
pages 201–216, 1989.

[21] M. Schoop. A language-action approach to electronic
negotiations. In H. Weigand, G. Goldkuhl, and
A. de Moor, editors, Proceedings of the 8th
International Working Conference on the
Language-Action Perspective on Communication
Modelling (LAP 2003), pages 143–160, Tilburg, NL,
2003.

[22] J. van Benthem. Logics for information update. In
J. van Benthem, editor, Proceedings of TARK VIII,
pages 51–88, Los Altos, 2001. Morgan Kaufmann.

[23] J. van Benthem, J. van Eijck, and B. Kooi. Logics of
communication and change. manuscript, 2005.

[24] H. van Ditmarsch. Descriptions of game actions.
Journal of Logic, Language and Information,
11:349–365, 2002.

[25] H. van Ditmarsch, W. van der Hoek, and B. Kooi.
Concurrent dynamic epistemic logic. In V. Hendricks,
K. Jørgensen, and S. Pedersen, editors, Knowledge
Contributors, pages 45–82, Dordrecht, 2003. Kluwer
Academic Publishers. Synthese Library Volume 322.

[26] J. van Eijck. Guarded actions. Technical report,
Centrum voor Wiskunde en Informatica, Amsterdam,
2004. CWI Report SEN-E0425.

148

