
Rockwell Automation Agents for Manufacturing
Vladimír Mařík, Pavel Vrba Ken H. Hall, Francisco P. Maturana

Rockwell Automation Research Center Rockwell Automation, Advanced Technology
Pekařská 695/10a 1 Allen-Bradley Drive, Mayfield Heights

Prague, Czech Republic Cleveland, OH, USA
Tel: +420-377422411 Tel: +1-4406463041

{vmarik, pvrba}@ra.rockwell.com {khhall, fpmaturana}@ra.rockwell.com

ABSTRACT
The paper provides an overview of the agent-based solutions
developed by the Rockwell Automation company for the purposes
of industrial control. Using agent-based manufacturing control, a
higher degree of flexibility and reconfigurability of manufacturing
solutions as well as higher robustness of the industrial systems can
be achieved. Specific solutions connected with the proposed agent
architecture, with implementation of the real-time control agents
as well as with the information transfer among the SW agents and
the real-time agents in a Programmable Logic Controller (PLC)
are presented. Attention is also paid to the simulation of both the
agent-based manufacturing facilities and their control systems.
A simulation environment MAST for material handling systems
has been implemented in JADE. The opportunity to re-use directly
the simulation software on the agent control level is one of the
most important features of MAST.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Application and Expert Systems –
Industrial Automation

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Intelligent agents

I.6.0 [Simulation and Modeling]: General

General Terms
Algorithms, Design, Experimentation

Keywords
Multi-agent systems, manufacturing, PLC, real-time control,
simulation, material-handling

1. INTRODUCTION
Rockwell Automation comp. (RA) is one of the world-leading
manufacturers in the field of industrial automation, dominating the
U.S. market in the area of discrete automation and control. The
family of ControlLogixTM programmable logic controllers (PLCs)
represents the flag-ship products. Programmable logic controllers
are dedicated to real-time, strictly synchronous, and hierarchically

organized control with reaction times in the order of tens of
milliseconds.

The centralized and hierarchical approaches used traditionally in
the production control, planning and scheduling or supply chain
management appear to provide insufficient capabilities to handle
the high degree of complexity and the increasing requirements for
flexibility and robustness.

As the complexity of the manufacturing business environments is
growing permanently, the technology of multi-agent systems
(MAS) plays an increasingly important role in developing the
concepts of highly distributed, robust and flexible manufacturing
control. These issues naturally encouraged the development of
new manufacturing architectures and solutions leveraging the
MAS research results – the manufacturing control system is being
considered as a community of highly distributed, autonomous and
efficiently cooperating and asynchronously communicating units
integrated by the plug-and-play approach.

The agent-based solutions seem to be the most attractive
especially for manufacturing system reconfiguration purposes in
the applications where the number of possible configurations of
the equipment is impractically large. That’s why the highest
priority is given to the agent-based solutions for reconfiguration
purposes (for example in the material handling, assembling and
complex diagnostic tasks etc.).

The major difference between the “classical”, strictly hierarchical
control and the agent-based solutions is that the overall behavior
of an agent system is more likely emergent than strictly
deterministic – the behavior of the distributed system emerges
from dynamically changing patterns of inter-agent interactions and
asynchronously executed decision-making processes of particular
agents that are not – in principle – influenced by any central
control element. The emergent behavior, sometimes called the
aggregate behavior, is expected to form one of the major benefits
of this approach [5]. However it still constitutes a significant
barrier against the wider deployment of the agent-oriented
engineering today.

One of the possible solution to diminish the occurrence of
emergent behavior would be to apply appropriate policies across
the system. This includes for instance adopting rigid and preset
organizational structures limiting the nature and the scope of the
agent interactions or applying the interaction protocols whose
properties can be formally analyzed. However, all these
techniques lead either to a restriction of agents' autonomy or to the
constraints on the flexibility and dynamic character of agent
interactions. Hence, the major benefits of the agent-oriented
engineering resulting from these characteristics are significantly
suppressed. The other solution that copes not only with the issues

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-150-2/05/0007 ...$5.00.

107

of the emergent behavior, but also with the evaluation of the
agent-based control systems in general, is the agent-based
simulation. It is clear since the very beginning that such a
simulation represents substantially more complex processes than
in case of “classical” centralized control systems.

2. THE FIRST APPLICATION
The very first Rockwell Automation (RA) industrial agent project
was to increase the machine utilization of a steel rod bar mill in
the mid nineteenth of the last century. The rod mill is shown in
Figure 1. The mill makes steel rods by reheating steel and rolling
the steel to size using multiple rolling stands and cooling the steel
along a defined temperature profile using multiple cooling boxes.
The production process recipes for most of the steel rods require
the use of neither all of the rolling stands nor all of the cooling
boxes. Hence the system had built-in redundancy and flexibility
since it could use any combination of cooling boxes and rolling
stands from the subset of working units to produce a given steel
rod recipe, as long as the required temperature profile was
followed. The recipes that the operators had been using, however,
specified particular subsets of cooling boxes and rolling stands. If
some piece of specified equipment was broken, the operators
would not run the recipe, and the order could not be filled. The
aggregate desired behavior of the MAS was to select and
configure a subset of cooling boxes from the working units to
satisfy the recipe requirements. This was implemented by enabling
each cooling box or unit to assess its own health and bid on its
part of the operation. The bids were used with a very accurate
simulation of the steel cooling process to enable rebidding until a
suitable subset of units and configurations was found [7].

The process used to develop the agents for each of the
participating units was to first understand the requirements. The
operators were interviewed to understand what aspects were
important to control the quality of the steel. Once the requirements
and the priority of the requirements were understood we began to
investigate various proposed solutions. Using the agent concept
we assigned functionality to the devices in the system. The
cooling box agent implemented in custome “C” code running on a
PC was interfaced with the existing control system and was given
the task of determining its health and capacity to cool by
maintaining a history of water flow. A central node, also
implemented on a PC using a combination of custom “C” and
Fortran, contained the steel cooling simulation that arbitrated the

bids to obtain the correct cooling curve. A simulation of the entire
process was used to evaluate the agent systems performance.
Changes were made to the behaviors of each agent until the
overall desired behavior was achieved. The agent-based control
system did not directly control the bar mill but instead
recommended a configuration to the operator. Because of safety
concerns and possible damage to equipment the risk was too high
to enable direct control by this new technology. Although the
agent system preformed very well in all the tests, to release the
system for production would require testing all steel recipes with
all possible subsets of cooling boxes.

The first experiments with the agent-oriented control philosophy,
and especially the real-life industrial implementation developed
together with BHP Billiton, Melbourne for a steel work in
Australia led to a better understanding of the requirements and
needs for this new kind of approach. Although the agent system
preformed well in all the test cases, the plant was reluctant to use
the “new technology” in production without the experts readily
available. BHP sold the rod mill as part of its restructing shortly
after the conclusion of the first experiments. Despite the fact that
there was a central element in the agents‘ community, the
company started to think how to change/modify its pilot products
towards enabling agent-based control solutions. Our experience
with the agent system pointed at two necessary improvements. The
first was the ability to combine the agents with the legacy control
system to eliminate the need for extra hardware and
communications. The second was an introduction of an agent
framework and development environment to enable creating and
maintaining agent systems easier.

3. REAL-TIME CONTROL AGENTS
Regarding the lowest, real-time control level, the major
characteristics of agents is that they are tightly linked with the
physical manufacturing equipment – for instance, one agent opens
and closes the valve in the piping system, another one controls the
pump, next one controls the movement of the AGV (Automated
Guided Vehicle) in the material handling system and the other one
can be responsible for controlling the operations of a CNC
machine.

These agents are referred to as holons or holonic agents [3] and
are usually implemented as modules that encapsulate both the
real-time (RT) control subsystem and the software agent (Figure
2). The RT-control subsystem is responsible for the direct
handling of the information from physical sensors and actuators in
real-time and is programmed in a low level language (usually in
the ladder logic). However, the software agent part of the holonic
agent needs to be implemented in some higher-level programming
language due to the complex nature of the decision-making,
communication and negotiation processes carried out by the
agents. As the agent design usually follows the object-oriented
principles – the agents are responsible for the local control of
particular components of the manufacturing equipment – it is
apparently reasonable to implement the agents in some object-
oriented language like C++ or Java.

An important aspect of this solution is the existence of a run-time
communication interface allowing to transfer the information from
the RT-control subsystem (i.e. data from sensors, diagnostic
subsystems, etc.) to the software agents and, vice versa, to
propagate the control actions decided by the agents to the
RT-control subsystem and thus to the physical actuators.
Moreover, the agent control subsystem should be designed in suchFigure 1. Bar steel production

108

a way that it can be easily integrated with the existing industrial
automation control architectures including the PLCs
(Programmable Logic Controllers), industrial hardware or
software visualization solutions (for example operator panels), etc.
In such an architecture, everything is naturally concentrated
around the so-called data-table of the PLC – the common data
memory of the PLC, that is (i) used to hold the sensor and actuator
information related to the manufacturing equipment connected
through the PLC's I/O modules, (ii) used by the low-level RT
control programs that process the data-table values (inputs and
internal states) and compute the output values propagated to
actuators and (iii) directly accessed by the visualization tool to
display the state of the controlled process.

This led to the idea to use the PLC data-table as the mentioned
run-time interface that provides the agents with a direct access to
the PLC's data table in order to act upon the real data from the
physical manufacturing process. As will be shown in Sect 4., such
an interface, referred to as universal run-time interface, is
considered to be used also for the simulation purposes. Within the
simulation, the agent-control algorithms are validated before they
are applied to the real facility. Apparently, the testing in the real
manufacturing environment is simply unconceivable or would be
at least extremely expensive and, maybe dangerous. The most
straightforward solution is to simulate the manufacturing
facility/process as well. In such a case, the universal run-time
interface provides a connection between the agents and the
simulated equipment.

In the following two Sections, the experience of Rockwell
Automation in developing the agent-based manufacturing control
systems is presented.

3.1 ACS Platform
The ACS – Autonomous Cooperative System was developed as
the C++ based agent platform dedicated to the Logix family of
PLC controllers. The agent platform enables to run the agents
directly inside the PLCs (ControlLogix, FlexLogix, etc.), supports
the agent management (registration, deregistration, services look
up, etc.) and ensures the transport of messages among agents. The
ACS platform is designed with respect to minimizing the use of
memory and CPU resources of the PLC so as to not impact the
performance of real-time control programs that run in parallel with
the agents. The agents use a specially designed communication
language – JDL (Job Description Language) for the message
exchange in the RT-tasks as well as for the planning purposes.
The JDL messages can be converted into FIPA-compliant

messages by adding an appropriate FIPA wrapper to allow the
ACS agents to communicate with other FIPA-compliant agent
platforms (for example JADE or FIPA-OS).

The first application of ACS was aimed at the development of a
reconfigurable and diagnostics driven control system for HVAC
(Heating, Ventilation and Air Cooling) and CWS (Chilled Water
System) of a US Navy ship [4] with the goal to increase its
survivability as a part of the Shipboard Automation project funded
by ONR (Office for Naval Research). Here, the C++ control
agents access the sensor and actuator values in the data table of
the ControlLogix (or its software emulator SoftLogix) controller
using the C++ implementation of the universal runtime interface.
The firmware of the ControlLogix is extended to allow running
the C++ agents directly inside the controller in parallel with the
ladder logic programs. Each element of the physical HVAC/CWS
equipment (valve, cooling unit, piping section, etc.) or group of
them is controlled by an individual agent. A reconfiguration
process is triggered upon failure detection by a built-in diagnostic
module. After detecting a failure an alternative solution – for
example finding alternative path for water in the piping system to
avoid the broken part – is found via negotiation among the agents.

The solution that has been successfully tested in the RA Advanced
Technology Labs in Cleveland as well as in the U.S.NAVY
facility in Philadelphia consists of 116 agents which are run on 6
ControlLogix controllers. Both the appropriate tool for
development of agents and control systems and the visualization
HMI (in the Rockwell Automation RSView32 tool) were
developed as well.

In the case where more general, system-wide decision making, not
directly linked with the physical devices is needed or required, it
is necessary to introduce – besides the control and diagnostic
agents – the higher level agents. In principle, it is possible to
separate the responsibilities of the global agent system in such a
way that:
• System-wide observations and optimizations are concentrated

in high level agents which are based on high-level abstractions
and which are decoupled from the physical devices.

• Control behavior is concentrated in the lower level agents
which are constrained in a time critical realm and which
operate in too limited time intervals to converge to high-value
solutions.

As the high-level agents we use the agents developed by John
Hopkins University (JHUAPL agents) which are able to consider
and re-consider the activities of the control agents from the
system-wide (ship-wide) point of view. They understand the
ship’s operational modes, various interactions of ship systems,
change the global priorities and perform the model-based
diagnostics. The control agents developed by Rockwell
Automation (RA agents) are responsible for the real-time control
of the HVAC/CWS equipment, for efficient chilled water resource
utilization, for re-configuring water paths, performing basic
equipment diagnostics as well as for localization of leaks. The
JHUAPL and RA agents communicate by exchanging FIPA/JDL
messages.

3.2 Java-based agents
Recently, Java is being widely considered as an alternative to
C++, mainly due to the portability of Java programs between
different hardware platforms and operating systems, networking
features, web-browser integration, etc. To enable the Java agents

Figure 2. Holonic agent architecture

109

to access the ControlLogix PLC data table, the Java
implementation (in form of API) of the universal runtime interface
has recently been developed. To select an appropriate Java-based
agent platform as an agent run-time environment for the
ControlLogix PLC, we have conducted an evaluation of the
majority of currently available Java-based agent platforms [8]. For
the benchmarking, only the following subset of them has been
considered: JADE, FIPA-OS, ZEUS, JACK and newly AGLOBE
[6] (not included in the original study in [8]). As the agent
platform is going to be used as a runtime environment for the real-
time control agents, there were specific requirements on its
properties taken into account:

• Speed of the message passing among agents – we measured
the average roundtrip time (avgRTT) as an average time
needed for a pair of agents to exchange one message (i.e. to
send a message and get a reply). We tested different number of
agent pairs (1, 10 and 100) communicating concurrently under
different scenarios: (i) agents running on the same computer
and (ii) agents distributed on two different computers (see
Figure 3 for results with 10 agent pairs).

• Memory constraints – there is a limited amount of memory
available for user applications on the controller. Within the
RAM memory of the controller, which can for example be
about 8 to 16 MB, the agent platform runtime environment,
the agents themselves and also the low-level control code
(ladder logic) have to fit inside. There are also smaller PLC-
like devices that can have only 256KB of memory available,
what would be a strong limiting factor for integrating the
runtime part of the agent platform.

• Costs and maintainability of the source code – there are freely
available agent platforms (usually distributed under a kind of
an open source license) as well as the commercial ones. Both
these groups have their pros and cons. In case of open source
platforms they are for free and you are provided with the
source codes and allowed to modify them. This should be
necessary in order to port the platform to PLC-based
controller. On the other hand, in case of commercial agent
platforms you have to pay possibly thousands of $US per each
installation and the source codes are not available for you to
modify them. However, you will probably get a better support.

• FIPA compliancy – we envision the compliancy with the FIPA
standards as a crucial property of our agent-based solutions.
The main reason is to ensure the interoperability, not only
among the holonic agents at the lowest real-time control level
but also between the holonic agents and other agents at higher

levels of information processing within the company, for
example data-mining agents, ERP agents, supply chain
management agents etc.

The results of this study show that among the FIPA-compliant
open source agent platforms, JADE seems to be the most suitable
agent runtime environment for agent-based manufacturing
solutions. Its major competitor, FIPA-OS is on average twice to
three times slower than JADE and particularly, it has serious
problems with the scalability – in the case of 100 agent pairs the
tests in FIPA-OS were not successfully finished at all (platform
failed to deliver all the messages). If the FIPA compliancy does
not play an important role, a good alternative to JADE is the A-
GLOBE platform that is being developed at the Gerstner
laboratory of the Czech Technical University in Prague
(http://agents.felk.cvut.cz/aglobe/). Among the commercial agent
platforms, we can highlight JACK that keeps pace with both the
A-GLOBE and JADE and moreover offers the implementation of
the BDI (Belief-Desire-Intention) model.
In our effort to move from C++ to Java we have finally decided
not to use any of the existing platforms as the agent runtime
environment for the ControlLogix controllers. Instead, we have
ported the ACS platform mentioned above to the Java language.
However, we are aware of the great popularity of the JADE
platform. That is why we have implemented the first prototype of
the CIP-based MTP (Message Transport Protocol) as a plug-in
into JADE recently. CIP stands for Common Industrial Protocol
and is used as an internal communication protocol for the
ControlLogix controllers as well as for the Java version of the
ACS platform. The CIP MTP can be used by JADE as a
communication layer for bidirectional sending of messages
between the JADE and the ACS agents.

4. SIMULATION IN AGENT-BASED
SYSTEMS
It is obvious that the experimental testing of the agent-control
system with the target physical manufacturing/control
environment being directly involved is not only extremely
expensive, but for certain applications even non-realistic.
Simulation is the most convenient solution. There are quite
specific requirements and expectations put on simulation of agent-
based systems:

• Simulation of both the controlled process/manufacturing
facility and the agent-control system has to be provided. For
this purpose it is necessary to have:
a) A good model of the controlled process/manufacturing

Figure 3. Agent platforms benchmarking results

110

facility and a suitable simulation tool for running this
model – this will de facto provide the emulation of the
physical manufacturing environment. It is encouraged to
use one of the commercially available simulators like
Matlab, Arena, LabView, Silk or AnyLogic for these
purposes instead of developing an own ad-hoc simulator.

b) A suitable agent runtime environment for running the
agents and modeling their interactions (agent platforms
like JADE, JACK, A-GLOBE, etc.).

• The agent-control algorithms used in simulation are usually
reused (90 – 100%) for the real-life control of the
manufacturing equipment. Thus the agent-control part is – in
the simulation phase – emulated as well. That is why the
simulation can be carried out only by another agent-based
system, usually organized as an appropriate interaction of two
emulations.

• It is necessary to have the following two runtime interfaces:
a) an interface between the agent-control and the emulation

of the controlled process/ manufacturing facility (for the
simulation phase) and

b) an interface to link the agent-control with the physical
controlled process/manufacturing facility (for the real-life
control)

These two interfaces should be compatible and – in an ideal case –
identical to enable the designer to switch from
simulation/emulation to the physical manufacturing/control
system in a step-wise manner. As mentioned in previous,
Rockwell Automation designed so called universal run-time
interface (and implemented appropriate C++ and Java API) that
enables efficient interactions among different components by
sharing the control data – mainly sensors and actuator values – in
the data-table of the industrial PLC controller (the values in the
data table are usually referred to as tags). These components
include:

• Physical manufacturing environment that is linked to the PLC
through its I/O modules. The PLC automatically supports the
transfer of the input data from sensors and their storage into
pre-prepared tags as well as the transfer of particular tag
values as the output data to actuators.

• Subsystem that emulates the manufacturing equipment (for
instance Matlab or Arena simulation). Data from emulated
sensors and actuators have to be also automatically transferred
by the interface between the emulation subsystem and the tags
in the data-table.

• Agent control system which is responsible for carrying out the
agent-based control algorithms. The decision-making of
agents is based on the cooperation with the other agent as well
as directly on the tag values in the data-table referring to
sensors/actuators of the particular part of the manufacturing
equipment the agent is in charge of.

• Visualization module providing a graphical insight into the
manufacturing process state. The graphical tools of the
commercial simulators used for the emulation purposes (for
example Simulink in Matlab) can be utilized, however all the
displayed data must be based only on the information from the
data-table. Thus the interface must also ensure the transfer of
tag values between the data-table and the visualization
subsystem. Indeed, the industrial SCADA (Supervisory

Control And Data Acquisition) systems like iFix (General
Electric), WinCC (Siemens) or RSView (Rockwell
Automation) can be used for process visualization as well
because they naturally directly operate with the PLC data.

• Low-level real-time control programs usually programmed in
ladder logic.

The important feature of the proposed interface is smooth shift of
the control functionalities from the agent-based simulation
towards the real-life control. It allows replacing of the emulation
subsystem with the real physical manufacturing equipment by
preserving the same tag names referring to the sensor and actuator
values. Thus it is not necessary to do any modifications in the
agents or in the visualization subsystem. Moreover, as shown in
Fig. 4, the shift can be sequential, step-by-step. While some parts
of the manufacturing equipment can already be physically
connected and controlled by the agent(s) (for instance the
component A2 in Fig. 4), the other part of the system can still be
emulated (component A1 in Fig. 4). Thus, there is actually no
strict borderline between the agent-based simulation and the real-
life agent-based control.

Currently, the agent-based simulation of the agent-based solutions
is being intensively used in two of the Rockwell Automation
projects:
• The already mentioned agent-based control of the

HVAC/CWS system of the U.S. Navy ships. In this case, the
physical shipboard automation system is simulated in
MATLAB/Simulink and linked via the OPC (OLE for Process
Control) to the ControlLogix to interact with the agents [4].

• The second project that explores the universal-runtime
interface is aimed at the agent-based control and simulation
tool for the material handling applications. As a result, so-
called MAST – Manufacturing Agent Simulation Tool has
been developed.

Figure 4. Universal run-time interface using PLC data-table

Agent control

Agent
(A1)

Agent
(A2)

Emulation

Component
(A1)

Component
(A2)

PLC

Data tableA1_tagA A1_tagB A2_tagA A2_tagB A2_tagC

read/write

Visualization

Component
(A1)

Component
(A2)

Physical process

Component
(A2)

Component
(A1)

111

4.1 MAST Simulation Environment
The simulation environment MAST has been primarily intended
as the agent-based demo application depicting the major benefits
of the agent technology applied to some exemplary manufacturing
task − the transportation of workpieces (products) among the
manufacturing work cells (machines) on the factory shop floor
using the conveyor-based transportation system.

The agent library that was developed represents basic components
of material handling systems such as work cell, conveyor belt,
switch (diverter), etc. The cooperation of agents is focused on
finding the optimal/shortest transportation routes between the
work cells interconnected via a network of the conveyor belts,
diverters and intersections. It is important to stress that there is no
central control element – decision making processes are
distributed over the agents that work autonomously without being
affected by any central, higher-level controller. The important
feature of the proposed solution is the fault tolerance and structure
flexibility. A failure of any component can be emulated (for
example a failure of the conveyor belt) what causes the agents to
start the negotiations concerning the alternative transportation
paths while avoiding the broken component. New components can
be added to the system or the existing ones can be removed while
the rest of the system still continues in its operation – the newly
added agents representing, for instance, new transportation
capabilities are integrated on-line and used to transport
workpieces while the removed agents just inform the community
that they no longer exist and thus cannot be used. A more detailed
description of the decision-making making processes and the
negotiation scenarios can be found for example in [9].

MAST is entirely implemented in Java language and uses the
JADE agent platform [1]. From its first prototype developed more
than three years ago, the MAST tool grew up into a
comprehensive agent-based control and simulation environment
consisting of the following parts:

• The agent control part that contains a library of Java/JADE
classes representing the material-handling components.

• The emulation part that is used to simulate the behavior of the
physical manufacturing environment. Since the Java interface
to share the sensor/actuator values in the data-table was not
available at the time the MAST development started, it was
decided not to use some commercial simulators like Matlab or
Arena. Instead, an own ad-hoc simulator was developed in
Java. The emulation model of the material handling system
consists of the Java objects representing particular
components with their virtual sensors and actuators. These
emulation objects are appropriately linked with each other
according to the structure of the system. The emulation engine
moves the virtual workpieces over these components and
activates the virtual sensors. This causes to inform the
appropriate agents through the runtime interface.

• The runtime interface that was originally implemented as a
direct link (Java method calls) from each emulation object to
the appropriate agent (sensor signals) and vice versa from the
agent to the emulation object (actuator signals). Currently, this
tight link has been split and the universal run-time interface
presented in this paper has been used instead. Thus, the
sensor/actuator values are shared in the data-table of the
ControlLogix/SoftLogix PLC and read/written-down by the
emulation part, the agent control part, and the visualization
subsystem via the Java API.

• The GUI for the graphical drag-and-drop design of the
material handling system as well as for the visualization of the
simulation. Through the GUI, the user can send workpieces
between the work cells, introduce failures of different
components and even change the structure of the system at
runtime.

Recently, the MAST environment has been extended to simulate
all the components of the holonic packing cell of the Center for
Distributed Automation and Control (CDAC) at the University of
Cambridge, U.K. This lab provides a physical testbed for
experiments with the Radio Frequency Identification (RFID)
technology and the agile and intelligent agent-based
manufacturing control [2]. These technologies are demonstrated
on packing of the individually tailored Gillette gift boxes that can
be filled by any combination of three out of four Gillette grooming
items (gel, razor, deodorant and shaving foam).
The MAST's agent library has been extended with a set of new
agents to represent and control particular components of the lab's
equipment (numbering corresponds with the labels in Fig. 5):
(1) conveyor loops (Montech track) to transport the shuttles with
boxes (there is one main feeding loop and two subsidiary loops
leading to robots); (2) gates that navigate the shuttles out of the

Figure 5.Cambridge packing cell and its simulation in
MAST environment

112

main loop to the subsidiary loops and vice versa; (3) RFID
readers that read the IDs (EPC codes) of passing boxes – the data
are provided by the readers to the gates to be able to properly
navigate the shuttle; (4) docking stations at which the shuttles are
held while a box is being packed; (5) Fanuc M6i robots that pack
the boxes by the items picked up from the storage units;
(6) storage units for temporary holding of the items in four
vertical slots (each for a particular type of the Gillette item);
(7) rack storages that hold shuttle trays with both the empty and
packed boxes as well as with the raw items that can be used to
feed the temporary storage areas and (8) gantry robot that picks
the box out of the rack storage and drops it to the shuttle and vice
versa.

Additionally, each manufactured workpiece (box in this case) is
represented by the agent. The workpiece agent plays an active role
in coordinating the packing operations by negotiation with the
other agents. It includes negotiation with shuttle agents that
provide transportation capabilities, interactions with the gantry
robot agent to pick up the box from the rack storage and drop it
onto a shuttle, negotiation with storage units to select the one that
holds the requested items, interaction with a robot agent to pack
the items into box etc.

The application of the MAST environment to the real-life control
of the Cambridge packing cell is currently under progress.

5. CONCLUSIONS
According to our estimates, at least 25% of industrial automation
problems can be efficiently solved by using the agent-based
approach. The industrial case-studies document the robustness and
flexibility/reconfigurability of the manufacturing systems based on
the agent-oriented philosophy. The plug-and-operate approach is
highly appreciated by the customers. On the other hand, many
constraints, namely rather limited time for the decision making,
constraints given by the properties of the physical equipment as
well as limited number of acceptable manufacturing structures
bring new requirements on agents‘ behavior. Usually just
acceptable, not fully optimal solutions can be expected under
these conditions.

Simulation plays even more important role than in the case of
centralized systems. It is very often aimed at detecting of the
emergent/aggregate behavior. The direct re-usability of the
simulation code for control/diagnostic purposes belongs to the key
factors reducing the commissioning time and expenses.

There are many aspects to be considered when agent-based
solutions are being introduced to manufacturing. For instance, the
migration processes from the classical control device to the
autonomous agents are expensive, standards for autonomous
agents aimed at the manufacturing domain are not developed

adequately, etc. Other issue is the selection of suitable agent
platform used as the agent runtime environment in PLCs. The use
of Java-based, FIPA compliant agent platforms like JADE is
encouraging, however none of them is directly dedicated to the
manufacturing control domain.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing
Multi-agent Systems with JADE,” Proc. 7th International
Workshop on Intelligent Agents VII. Agent Theories
Architectures and Languages, pp. 89-103, 2000.

[2] M. Fletcher, D. McFarlane, A. Lucas, J. Brusey and J. Jarvis,
“The Cambridge Packing Cell - A Holonic Enterprise
Demonstrator,” Proc. 3rd International / Central and Eastern
European conference on Multi-Agent Systems, Prague,
Czech Republic, 2003.

[3] V. Marik, M. Pechoucek, P. Vrba, and V. Hrdonka, “FIPA
Standards and Holonic Manufacturing,” Agent Based
Manufacturing: Advances in the Holonic Approach, ed.
Deen, S. M., Springer-Verlag Berlin Heidelberg, pp. 89-121,
2003.

[4] F. Maturana, R. Staron, K. Hall, P. Tichý, P. Šlechta and V.
Mařík, “An Intelligent Agent Validation Architecture for
Distributed Manufacturing Organizations,” Emerging
Solutions for Future Manufacturing Systems, Ed. Luis M.
Camarinha-Matos, Springer Science+Business Media, New
York, pp. 81-90, 2004.

[5] H.V.D. Parunak and R. VanderBok, “Managing Emergent
Behavior in Distributed Control Systems”, Proc. IAS-
TECH/97 conference, Anaheim, CA, 1997.

[6] D. Sislak, M. Rollo and M. Pechoucek, “A-Globe: Agent
platform with inaccessibility and mobility suport,”
Cooperative Information Agents VIII. Number 3191 in
LNAI, Eds. Klusch, M., Ossowski, S., Kashyap, V., Unland,
R., Springer-Verlag, Heidelberg, 2004.

[7] D. Vasko, F. Maturana, A. Bowles and A. Vandenberg,
“Autonomous Cooperative Systems Factory Control,” Proc.
PRIMA 2000, Australia, 2000.

[8] P. Vrba, “JAVA-Based Agent Platform Evaluation,”
Holonic and Multi-Agent Systems for Manufacturing, LNAI
2744, Springer Verlag, Berlin Heidelberg, pp. 47-58, 2003.

[9] P. Vrba, V. Marik and M. Fletcher, “Agent Based
Simulation: MAST Case Study,” Emerging Solutions for
Future Manufacturing Systems, Ed. Luis M. Camarinha-
Matos, Springer Science+Business Media, New York, pp.
61-72, 2004.

113

