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ABSTRACT
This paper describes LS/ATN, Living SystemsR©Adaptive Trans-
portation Networks, an agent-based solution we have developed
to solve transportation problems in the charter business logistics.
LS/ATN provides automatic optimization and execution capabili-
ties that extend the existing planning systems accordingly. To de-
scribe our solution and analyse its performance, we report on a real
case scenario in which transportation requests of a big logistics
provider were optimized. Besides describing the agent approach
and the LS/ATN features we stress the necessity to integrate such
agent system into a real-world IT architecture. Finally, we show
that our adaptive solution produces significantly better results in
real case scenarios than what achieved with manual optimization
of professional dispatchers.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: [Intelligent Agents];
H.4.2 [Information Systems Applications]: [Logistics]

General Terms
Algorithms, Economics

Keywords
transportation logistics, agent system, LS/ATN, dynamic optimiza-
tion

1. INTRODUCTION
As with many industries and markets, the logistics sector faces

the extensive and fundamental challenges associated with global-
ization. With shrinking margins, and in many cases being barely
able to cope with immense cost pressure, companies are having
to substantially revise their product and service offerings, business
processes, and operational systems. Being aware that especially in
the transportation business, the most optimal utilization of available
capacity has proven to be the most important critical success fac-
tor, many logistics companies have implemented computer- based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-150-2/05/0007 ...$5.00.

systems for strategic network planning and short-term route opti-
mization planning. While a number of such solutions allow the
automatic creation of the dispatching plans, they usually do not, or
only marginally, support the case of plan deviations resulting from
unexpected, or previously unknown events.

Recent experience has shown that conventional systems for net-
work planning and transportation optimization are limited in their
ability to cope with the increasing complexity, and especially with
the dynamics, of a noticeably globalized transportation business.
These systems were developed for relatively stable, not overly com-
plex, and mostly repetitive transportation processes, for which it
is straightforward to create optimized plans using established ana-
lytical algorithms. Conventional planning systems, however, usu-
ally fail in turbulent environments, where plans have to be adjusted
to new, changing conditions within shortest time frames (at run-
time, in real-time). Examples are new transportation orders or last
minute changes of orders, unexpected shortages of resources due
to traffic jams, breakdowns, or accidents. In such cases, the Ex-
ecution Control, or the respective Event Management, has to be
performed more or less manually by the responsible human dis-
patchers, a Sisyphean task!

In cooperation with one of the worldwide leading logistics pro-
viders, we have developed the agent-based solution LS/ATN that:

• Provides broad support to the dispatchers to cope with the
challenges of Execution Control in complex real-world envi-
ronments.

• Significantly reduces the transportation costs by making use
of innovative conceptual and technological measures.

• Increases the service quality logistic providers can offer to
their customers.

In particular, cost reduction is achieved mainly by:

• Automatic dispatching support (including handling of unex-
pected events).

• Dynamic transportation optimization in real-time.

• Increased capacity utilization through optimized allocation
of shipments to trucks.

• Comprehensive integration of telematics services.

• Synergy effects through combination of different logistics
network types.

• Increased transparency and visibility throughout the network.

• Combination of different traffic types (round trip, linehaul
meetings, multi-modal traffic).
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LS/ATN supports, optimizes, and to a large extent automates the
central challenge of a logistics provider, thedispatching. Used as
stand-alone solution LS/ATN is able to support the whole dispatch-
ing process. Based on its modular design and open architecture,
the solution however can also run as an integrated module within
an existing application. Theoptimization engineis the kernel of
LS/ATN, which continuously executes the dynamic transportation
optimization1. It can be parameterized and configured for differ-
ent business models. The flexible optimization algorithm used is
strictly cost based: all optimization factors are internally mapped
to a common cost basis, an economic model. Furthermore, the opti-
mization of LS/ATN is able to take into account both hard and soft
constraints.Hard constraints(e.g. opening hours of a location)
always have to be kept. In contrast,soft constraints(e.g. delayed
delivery) can be violated to some degree, with the aim of reduc-
ing costs, provided that service level agreements are fulfilled, and
that alternative transport variants would cause significantly higher
costs. LS/ATN is based on adynamic optimization approach inso-
far, as that the system always, immediately after the occurrence of
an event, again strives for the optimum. Opposite to the well known
analytical approaches, LS/ATN first tries by means of heuristic
methods to solve the problem in a local context. Then, in a second
step, it immediately starts searching for additional optimization op-
tions in the overall network. The described optimization can also
be run as simulation. This is useful for planning purposes, and to
support strategic decisions.

In this perspective, we argue and show that intelligent trans-
port optimization systems are able to dynamically adapt transport
plans and schedules according to possible deviations and unfore-
seen events have the great potential of reducing overall transport
costs, by improving the coordination process of distributed dis-
patchers and improve resource consumption.

The remainder of the paper is organized as follows: Section 2
introduces the problem domain, the constraints that must be taken
into account in order to obtain delivery routes that are navigable in
the real-world and depicts the cost model at the basis of our opti-
mization approach. Section 3 describes the optimization algorithms
and the agent-based design that enable LS/ATN to deal with prob-
lem instances consisting of thousands of transportation requests.
Section 4 gives an overview of LS/ATN and explains how dispatch-
ers interact with the agent system during the dynamic optimization
and execution phases. Section 5 presents and discusses the empir-
ical results obtained by solving a real world optimization problem,
before final remarks concluding the paper (Section 6).

2. THE TRANSPORTATION PROBLEM DO-
MAIN

The transportation problem addressed by LS/ATN consists of
finding optimal routes for serving transportation requests (orders)
of a (usually large) set of customers. These orders have to be picked
up and delivered at specific customer locations. Pickup and deliv-
ery has to occur within a specific time window, even though time
constraints can potentially be violated within some tolerated de-
gree. A limited number of trucks is available to transport the or-
ders. These trucks may be of different type and capacity and they
are usually available in different locations. Additionally, the trucks’
drivers have to observe drive time restrictions.

The problem isdynamic, because the orders are not all known
in advance. New orders can be received and have to be accounted
for during the optimization process itself. Further dynamicity is

1The LS/ATN solution will become operational at one of
Whitestein’s logistic customers from April 2005.

induced by changes that can occur to the orders. The real size of an
order, for instance, might have to be corrected only when the driver
is already at the pickup location. Also transportation capacity is
subject to dynamic change. Trucks may be delayed due to traffic
jams or other unforeseen problems or can even become temporarily
unavailable.

In our framework, the termnodeis used to indicate the combi-
nation of both location and time (arrival and departure time) for a
given truck at that specific location. Aleg is the path between two
nodes. Aroute is a sequence of nodes a truck visits. The truck
is assumed to be empty at the beginning and at the end of a route.
The termsorderandtransportation requestare used synonymously
to indicate a customer’s request to transport some goods from a
pickup location to a delivery location. Thesolutionof this kind of
transportation problem consists of a set of routes including a sched-
ule that specifies the times at which the trucks must be at selected
locations. The result is also called adelivery planand its quality or
goodness is given by anobjective function, which in our case is a
cost-based function (see Section 2.4). More technical descriptions
of this problem domain can be found in [8, 9].

2.1 Characterization of Orders
Every order is characterized by the following parameters:

• Order type

• Volume

• Weight

• Pickup location

• Pickup time window

• Loading time

• Delivery location

• Delivery time window

• Unloading time

• Hazard category of dangerous goods

• Equipment necessary to handle the order

• Time at which the order is known to the system (for simula-
tion runs)

As previously mentioned, orders are usually not all available when
starting the route planning and delivery scheduling process, but can
arrive subsequently. Therefore, some orders may have already been
served when new ones arrive.

2.2 Characterization of Trucks
Every truck is characterized by the following parameters:

• Truck type

• Capacity (volume)

• Capacity (weight)

• Special equipment

• Start location

• Availability time

• Tariff

The tariff indicates a cost class to which the truck belongs (see
Section 2.4). A mapping function defines which order types fit to
which truck type.
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2.3 Problem Constraints
The optimization algorithm has to obey a number of constraints

considered during the calculation of routes. Constraints are clas-
sified as hard constraints and soft constraints.Hard constraints
express conditions that must hold and include:

• Load constraints:

– Precedence (pickup has to be before delivery)

– Pairing (pickup and delivery have to be performed by
the same truck)

– Capacity limitation of a truck

– Weight limitation of a truck

– Order type and truck type compatibility

– Availability of required equipment

– Regulations for hazardous goods combined loading on
one truck

• Time constraints:

– Earliest pickup

– Latest pickup

– Earliest delivery

– Latest delivery (all of these four if violated by more
than the allowed delay/early time)

– Opening hours of customers

– Maximum duration of a route

– Lead time for ordering a truck on the spot market

– Driving time regulations for drivers

Soft constraintsexpress conditions that may be violated to some
degree. They produce violation costs to discourage, but still allow
such violations (see section 2.4). The following soft constraints are
considered:

• Earliest pickup time

• Latest pickup time

• Earliest delivery time

• Latest delivery time

2.4 Cost Model
The major concern of logistics companies in general is to reduce

their costs [7]. Therefore, the objective function used to evaluate
the optimization results is cost-based. In our framework, the cost
model was defined in order to properly take into account real-world
costs and constraints and thereby enable comparison between the
optimization results of our agent-based solution with real transport
plans created manually by professional dispatchers. The cost model
distinguishes between three kinds of costs:variable, fixedandvio-
lation costs.

Variable costsare assigned according to the length of a route,
the amount of transported load and the start and end location of
the specified route. The start and end locations are important to
distinguish regional cost differences on the spot market. Prices for
hiring a spot market truck vary according to the region where a
route starts. Also it is more expensive to get a spot market truck
if the route ends in a place where it is unlikely for the truck to
get another order back. The values used for regional variable costs
have been derived from real data. A discount is granted if multiple

consecutive routes can be combined (tramp routes). This reflects
the fact that in the charter business cheaper offers are given to such
routes by a subcontractor. A higher discount is granted if the last
route of consecutive routes terminates close to the start location
(back routes). This reduces the workload of the subcontractor in
terms of looking for freight (and drivers) for a back route of the
truck.

Fixed costsmay be assigned to a truck of the own fleet. In the
analyzed cases, fix costs have been replaced by minimum costs. If
the truck’s variable costs are below a minimum threshold, the final
costs of the route correspond to the minimum costs independent of
the trip duration and usage of the truck.

Finally, violation costsarise when soft constraints are violated.
They are used by the optimizer during the solving process. Viola-
tion costs are introduced so that constraints are only violated if it is
“worthwhile”, i.e. only if the cost savings achieved by violating a
soft constraint exceed the violation costs such constraint violation
implies.

3. AGENT-BASED OPTIMIZATION
Whenever a new order is made available to the system, the cur-

rent delivery plan is updated. This is done in a two-phase approach:
first, a new valid solution is generated including the new order.
Then, the obtained solution is improved by cyclic transfers of or-
ders. The next two sections explain these two steps and Section 3.3
describes how these algorithms can be distributed across multiple
agents.

3.1 Solution Generation
The first step taken when receiving a new order is the generation

of a new valid solution. The algorithm used for this is a sequential
insertion of orders [2]. All available trucks are checked to see if
they are able to transport the order and what additional costs are
incurred.

Each time an order is added to a route either none, one or two
new nodes must be added depending on whether the pickup and/or
the delivery nodes of such an order are already part of the route
or not. In this way, multiple pickups and deliveries per location
are possible. Based on the insertion algorithm, it is also possible
that a truck visits the same location several times. Finally, for all
combinations of existing nodes a quote is generated for inserting a
new pickup and delivery node.

When no truck can transport an incoming new order, which means
all trucks would have to break hard constraints, the order’s ser-
vice level is lowered. This implies the order may be transported
with configurable soft constraint violations, allowing violations of
pickup and delivery times. If still no truck is found the order re-
mains unallocated. This is usually the case if order data is invalid
and the consequent transport planning problem is over-constrained
(e.g. impossible driving times).

3.2 Optimization Approach
Sequential insertion with requests for quotes to all trucks poten-

tially produces suboptimal solutions, see for instance the example
shown in Figure 1. Order 1 is the first to arrive and is assigned to
truck 1’s route. Order 2 is also optimally assigned to truck 1’s route
since this produces least additional costs (and kilometers). When
order 3 arrives truck 1 is fully loaded, therefore a new truck 2 is
used for order 3 and later for order 4.

In order to improve the solution a further optimization step is per-
formed by cyclic transfers between trucks [10, 5]. A cyclic transfer
is an exchange of orders between routes. Figure 2 shows how the
suboptimal example in Figure 1 is improved by a transfer of order
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Delivery all orders

Pickup order 1

Pickup order 2

Pickup order 3

Pickup order 4

Truck 1 start
Truck 2 start

Figure 1: Example of a suboptimal solution given by the inser-
tion algorithm for 4 orders.

2 and order 4.
The optimization procedure has to determine which order trans-

fers should be triggered. A simple strategy for this is a hill climbing
approach that selects the most cost-saving transfers from a neigh-
borhood of possible transfers. This hill climbing process is contin-
ued with all changed routes until no more cost-saving exchanges
can be performed.

3.3 The Underlying Agent-Based Design
Solving transportation problems can be distributed among mul-

tiple interacting agents in order to (1) achieve scalability of perfor-
mance with growing sizes of problem instances; (2) directly reflect
the distributed nature of transportation networks/organizations and
decision making centers; (3) facilitate the handling of local devia-
tions without the need to propagate local changes and recompute
the whole solution, and (4) increase robustness (avoiding single
point-of-failure).

Several agent-based designs are possible to distribute the work.
The most radical one is to represent each truck by an agent [1, 4].
Solution generation by sequential insertion is then handled by a
contract-net interaction protocol [1]. The optimization algorithm
can be modified in order to trigger a transfer between two trucks
whenever this improves the objective function, rather than to look
for the best of all possible transfers. This modification improves the
handling of multiple routes which can change concurrently. In the
modified version of the optimization algorithm, the hill-climbing
is no longer along the steepest slope and it is possible that more
transfers are necessary to achieve the same solution. Moreover, the
optimization process may end in a different local optimum. In such
a fully distributed architecture, truck agents with a changed route
start an optimization process in parallel to the other active truck
agents. The main advantage of such an approach is in its fine gran-
ularity and high scalability, while its main disadvantage stems from
a considerable overhead in computation time and resource usage.
The overhead in computation time is mostly due to more expensive
agent communications when compared to a fully centralized solu-
tion, while the overhead in resource usage depends on the memory
and processing footprint of an agent.

The agent design chosen for our work reflects the way logis-

Delivery all orders

Pickup order 1

Pickup order 2

Pickup order 3

Pickup order 4

Truck 1 start
Truck 2 start

Figure 2: Optimal solution, for the example given in Figure 1,
after a transfer.

tics companies today manage the complexity of this domain. The
transportation business is usually divided intodispatching regions.
Orders arriving at a region are first tentatively allocated and possi-
bly optimized within that region. If the order’s pickup or delivery
location is in a different region, the other region is also informed
and asked to handle the order if it can do so in a cheaper way. In our
agent-based framework, distinct software agents represent different
regions. All trucks starting in the region of an agent are managed by
a localAgentRegionManager. Incoming orders are distributed by
a centralizedAgentDistributoraccording to their pickup location
(see Figure 3). Sequential order insertion can be achieved as sum-
marized in Section 3.1. The only difference is that ’all trucks’ in
this case is restricted to all trucks within a given region. The quality
of the solution (from a global perspective) is expected to decrease
with the number of defined regions since order insertion does not
take trucks of other regions into account. This is compensated by
optimization transfers. The optimization algorithm within a region
is the same as described in Section 3.2. Additionally, trucks with
routes spanning across other regions may also initiate transfer re-
quests among regions. The main advantage of this latter design
stems from its direct mapping to today’s transport business orga-
nization and its good scalability. The computational overhead in-
curred by such a multi-agent based solution is also much lower than
that occurring in a fully distributed solution. Nevertheless, besides
degradation of the solution’s quality when compared to a fully cen-
tralized approach, the main disadvantage (also with respect to the
fully distributed option) is that optimization within a region and
among regions has to be handled slightly differently.

4. THE LS/ATN SOLUTION
The agent-based optimization described above is the core part

of the LS/ATN logistics optimization solution. The two major re-
quirements for such a solution to become a real-world production
system are that, first, LS/ATN has to be integrated into deployed
IT infrastructures and interact with a number of other systems and,
second, LS/ATN users have to be enabled to interact with the sys-
tem in a way that is possible to overrule suggestions and handle
incoming events.
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AgentEventHandler

AgentDistibutor

AgentRegionManager
1

AgentRegionManager
n

new order

transfer request

update routes
new order

region
1

new order

region
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Figure 3: A summarized view of a region-based agent design.

4.1 System Integration
In a real-world production environment an agent based solution

has to interact with a number of other systems. In the case of
LS/ATN, this firstly translates into the need of integrating the agent-
based optimization solution with the deployedtransport manage-
ment system(TMS). Proper interfaces are necessary to the “or-
der acquisition” process, and to the deployed billing and reporting
TMS specific sub-systems. In addition, in order to create transport
plansgeo-coding informationhas to be available to compute dis-
tances as well as drive times between locations. This usually also
requires to retrieve and display corresponding geographic maps.
Transportation plans and other information have to be stored in a
properdatabaseinfrastructure to ensure persistence. Moreover, in-
tegration into atelematics infrastructureis necessary. Tracking in-
formation (pickup and delivery times) has to be passed to LS/ATN
to react to plan deviations and update current plans. In addition,
LS/ATN also supports to offer routes tofreight exchangeplatforms
such as Teleroute or TimoCom. Finally, all information a specific
user needs to visualize and manipulate has to be properly displayed
by means of appropriate graphical user interfaces.

Figure 4 shows the detailed view of a route as suggested by an
LS/ATN optimizer agent. The dispatcher is informed about the lo-
cations to be visited along the selected route, namely time schedule,
orders, distance of the route etc. (see top table). In the central part
of the display, additional information such as pickup and delivery
time windows, load and weight can be found. A detailed schedule
in tabular and graphical representation can be seen in the bottom
left part of the figure. Finally, a map shows the depiction of the
selected route.

4.2 User Interaction
Agents proposed transport plans have always to be considered as

suggestions. Human dispatchers have to be able to overrule such
suggestions and change transport plans according to real-world re-
quirements, policies or decisions not accounted into the agent sys-
tem. To this purpose, LS/ATN supports a number of interaction
modalities for dispatchers. Orders may be added to a truck, re-

moved from a truck and moved between two trucks by drag and
drop option in the dispatcher board (see Figure 5 arrows 1 - 3).
The dispatcher may also change the order in which nodes are vis-
ited (arrow 4) or insert new nodes to be visited to redirect a truck.
In all these operations, the dispatcher is supported by the optimizer
agents that inform about constraint violations arising. Furthermore,
operations are not accepted if the violations are above a level that
is acceptable for manual dispatching. Manually dispatched routes
will then not be changed by the optimizer agents although sugges-
tions to add orders to these routes are still performed. However, the
dispatcher may return orders and routes back to the control of the
optimizer agents.

Another way for the dispatcher to interact with the system is
event-driven. Whenever an unexpected or important situation arises
the dispatcher is informed about the event. This happens, for exam-
ple, if an order changes or is cancelled. If the corresponding route
is still in planning the optimizer agent automatically re-optimizes
the transport plan according to the changed situation and informs
the dispatcher of the change. If the route is already in execution
the agent suggests how to change the transport plan but leaves the
final decision to the dispatcher. Other events the dispatcher is in-
formed about are opportunities to add new orders to already ex-
ecuting routes or if a new order arrived to the system that is not
transportable due to over-constraint order information.

Finally, the dispatcher may feedback tracking information dur-
ing the execution of a route. This is usually done automatically
by a telematics system, but may be changed or improved by the
dispatcher if additional information is made available elsewhere.
Tracking information includes times at which a pickup or delivery
of an order has occurred. The dispatcher is supported in this work
by an agent that proactively informs the dispatcher once loading
or unloading should have happened according to plan. Tracking
information may also be information about the future of a route.
As soon as the dispatcher gets feedback from the driver about de-
lays (or being ahead of schedule) the expected arrival time at spe-
cific nodes may be changed accordingly. The optimizer agent re-
computes then the schedule and informs the dispatcher in case an
order on that route may not be transported in time. The route may
then be proactively changed.

5. EXPERIMENTAL RESULTS
Empirical tests were run for a European logistics company with

the aim of evaluating the potential cost savings when introducing
the LS/ATN transport optimization system. The dataset we ana-
lyzed contains roughly 3,500 real-business Orders. The constraints
and cost model have been modelled and used as described in Sec-
tion 2. While the primary goal of the logistics company was re-
duction of costs, further objectives have focused on the reduction
of the number of deployed trucks and the total amount of driven
kilometers, while increasing the utilization of the trucks. The agent
platform used for the evaluations is Whitestein Technologies’Liv-
ing Agents Runtime System(LARS)2.

In order to produce results of agent-based optimization that are
comparable with the results achieved by the professional dispatch-
ers, it has been necessary to address a number of issues. We used
the same underlying geo-coding information system (distance and
drive time information) that was used by the dispatchers. The av-
erage cost values have been obtained from the real costs incurred
when purchasing the trucks for these orders. Soft constraint vio-

2LARS is a predecessor of Whitestein’s now available LS/TS,Liv-
ing Systems Technology Suite, see http://www.whitestein.com for
more details.
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Figure 4: Details of a route in LS/ATN as suggested by an optimizer agent.

Figure 5: The LS/ATN dispatcher board for supporting manual dispatcher-driven interaction (Example actions: 1-3 Moving orders
to, from and between trucks, 4 changing the visiting order of nodes).
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Evaluation Parameter Savings (agent-based)

Overall Cost 11.7%

Driven Kilometers 4.2%

Deployed Trucks 25.5%

Table 1: Savings gain achieved by LS/ATN agents in comparison with
manual dispatching.

lations were only allowed if order data did not allow an in-time
pickup or delivery. The resulting delivery plan was checked by dis-
patchers for feasibility and drivability. Table 5 summarizes the ma-
jor results. A total of 11.7% cost savings was achieved, where 4.2%
of the cost savings stem from a corresponding reduction in driven
kilometers. Another 2.2% is achieved by increasing the number
of cost-saving tramp routes by 380%. The remainder stems from
buying cheaper trucks. The cost-based optimization prefers routes
that start in cheap regions. An additional important achievement is
that the number of trucks used is 25.5% lower in comparison to the
manual solution. This is due to a higher utilization of the trucks
and an on-average longer usage of a single truck. Even if some of
the potential is lost on the way from a simulation to a production
system, optimization results achieved on various customers’ data
proved that a saving potential of 3% to 6% of current transporta-
tion costs is achievable by using LS/ATN.

6. CONCLUSION
In this paper, an agent-based solution to solve real-world dy-

namic transport optimization problems has been presented. The
problem model, including constraints specification and cost func-
tion definition, has been expressed in a way that allows efficient
computation of transportation plans (validated in real-world trans-
portation scenarios) that can be executed in daily business. Our
agent-based solution, LS/ATN, produced significantly better out-
comes in comparison with the results of professional dispatchers.

In real-world production environments, optimization is a contin-
uous, non-stop process. With more computational power available
in the near future, the use of even more sophisticated optimiza-
tion approaches can be envisaged to further explore and refine the
solution space and thereby improve the quality of the achieved re-
sults [6]. In this perspective, dynamic coordination of the various
computational agents makes it possible to more easily orchestrate
and master a change in the deployed problem solving techniques.
LS/ATN, which exploits these advanced concepts of problem so-
lution as well as the corresponding solution deployment, is a full-
fledged agent-based application that provides a solution to a real-
world challenge: increasing the profitability and thus market suc-
cess of logistics providers through cost reductions of between 3%
and 6%. Looking at the road logistics market in Europe which has a
total revenue of around 167.5 b. Euro [3], this is a potential saving
of at least 5 b. Euro.
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