
Distributed Agent Platform for Advanced Logistics

Tamas Mahr
Almende BV

Westerstraat 50
3016DJ Rotterdam, The Netherlands

tamas@almende.com

Mathijs de Weerdt
Delft University of Technology

Mekelweg 4
2628CD Delft, The Netherlands

M.M.deWeerdt@ewi.tudelft.nl

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents, Multiagent systems

General Terms
Design, Experimentation, Performance, Reliability

Keywords
Agent platform, Logistics

1. INTRODUCTION
The system that is demonstrated by live demo software

through the internet is an agent platform developed for the
DEAL (Distributed Engine for Advanced Logistics) project.
It could be interesting for anyone developing agent platforms
themselves, researching coordination techniques, or involved
in logistical research. The demo appears in a single browser
window as a Java applet that connects to the agent engine
through the internet.

The primary goal of the DEAL project is to enhance the
utilisation of trucks for transportation companies. This is to
be realised by a distributed system that connects all trucks,
orders, planners, and customers. Each of these entities is
modelled by an agent. In a logistics setting, the main prob-
lem is to find the best truck for a container while finding
appropriate routes (plans) for all trucks. In this project
a feasible solution for this problem is constructed by dis-
tributed, communicating agents. For example, a container
agent may request its transportation from a truck agent,
and a truck agent can refuse such a request if it may be
able to construct a more efficient route without this con-
tainer. Similar systems are introduced in [1][2], with the
difference that they did not model the orders by agents,
instead the company and truck agents took care of all as-
pects. Modelling the system by agents has the benefit that
the load can be distributed among several computers, and by
putting the emphasis on coordination of agents exceptional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-150-2/05/0007 ...$5.00.

situations like truck breakdowns, or traffic jams, accidents
can be modelled and handled more efficiently.

The agent platform that supports the system described
above has two layers. In the lower layer, called Abbey, a
thread pooling mechanism is employed to provide proces-
sor resource to the agents. This is described in Section
2. Agents in the upper layer communicate through asyn-
chronous messages that are coordinated by a special method
(see Section 3). Section 4 discusses the logistical application
and Section 5 draws the conclusions.

2. ABBEY
The lower layer is designed to transparently support the

execution of a large number of agents (in parallel) by ‘blind
workers’. In our vocabulary a monk is such a ’blind worker’,
who runs in one thread all the time. One can dispatch an
open task to a monk and it will execute it without having
any idea what it is about. When it has finished the execution
of the task, it sets the task state to ready and looks for
another open task.

An abbey consists of a number of monks and a task pool
(see Figure 1). It creates the monks, manages them and
handles the task dispatching. On the one hand, the abbey
ensures that there are always enough monks to execute the
tasks, and on the other hand it prevents the system to be
overloaded by numerous monks (threads). If it is short of
system resources it can decide to spawn a new abbey on a
different machine and transfer some of the agents to ease
the load on the current system.

Monk

Monk

Monk

Monk

T
ask pool

Figure 1: Monks in an Abbey

Tasks that are carried out by the monks are function
pointers and arguments for the functions. When a monk
receives an open task it calls the function with the specified
arguments. The result is stored in the task structure and

155

then it is declared to be ready. Dispatching a task means to
put it into the task pool as an open task. The agent plat-
form dispatches agents’ methods to the monks when they
need to be executed.

The services of an abbey implement a non-preemptive
virtual-thread scheduling of the methods of the agents. Meth-
ods are dispatched to monks when they are to be executed
and there is no way to interrupt their execution (non-preemptive).
A monk executes different methods of different agents sub-
sequently, but from a perspective of an agent it looks like it
has its own (virtual) execution thread.

3. AGENTS
Agents are defined by attributes and methods (like ob-

jects). They communicate through asynchronous messag-
ing. The messages are delivered by the agents themselves
through the use of a queue per agent. If an agent is busy
answering a message, the next message is queued by the
sender.

There is a designated method in every agent to handle
received messages (called Coordination in Figure 2). This
method is responsible for dispatching the right method for
the first message in the queue to a monk. This organisation
helps to separate the coordination from the processing in the
agents. The coordinating method chooses the appropriate
method based on the agents state, which is modified by the
processing methods. For example let us assume that after
an agent has sent a message it has to wait for an answer.
In this case it sets which method should be called when the
answer arrives and terminates. When the answer is handed
to the coordinating method, it will dispatch the method set
by the processing method.

Task states Coordination

Agent

Task states Coordination

Agent

Task states Coordination

Agent

Messages

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

M
et

ho
d

Figure 2: Agents communicating by asynchronous
messages

4. APPLICATION
In our logistical setting in the simplest situation there are

two types of agents: orders and trucks. Order agents de-
scribe customer orders (size, origin, destination, etc.) and
try to find the cheapest truck. Truck agents describe real
world trucks (size, location, etc.) and try to collect a valu-
able set of orders that could be efficiently transported.

One advantage of agent modelling is that the constraints
and preferences of different roles in the system (trucks, or-
ders) can be taken care of separate agents. Orders concen-
trate on getting transported by a cheap truck, and trucks
concentrate on collecting orders that give an efficient route.

The way orders search for trucks is by auctioning. Every
order is auctioned separately when it is introduced into the
system. Trucks place bids, and in the end the order agent
chooses the cheapest offer.

To place their bid, truck agents have to calculate their
costs regarding the transportation of the order in question.
For this they have to plan as if they would have accepted
the offer (solve a Travelling Salesmen Problem). Having
solved that, the bid they place can be based on their addi-
tional costs regarding the transportation of the order. To
keep the execution time below polynomial bounds the truck
agents use the insertion heuristic for planning. This results
in suboptimal plans. To fix this we are considering to ap-
ply decommitment techniques. Since trucks and orders are
modelled by agents, they are capable of monitoring their
environment. They can recognise situations where it would
be better either for the truck or for the order to decommit.
By moving around orders among trucks the sub-optimality
of the truck-plans can be decreased.

5. CONCLUSION
The contribution of the system demonstrated is twofold.

It introduces an agent platform and an application of agents
in a logistical setting.

One goal of our platform is to manage resources efficiently
and to ensure balanced system performance for all agents.
A pool of threads is maintained to execute agent methods
on demand and the architecture enables the use of several
hosts. However, this functionality of distributing the system
on hosts is not implemented yet and is one of our plans for
the future.

The other design issue is to enable research on coordina-
tion. The platform supports the separation of processing
and coordination in the agents’ code. Agents communicate
by asynchronous messages and the selection of a method in
response to a message is driven by state variables. Receiving
a message and react on it is only half of the story, though.
Messages sent are still explicitly addressed. Future work in-
volves the extraction of the knowledge about other agents
from the processing code.

As an application of the system a logistical setting is used.
Trucks and orders are modelled by agents to enable proper
distribution of responsibilities and quick and good quality
reactions on unexpected events. Modelling the system in
such a way causes that the solution of the problem is not
directly programmed in the system but emerges as the inter-
action of all the players. Such an emergence, however, can
depend on various parameters and can be hard to achieve.

6. REFERENCES
[1] K. Dorer and M. Calisti. Agent-based dynamic

transport optimization. Technical Report WT-2004-05,
Whitestein Technologies, 2004.

[2] K. Fischer, J. P. Muller, M. Pischel, and D. Schier. A
model for cooperative transportation scheduling. In
Proceedings of the First International Conference on
Multiagent Systems., pages 109–116, Menlo park,
California, June 1995. AAAI Press / MIT Press.

156

