
Demonstration of WS2JADE
Xuan Thang Nguyen

Swinburne University of Technology
John Street, Hawthorn

VIC 3122, Australia
Tel. (61)392145623

xnguyen@it.swin.edu.au

ABSTRACT
Integrating Agents and Web services has recently attracted con-
siderable attention from people in both the agent and Web ser-
vices communities. The future of intelligent agents with autono-
mous capabilities, which manage and access the widespread Web
services infrastructure, is promising. Our demonstration shows
how WS2JADE, a toolkit developed at the Centre of Intelligent
Agent and Multi-Agent Systems, achieves first steps in this direc-
tion. The demonstration describes how Web services can be ac-
cessed and used by Jade Agents and how other Agents can take
this advantage to build value-added services within e-
composition.

1. INTRODUCTION
With the emergence of the Web services standards, universal
interoperability between applications is becoming a reality. Web
services follow a loosely coupled integration model and use in-
dustry standard protocols which facilitate a seamless integration
of heterogeneous systems. While the focus of Web services is on
infrastructure and interoperability, Agents are well-known for
their autonomous and problem solving capabilities in a distributed
environment. Therefore, an integration of Web services and
Agents could create an environment where each technology can
employ and compliment each other’s strengths. In this paper, we
present an overall description and demonstrations of WS2JADE
toolkit, our software developed for integrating Web services and
Jade Agents. WS2JADE software is our first effort toward a
broader aim of using Agents to access and manage the widespread
Web service infrastructure.

2. WS2JADE TOOLKIT
A symmetric integration of Web services and FIPA-compliant
Agent platforms has been proposed in [1] as a high-level architec-
tural recommendation from the AgentCities. There have been a
few implementations followed this recommendation.
WSDL2JADE [4], available from Sztaki’s Website at
http://sas.ilab.sztaki.hu:8080/wsdl2agent/index.html, can generate
agent ontologies and agent codes from a WSDL input file.
WSIGS (Web Services Integration Gateway Service) [2][3], im-
plemented by Whitestein Technology, supports bi-directional
integration of Web services and Jade Agents. The distinctive fea-

ture of our WS2JADE system, as compared to those software, is
that WS2JADE allows deployment of Web services as Jade
Agents’ services at run time. Hence, it provides a greater level of
automation in Web services discovery and Web services usages.

In WS2JADE, Web services are visible to FIPA-compliant Agents
through proxy Agents which reside in WS2JADE system. Web
services are seen by FIPA-compliant agents as Agent services
offered by the proxy Agents. The mapping from Web services to
proxy Agents are many to many. Since in JADE, an Agent is of-
ten single-threaded, offering the same Web services on different
proxy Agents allows concurrent accesses to a Web service. Offer-
ing more than one Web service on a proxy Agent allows related
Web services to be grouped together. In WS2JADE, Web services
discovery is done through UDDI proxy Agents. These Agents
support special discovery services which can be configured to
proxy to any UDDI version 2 servers, including Microsoft and
IBM UDDI inquiry servers.

WS2JADE is written entirely in Java. It can run on any machine
which has JVM 1.4.x installed. WS2JADE uses Axis 1.1 for han-
dling SOAP messages. Its current version is 1.2 and it can be
downloaded from our Website at
http://www.it.swin.edu.au/centres/ciamas.

3. DEMONSTRATIONS
3.1 Find-and-Bind demonstration
If Agents can access and use Web services, Agents can conse-
quently discover Web services. This is because Web services
searching facilities normally expose their interfaces as Web ser-
vices. UDDI inquiry and publish engines are examples. The
UDDI inquiry interface in WSDL format is published by
UDDI.org and can be found at their website: http://uddi.org.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands
Copyright 2005 ACM 1-59593-150-2/05/0007

Figure 3-1: Find-and-Bind
In WS2JADE, an Agent which hosts the proxy of Microsoft
UDDI inquiry service is started by default. The name of this
Agent is UDDI Agent. In this demonstration, a client Agent

135

searches for a Web service through this UDDI agent and uses a
selected service from the search result. The interaction flow is
illustrated in figure 1. As can be seem from the figure, from the
client Agent’s side, it needs to do a search on the UDDI Agent
(step 1) for a wanted Web service. After getting search results
back (step 2) from UDDI Agent. The client Agent, bases on its
own references, determines a service it wants to use and queries
the WSManager Agent on how to use this Web Service. The
WSManager Agent informs the client the address of the Agent
which can offer a proxy service of this Web service (step 4). The
client now can start use the service (step 5 and 6).

To examine what happen inside WS2JADE, as mentioned before,
WS2JADE proxies the MS UDDI (step 1A) through the UDDI
Agent to fulfil the client request at step 1. After step 3, the WS
Manager creates a new Agent and deploys a new Agent service
which is a proxy of the wanted Web service. The WS Manager
also registers this Agent on the DF (Directory Facilitator). The
address of this Agent is returned back to the client Agent. WS
invocation is again done indirectly through the proxy service of
the newly generated Agent.

3.2 Composition of Web services
This demonstration is a next step of the previous one. We have a
scenario in which three Agents: P (Pay Friend), A (Amazon), and
G (Global Transport), have a composition plan for offering online
item purchase. Such a plan needs to take into account online
payment transaction and product delivery. In the plan, P is re-
sponsible for client payment. A is responsible for shopping cart. G
is responsible for item delivery.

Figure 3-2: Web services composition with Agents
The interaction sequence is depicted in figure 2. First, the client
Agent searches for the products and add them to its shopping cart
(step 1 and 2, repeated). Once the client Agent does a checkout,
Agent A informs it payment details with Agent P. The client
Agent then contacts P to do payment. After the payment is made,
Agent P informs Agent A whether the payment is successful (step
6.1). If it is, Agent A sends a message to Agent G and asks for
item delivery.

On the abstract level, no concrete implementation of services is
described in the plan. The services that these Agents use are Web
services. P, A, and G Agents, base on the requirements of their
own services, try to find and bind Web Services. How this can be
done with WS2JADE is explained in the first demonstration. We
skip these steps and assume that after find-and-bind steps, Agent
P becomes a proxy of PayFriend WS, Agent A becomes a proxy
of Amzaon WS, and Agent G becomes a proxy of GlobalTrans-
port WS. The composite service now can go into operation. Be-
cause of the demonstration purpose, transactions are preferably
not commited. PayFriend WS and GlobalTransport WS emulate
essential functionalities in the interfaces of PayPal and Global
Transport Web Services, however, without real transactions to
any banks.

4. EVALUATIONS AND FUTURE WORK
Although WS2JADE has demonstrated its effectiveness in work-
ing with different popular Web services as shown in the above
demonstrations, there are still areas that could be further im-
proved. One-way integration is one of them. At the moment we
are reluctant in any Agent to Web services implementation as we
believe that there is still a lack of substantial theoretical work on
the topic of agent to Web Service integration, especially in the
areas of translating Agents’ stateful communication model into
Web services’ stateless communication model and building asyn-
chronous interaction framework for Web services. This is a sub-
ject of our on-going research. Our current and future work also
involves improvements of the semantic processing capability of
WS2JADE’s ontology management component.

5. ACKNOWLEDGMENTS
I would like to acknowledge the contributions of Alasdair Grant
and Mohan Baruwal Chhetri in WS2JADE 1.2 development.

6. REFERENCES
[1] Agentcities Web Services Working Group. “Integrating Web

services into AgentCities”, Technical Recommendation
available at http://www.agentcities.org/rec/00006/

[2] D. Greenwood, M. Calisti, “An Automatic, Bi-Directional
Service Integration Gateway”, ”, IEEE Systems, Cybernetics
and Man Conference; 10-13 October, 2004, the Hague,
Netherlands

[3] D. Greenwood, M. Calisti, “An Automatic, Bi-Directional
Service Integration Gateway”, ”, IEEE Systems, Cybernetics
and Man Conference; 10-13 October, 2004, the Hague,
Netherlands

[4] L. Zs. Varga,Á. Hajnal: "Engineering Web Service Invoca-
tions from Agent Systems". Proceedings of the 3rd Interna-
tional Central and Eastern European Conference on Multi-
Agent Systems, CEEMAS 2003, Prague, Czech Republic,
pp. 626-635, June 16-18, 2003.

[5] Telecom Italia Lab. JADE (Java Agent Development Frame-
work), available at http://sharon.cselt.it/projects/jade

136

http://www.agentcities.org/rec/00006/

