
Scalable fault tolerant Agent Grooming Environment - SAGE

H. Farooq Ahmad, Hiroki Suguri

Multi Agent Systems Group
Communication Technologies (Comtec)

2-15-28 Omachi, Aoba-ku, Sendai, 980-0804, Japan
{farooq, suguri}@comtec.co.jp

Arshad Ali, Sarmad Malik, Muazzam Mugal,
M. Omair Shafiq, Amina Tariq ,Amna Basharat
NUST Institute of Information Technology (NIIT)
National University of Sciences and Technology

(NUST) ,Rawalpindi, Pakistan
{arshad.ali,sarmad,omair.shafiq}@niit.edu.pk

muazzam_mugal@yahoo.com
{aam_naa, aamna15}@hotmail.com

Abstract

Scalable fault tolerant Agent Grooming Environment (SAGE) is first
open source initiative in South-Asia. It is a multi-agent system which
has been developed according to FIPA (Foundation for Intelligent
Physical Agents) 2002 specifications. SAGE has been designed with
a distributed and decentralized architecture to achieve fault
tolerance and scalability as its key features. Due to these
characteristics, SAGE is not only regarded as 2nd generation Multi
Agent System but also provides a competitive edge over other
platforms.

Keywords
Multi-agent System, Agents, Fault tolerance, Scalable

1. Introduction
The agent platform provides an environment in which agents can
execute and perform their tasks. Agents have the ability to perceive
their environment, maintain knowledge, reason about and execute
particular actions to solve specified tasks and achieve their goals. The
design of Multi-Agent System (MAS) is considerably more
complicated than the single agent system. Multi-Agent System
requires additional considerations including communication
mechanism, an environmental knowledge maintenance and
sociability to support inter-operations. These agent systems are
becoming necessary component in semantic web, ubiquitous and grid
computing especially for the management of information and data.

2. Features
SAGE achieves the aim of a fault tolerant Agent Platform by offering
a decentralized architecture based on the notion of Virtual Agent
Cluster, which provides fault tolerance capability by using separate
communication layers among different machines. The Virtual Agent
Cluster works autonomously, regardless of the external environment
events, providing a self healing, proactive abstraction on top of all
instances of multi-agent systems. Also the architecture ensures high
assurance using peer to peer architecture which brings scalability,

fault tolerance and load balancing among distributed peers.

The main components are, AMS (Agent Management System) that
manages the platform, DF (Directory Facilitator) which provides
yellow pages service and MTS (Message Transport Service) for
messages delivery in agent platforms. Also, Agents communicate by
using Agent Communication Language (ACL) messages. The SAGE
core architecture is shown in Figure 1. The decentralized architecture
of SAGE also embeds the capability of self-monitoring at the system
level by allowing the agents to internally monitor themselves as well
as externally monitor other agents. The external monitoring

capability has been incorporated in SAGE by allowing all the
instances within the Virtual Agent Cluster to send heart beats (Hello
messages) to each other to check the liveliness of peer instances of
Multi-Agent System. One of the features of SAGE is the ability of
agents to be self descriptive as each sage-agent keeps its own
descriptive information as attributes, and makes it available through
system agents of SAGE e.g. the Directory Facilitator (DF) or the
Agent Management System (AMS). The system framework then
makes the agents dynamically discover and interact with each other.
The core components of SAGE may span on multiple machines and
acting like a single virtual agent cluster. The failure of one machine
does not affect the agent system working on peer machines. One of
the most important aspects of the architecture is its independence or
autonomy. All peers of multi agent system run on separate machines.
These peers autonomously provide services to their local application
agents. All peers keep their registry information local and in case of
failure of any remote peer, all remaining peers will keep working,
providing illusion of autonomy inside VAC.

Autonomous Agent Architecture

Agent
Management

System
(AMS)

Directory
Facilitator

(DF)

Visual
Management
Agent (VMA)

Message Transport Service

Agent
Communication

Channe

(ACC
l

)

Encoding
Service
(ES)

Agent
Communication

Language
(ACL)

Security
Module

Mobility
Module

Figure 1. Main Architecture

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.
AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-150-2/05/0007 ...$5.00.

125

Agent Management System (AMS) is the mandatory component of
an Agent Platform. It exerts supervisory control over the platform.
AMS can either request or can forcefully enforce functions on other
agents. It performs management functions like create, kill, suspend
and resume agents as well as controlling the various agent platform
parameters. Directory Facilitator (DF) is responsible to provide
yellow-pages directory service. Agents may register their services to
the DF or query the DF to find out what services are offered by other
agents. Agent is responsible to provide information related to service
parameters like servie_type, service_name etc. Furthermore, an agent
can also deregister or modify its service. VMA is an agent that offers
a graphical interface to platform administration and monitoring. The
agent offers many services that show the state of the Agent Platform
as well as it offers various tools that are used to perform
administrative interaction with the AMS, DF and to test application
agents. It also shows the details of the agents that reside inside the
platform. Message Transport Service is the backbone of Multi-Agent
System. It supports the sending and receiving of ACL messages
between system and application agents. The agents involved may be
local to a single Agent Platform or on different Agent Platforms.
Two modes of communication are involved for message
transportation in SAGE which includes Inter-platform and Intra-
platform communication. The ACL module is responsible for
creation of a message that is understandable by all entities involved
in the multi-agent system. All agents create ACL messages using
some pre-defined rules and it is sent to the required destination. At
the reception end, the agent will take its decision based on the ACL
Message. Agent Communication Languages provides agents with a
means of exchanging information and knowledge, which is the
essence of all forms of interaction in multi-agent systems. ACL is a
language that specifies message format and include descriptions of
their pragmatics i.e. the communicative acts or intentions of agents.
Furthermore, every agent has common semantics to talk with each
other which is based on a shared ontology.

3. User-base
Users may employ and customize SAGE multi-agent system
according to their application areas. For example, if it is required to
be deployed in medicine field, users need to create ontology, filling
the contents and use these files in creating Doctor/Patient agents.
These sender and receiver agents are created after inheriting from
abstract agent file. It can be used in various areas from meeting
scheduler to research and people management etc.

SAGE as decentralized multi-agent system gives an organizational
advantage as well. Users need no complicated setup, they can simply
develop and run their agents without knowing any central
coordination. This lowers the barrier for users to develop and deploy
agents. Keeping these advantages in mind, the SAGE Agents are

designed not to assume any central entities on the multi agent system
framework.

4. Strong and Weak Points
SAGE has been made to run stand-alone. Its packages include the
utilities of HSQL along with an option to use Microsoft Access for
database support. The strong points of SAGE includes its property of
decentralized architecture, priority based queues in message
communication to achieve fault tolerant and scalable behavior. The
weak points are to include more autonomous and social behavior in
agents. Also, there is a need to make it more user-friendly by
allowing graphical ontology creation and programming
communicating agents that execute on platform with utilizing
minimum resources.

5. Related Work
The most widely used FIPA compliant platforms include JADE,
FIPA-OS and Zeus. SAGE can be compared with these agent
platforms as they have a centralized architecture and in case of
failure of the main container, whole system will come down. In order
to provide fault tolerant and scalable behavior, SAGE is
decentralized and distributed as shown in Figure 2. Also, priority
based queues have been used in message communications to avoid
congestion and failure problems. The SAGE architecture provides
tools for decentralized runtime agent management, directory
facilitation monitoring and editing, message exchange debugging and
agent life cycle control. It overcomes the problems inherent in first
generation multi-agent systems by providing support for a
decentralized architecture.

6. Results
We have achieved fault tolerance and scalability as shown in Figure
3(a) and 3(b).

Figure 3(a). AMS Failure probability

Figure 3(b). MTS Performance

7. Future Work
The future work includes the customization of SAGE as a
lightweight agent platform for PDAs and other WAP users
over mobile phones. Also the work for agent behavior layer
on top of SAGE is in progress to facilitate agent programming
and inheriting fundamental agent behaviors in application
agents. Lastly, the possibilities of performing tasks by making
groups of agents with varying rationalities is under-way to
explore and integrate the execution of agents in a team-work.

AMS RMI Communication Layer

DF RMI Communication Layer

VMA RMI Communication Layer

AMS AMS

DF DF

VMA VMA

MTS MTSMTS RMI Communication Layer

Application
Agents

Application
Agents

Application
Agents

Figure 2. Decentralized and Distributed view
of SAGE

 126

