
Fault Tolerance for Internet Agent Systems:
in cases of stop failure and Byzantine failure

Tadashi Araragi
NIPPON TELEGRAPH AND TELEPHONE CORPORATION

NTT Communication Science Laboratories
2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 Japan

araragi@cslab.kecl.ntt.co.jp

ABSTRACT
In this demo, we present our two fault-tolerant systems to
overcome stop failure and Byzantine failure, respectively, for
agent execution platforms such as JADE and Aglets. For both
failures, we have extended traditional fault tolerance methods for
intranet to make them applicable to Internet agent systems, which
are huge, open, dynamic, autonomous, and unorganized
distributed systems.

1. INTRODUCTION
When we utilize agents on the Internet for mission-critical tasks
such as e-commerce, fault tolerance becomes crucial issue,
because the Internet consists of unreliable hosts and is open to
everyone. From the perspective of distributed systems, agent
systems on the Internet are very different from traditional
distributed systems on intranet: the number of working processes
is very large and unbounded, and independently developed agents
are continuously created and killed in an unorganized way.
Therefore, the existing fault-tolerance methods are not directly
applicable to these types of distributed systems. Furthermore,
developers of agent systems have little familiarity with
complicated fault tolerance algorithms in general. Consequently,
we need to introduce a fault-tolerance method directly to agent
execution platforms so that agent developers do not have to worry
about it.

2. INTENDED USER AND SYSTEM
REQUIREMENTS
Our method is intended for use by developers of agent execution
platforms such as JADE and Aglets. If in their platforms agents
communicate with each other only by message passing, not by
shared memory, and we can explicitly monitor the progress of
agent programs by a certain measure from outside the system, we
can apply our methods to the platform. In this demo, we use JADE
and our original FIPA-compliant platform “Erdoes.”

3. STOP FAILURE
3.1 Problem and related work
Stop failure means that a host machine(s) suddenly crashes and

some important data are lost. To guard against such loss, there are
two representative algorithms among many existing rollback
recovery algorithms. The Chandy Lamport algorithm [2] has the
advantage that it does not block the execution of applications run
by the agents when they are taking a global snapshot. The
algorithm is not, however, applicable to dynamic environments in
which agents are created and killed dynamically and no system
knows the IDs of all agents currently running on the network. It is
also difficult to cope with a huge distributed system, because the
snapshot involves all agents. The Koo and Toueg algorithm [3],
on the other hand, solves this problem by focusing on agents’
relations created by communication. However, this algorithm
could not avoid the blocking, and its consistency is weak; that is, a
record of receiving messages can be lost. Our algorithm [4]
extends the Chandy Lamport algorithm with Koo and Toueg’s
idea, and solves these problems at the same time: dealing with
huge and dynamic systems, non-blocking, and achieving strong
consistency.

Figure 1. Comparison of Chandy-Lamport and our rollbacks.

3.2 Technical points and discussion
Here we introduce the notion of communication dependency sets
and partial snapshots. A communication dependency set (cDS for
short) of an agent is the set of agent IDs with which the agent
communicated after the last snapshot. When a snapshot initiator
starts a snapshot, it dynamically decides the group of the snapshot
by collecting the cDS of agents that may be involved in the
snapshot, and a partial snapshot is taken among the group. At

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
/AAMAS'05, /July 25-29, 2005, Utrecht, Netherlands. Copyright
2005 ACM 1-59593-150-2/05/0007 ...$5.00.

agt1
agt2
agt3
agt4
agt5
agt6
agt7

rollback agents

initiation of
snapshot

state in snapshot
×

time→

agt1
agt2
agt3
agt4
agt5
agt6
agt7

×
(same pattern)

fault

・ Our algorithm： only the agents directly or indirectly related

to a stopping agent roll back to their last snapshot individually.

：belong to the same
 group in cDS

・ Chandy Lamport： all agents roll back to the last snapshot.

123

recovery, a group to be rolled back is decided in a similar way. As
Fig. 1 shows, it is possible that agents roll back to different partial
snapshots, but our algorithm guarantees consistency in any case.

Advantages: Because a snapshot group is decided dynamically, it
is applicable to a dynamic environment and because the snapshot
is partial, it can deal with a huge distributed system. Since it is
based on the Chandy Lamport algorithm, it is non-blocking.

Disadvantages: The intersection of two snapshots initiated by
different agents requires heavy communication between the
initiators and makes the total procedure a little slow, while there is
no such extra procedure in the Chandy Lamport algorithm.

3.3 Demo features
The fault-tolerant system is based on rollback recovery. Among
the ten PCs, we assume eight of them are unreliable, while two
specific ones are stable. On each of the unreliable PCs, eight
agents are running, and they take partial snapshots from time to
time. We can shut down any PC at any time. Then it is shown that
the agents running on the PC are recovered on one of the stable
PCs consistently. By displaying the messages sent and received by
the recovered agents, we can show there is no inconsistency in the
communications. That is, the messages recorded as sent are also
recorded as received, even if messages were still in the link when
the unstable PCs crashed. This can be seen clearly in a graphical
representation, and the time performance is practically acceptable.

4. BYZANTINE FAILURE
4.1 Problem and related work
Byzantine failure means that a host is taken over by a malicious
intruder, and the agents running there are completely controlled in
an unwanted way. It had been believed that a practical Byzantine
fault-tolerant system is difficult to realize, and it is also proved
that there is no algorithm that completely solves Byzantine
agreement in asynchronous systems such as Internet agent systems.
However, Castro and Liskov [1] introduced a practical Byzantine
fault-tolerant system to asynchronous systems under the allowable
assumption of message delay. Unfortunately, this algorithm
essentially addresses server client-type systems, which are
different from homogeneous systems like agent systems. We
extended Castro and Liskov’s system so that it works for
homogeneous and autonomous systems.

4.2 Technical points and discussion
Castro and Liskov’s algorithm assumes the client is honest and
makes only replicas of servers. In the homogeneous case, we
cannot tell which is the client and which is the server. Thus, we
must make replicas of both sides of any communication (Fig. 2),
and for this we require a more complicated agreement procedure.
Moreover, autonomy of an agent implies that in many cases,
agents do not wait for specific messages, that is, they behave
based on the messages currently received by chance. Therefore, to
make the behavior of replicas the same, we need to introduce a
procedure of agreement on when and which messages they
process. We have introduced these extensions to the Castro and
Liskov algorithm.

Advantages: Our method can cope with the properties of agent
systems: homogeneity and autonomy while retaining practically
acceptable speed.

Disadvantages: Because of the replicas on both sides and the
additional agreement on a set of messages to be processed,
message complexity becomes very high.

rep l ica 3 f+1

a g en t B

p rim a ry

ba ck up

a g ent C

p rim a ry

ba ck up

a g en t A

p rim a ry

back up

m es s ag e/a ck

Figure 2. Replica models for Byzantine fault tolerance.

4.3 Demo features
The fault-tolerant system is based on replica models. For each
agent, we create four replicas (= 3f+1, where the number of
attacked hosts f is 1), including the original one on different hosts.
These replicas are continuously making agreements on the order
and timing of processing the received messages so that their
behavior coincides at the common program. The agreement
algorithm is designed so that when an intruder takes a host, and a
replica on the host is controlled to behave differently from the
other replicas, the remaining honest replicas can reach valid
agreement to behave in an expected manner, even if the malicious
one disturbs the agreement process in any way. In our demo, we
can show the replicas reordering the received messages in a
common order and decide the timing with which they are
processed by agreement.

5. Future works
To improve efficiency, we plan to investigate good timing of
snapshots, and as another base for our Byzantine fault tolerance,
we should consider the randomization method [5].

6. REFERENCES

[1] M. Castro, B. Liskov: Practical Byzantine fault tolerance and

proactive recovery. ACM Trans. Comput. Syst. 20(4): 398-
461 (2002).

[2] K.M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63-75 (1985).

[3] R. Koo, S. Toueg: Checkpointing and Rollback-Recovery for
Distributed Systems. IEEE Trans. Software Eng. 13(1): 23-
31 (1987).

[4] S. Moriya, T. Araragi: Dynamic Snapshot Algorithm and
Partial Rollback Algorithm for Internet Agents, DISC 2001
Brief Announcement, DI-FCUL TR-01-7 J. Welch (ed.): 23--
28(2001).

[5] C. Cachin, K. Kursawe, V. Shoup: Random Oracles in
Constantinople: practical asynchronous Byzantine agreement
using cryptography. PODC 2000: 123-132 (2000).

124

