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ABSTRACT 
In this demo, we present our two fault-tolerant systems to 
overcome stop failure and Byzantine failure, respectively, for 
agent execution platforms such as JADE and Aglets. For both 
failures, we have extended traditional fault tolerance methods for 
intranet to make them applicable to Internet agent systems, which 
are huge, open, dynamic, autonomous, and unorganized 
distributed systems.  

1. INTRODUCTION 
When we utilize agents on the Internet for mission-critical tasks 
such as e-commerce, fault tolerance becomes crucial issue, 
because the Internet consists of unreliable hosts and is open to 
everyone. From the perspective of distributed systems, agent 
systems on the Internet are very different from traditional 
distributed systems on intranet: the number of working processes 
is very large and unbounded, and independently developed agents 
are continuously created and killed in an unorganized way. 
Therefore, the existing fault-tolerance methods are not directly 
applicable to these types of distributed systems. Furthermore, 
developers of agent systems have little familiarity with 
complicated fault tolerance algorithms in general. Consequently, 
we need to introduce a fault-tolerance method directly to agent 
execution platforms so that agent developers do not have to worry 
about it. 

2. INTENDED USER AND SYSTEM 
REQUIREMENTS 
Our method is intended for use by developers of agent execution 
platforms such as JADE and Aglets. If in their platforms agents 
communicate with each other only by message passing, not by 
shared memory, and we can explicitly monitor the progress of 
agent programs by a certain measure from outside the system, we 
can apply our methods to the platform. In this demo, we use JADE 
and our original FIPA-compliant platform “Erdoes.” 

3. STOP FAILURE   
3.1 Problem and related work 
Stop failure means that a host machine(s) suddenly crashes and 

some important data are lost. To guard against such loss, there are 
two representative algorithms among many existing rollback 
recovery algorithms. The Chandy Lamport algorithm [2] has the 
advantage that it does not block the execution of applications run 
by the agents when they are taking a global snapshot. The 
algorithm is not, however, applicable to dynamic environments in 
which agents are created and killed dynamically and no system 
knows the IDs of all agents currently running on the network. It is 
also difficult to cope with a huge distributed system, because the 
snapshot involves all agents. The Koo and Toueg algorithm [3], 
on the other hand, solves this problem by focusing on agents’ 
relations created by communication. However, this algorithm 
could not avoid the blocking, and its consistency is weak; that is, a 
record of receiving messages can be lost. Our algorithm [4] 
extends the Chandy Lamport algorithm with Koo and Toueg’s 
idea, and solves these problems at the same time: dealing with 
huge and dynamic systems, non-blocking, and achieving strong 
consistency.  

 
Figure 1. Comparison of Chandy-Lamport and our rollbacks. 

3.2 Technical points and discussion 
Here we introduce the notion of communication dependency sets 
and partial snapshots. A communication dependency set (cDS for 
short) of an agent is the set of agent IDs with which the agent 
communicated after the last snapshot. When a snapshot initiator 
starts a snapshot, it dynamically decides the group of the snapshot 
by collecting the cDS of agents that may be involved in the 
snapshot, and a partial snapshot is taken among the group. At 
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recovery, a group to be rolled back is decided in a similar way. As 
Fig. 1 shows, it is possible that agents roll back to different partial 
snapshots, but our algorithm guarantees consistency in any case. 

Advantages: Because a snapshot group is decided dynamically, it 
is applicable to a dynamic environment and because the snapshot 
is partial, it can deal with a huge distributed system. Since it is 
based on the Chandy Lamport algorithm, it is non-blocking. 

Disadvantages: The intersection of two snapshots initiated by 
different agents requires heavy communication between the 
initiators and makes the total procedure a little slow, while there is 
no such extra procedure in the Chandy Lamport algorithm. 

3.3 Demo features 
The fault-tolerant system is based on rollback recovery. Among 
the ten PCs, we assume eight of them are unreliable, while two 
specific ones are stable. On each of the unreliable PCs, eight 
agents are running, and they take partial snapshots from time to 
time. We can shut down any PC at any time. Then it is shown that 
the agents running on the PC are recovered on one of the stable 
PCs consistently. By displaying the messages sent and received by 
the recovered agents, we can show there is no inconsistency in the 
communications. That is, the messages recorded as sent are also 
recorded as received, even if messages were still in the link when 
the unstable PCs crashed. This can be seen clearly in a graphical 
representation, and the time performance is practically acceptable.  

4. BYZANTINE FAILURE 
4.1 Problem and related work 
Byzantine failure means that a host is taken over by a malicious 
intruder, and the agents running there are completely controlled in 
an unwanted way. It had been believed that a practical Byzantine 
fault-tolerant system is difficult to realize, and it is also proved 
that there is no algorithm that completely solves Byzantine 
agreement in asynchronous systems such as Internet agent systems. 
However, Castro and Liskov [1] introduced a practical Byzantine 
fault-tolerant system to asynchronous systems under the allowable 
assumption of message delay. Unfortunately, this algorithm 
essentially addresses server client-type systems, which are 
different from homogeneous systems like agent systems. We 
extended Castro and Liskov’s system so that it works for 
homogeneous and autonomous systems.  

4.2 Technical points and discussion 
Castro and Liskov’s algorithm assumes the client is honest and 
makes only replicas of servers. In the homogeneous case, we 
cannot tell which is the client and which is the server. Thus, we 
must make replicas of both sides of any communication (Fig. 2), 
and for this we require a more complicated agreement procedure. 
Moreover, autonomy of an agent implies that in many cases, 
agents do not wait for specific messages, that is, they behave 
based on the messages currently received by chance. Therefore, to 
make the behavior of replicas the same, we need to introduce a 
procedure of agreement on when and which messages they 
process. We have introduced these extensions to the Castro and 
Liskov algorithm.  

Advantages: Our method can cope with the properties of agent 
systems: homogeneity and autonomy while retaining practically 
acceptable speed.  

Disadvantages: Because of the replicas on both sides and the 
additional agreement on a set of messages to be processed, 
message complexity becomes very high. 
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Figure 2. Replica models for Byzantine fault tolerance. 

4.3 Demo features 
The fault-tolerant system is based on replica models. For each 
agent, we create four replicas (= 3f+1, where the number of 
attacked hosts f is 1), including the original one on different hosts. 
These replicas are continuously making agreements on the order 
and timing of processing the received messages so that their 
behavior coincides at the common program. The agreement 
algorithm is designed so that when an intruder takes a host, and a 
replica on the host is controlled to behave differently from the 
other replicas, the remaining honest replicas can reach valid 
agreement to behave in an expected manner, even if the malicious 
one disturbs the agreement process in any way. In our demo, we 
can show the replicas reordering the received messages in a 
common order and decide the timing with which they are 
processed by agreement.  

5. Future works 
To improve efficiency, we plan to investigate good timing of 
snapshots, and as another base for our Byzantine fault tolerance, 
we should consider the randomization method [5]. 
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