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ABSTRACT
The multiagent plan coordination problem arises whenever multi-
ple agents plan to achieve their individual goals independently, but
might mutually benefit by coordinating their plans to avoid work-
ing at cross purposes or duplicating effort. Although variations of
this problem have been studied in the literature, there is as yet no
agreement over a general characterization of the problem. In this
paper, we describe a general framework that extends the partial-
order, causal-link plan representation to the multiagent case, and
that treats coordination as a form of iterative repair of plan flaws
that cross agents. We show, analytically and empirically, that this
algorithmic formulation can scale to the multiagent case better than
can a straightforward application of the most advanced single-agent
plan coordination technique, highlighting fundamental differences
between single-agent and multiagent planning.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search; I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Coordination of multiple agents, Multiagent planning and merging

1. INTRODUCTION
The phrase multiagent planning has acquired a variety of mean-

ings over the years. In part, this may be due to the ambiguity of
exactly what someone considers to be “multiagent” about the plan-
ning. In some work [13, 21], it is the planning process that is mul-
tiagent; for example, multiple agents, each with specialized exper-
tise in certain aspects of planning, might collaborate to formulate
a complex plan that none of them could have generated alone. In
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other work [3, 11], it is the product of planning—the plan itself—
that is multiagent, in the sense that it specifies the activities of mul-
tiple actors in the environment such that they collectively achieve
their individual and/or common goals. And sometimes, it is both
[8, 10, 4, 18, 7],where multiple agents interact to arrive at plans that
will be carried out by multiple (and often, it is implicitly assumed,
the same) agents.

This paper concentrates on a restricted but important class of
problems of this third type, which we call Multiagent Plan Coordi-
nation Problems (MPCPs), in which multiple agents each plan their
own individual activities but might mutually benefit by coordinat-
ing their plans to avoid interfering with each other unnecessarily
duplicating effort. Multiagent plan coordination differs from “team
planning,” in which agents must work together more tightly as a
team in order to achieve their joint goals. Instead, multiagent plan
coordination is suited to agents that are loosely-coupled (nearly in-
dependent), where each agent can achieve its own goals by itself,
but the presence of other agents who are also asynchronously op-
erating in the same environment leads to potential conflicts and co-
operative opportunities. This concept of coupling is similar to that
described by Pecora et.al. in [15], where the problem of finding
plans with minimal makespans is considered. In both their and our
definition, the degree of coupling measures the degree of interac-
tion between different plans (or “threads” in [15]) and thus affects
the inherent difficulty of the planning problem.

In general, the multiagent plan coordination problem is known to
be NP-Hard [22]. Despite this complexity, many researchers [10,
22] have explored the problem in detail. In particular, Yang [22]
has developed a rigorous computational theory of single-agent plan
coordination, and implemented an efficient and optimal algorithm
that, under assumed characteristics, is polynomial with respect to
the size of the plan coordination problem.

However, our investigations have indicated that there are fun-
damental differences between the single-agent plan coordination
problem and the problem of coordinating the plans of multiple agents,
that make Yang’s methods less appropriate to the multiagent plan
coordination problem. In this paper, we describe key differences
between the single-agent and multiagent plan coordination prob-
lem, analyze why these differences are important, and show how
previous work based on the single-agent problem is not well suited
to address the multiagent problem. We then describe new methods
for plan coordination that account for these differences and thus,
under certain assumptions, are well-suited for the multiagent plan
coordination problem. We conclude with empirical and analytical
comparisons of our algorithms with Yang’s work demonstrating the
superiority of our techniques on multiagent coordination problems,
and close with a discussion of our future research directions.
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2. RELATED WORK
In general, past approaches to plan coordination in the single-

agent case have relied on greedy algorithms, and thus were neither
optimal nor complete, nor was their complexity well characterized
[22]. However, Yang [22] was one of the first to give a formal
characterization of both the coordination problem and its solution,
although he considers a restricted formulation of the plan coordi-
nation problem that we consider in this paper. In Section 4, we
conduct a detailed analytical and empirical comparison of Yang’s
method and our own, illustrating the advantages of our approach
for loosely-coupled multiagent systems.

Ephrati [10] has applied the divide-and-conquer approach to mul-
tiagent planning that farms out subgoals of a single goal to differ-
ent agents to solve and then integrate their sub-plans into a joint,
multi-agent plan. His algorithm performs an A* search over pos-
sible interleavings of the plan steps in the sub-plans to arrive at a
near-globally optimal solution. Although Ephrati’s approach seems
well suited for the multiagent plan coordination problem, it suffers
from drawbacks of incompleteness, i.e., it is not guaranteed to re-
turn a solution to a given coordination problem, and thus does not
make for a good solution should agents want optimally-coordinated
plans.

More recently, Tonino et. al. [18] have described algorithms for
coordinating the plans of multiple agents based on an underutiliza-
tion of free resources. Unfortunately, in their approach, once a free
resource (i.e., an effect) of a plan step has been used to replace the
effect of another plan step, it is no longer available to replace the
effects of other plan steps. Thus, their system will not work for the
problem of plan coordination we consider, where a single step can
produce a single effect used by many other steps of other agents in
the multiagent plan.

Our own past work [7] described an algorithm for performing
plan coordination between the different plans of multiple agents,
where the algorithm exploited a hierarchical plan representation
to reduce the complexity of the plan coordination problem. That
work was itself based on work by Clement [4] that successfully
identified and resolved conflicts between independent hierarchical
plans. Others who have studied the multiagent plan coordination
problem include [19, 17, 9, 12].

Despite the large body of work on multiagent plan coordina-
tion, there has been little attention paid to the problem of devel-
oping computationally-efficient algorithms to solve the multiagent
plan coordination problem that still produce optimally-coordinated
plans. It is this gap that our research is intended to fill.

3. MULTIAGENT PLAN COORDINATION
PROBLEMS

The Multiagent Plan Coordination Problem (MPCP) is the prob-
lem of identifying and resolving interactions between the plans of
different agents. To define and characterize the multiagent plan co-
ordination problem, we first characterize what a plan is from the
single-agent perspective, and then expand the concept to the mul-
tiagent case. The definitions given in this section are variations of
well-established plan formalisms [3, 20, 1], given here for com-
pleteness.

3.1 Planning Concepts and Problems
Our definition of a multiagent plan extends the partial-order, causal-

link (POCL) definition of a plan that has been well-established in
the planning community [20], restricted to ground (or variable-free)
operators described by propositional conditions.

DEFINITION 3.1. A POCL plan is a tuple P = 〈O,S,≺T ,≺C〉

where O is a set of plan operators, S is a set of plan steps (in-
stantiated operators), ≺T and ≺C are (respectively) the temporal
and causal partial orders on S, where e ∈≺T is a tuple 〈si,s j〉 with
si,s j ∈ S, and where e ∈≺C is a tuple 〈si,s j,c〉 with si,s j ∈ S and
c ∈ Σ. A POCL plan has an init step, init ∈ S, and one or more goal
steps, goali ∈ S where the preconditions of the goal steps represent
the conjunctive goal that the plan achieves, and the postconditions
of the init step represent features of the initial state.

Elements of S are instances of elements in O, and there may be
multiple unique instances of a single operator from O in S. We will
use op(s) to refer to the operator that step s was instantiated from.
Elements of ≺T are commonly called ordering constraints on the
steps in the plan, and elements of ≺C are commonly called causal
links, the latter representing causal relations between steps, where
causal link 〈si,s j,c〉 represents the fact that step si achieves condi-
tion c for step s j . Temporal orderings are transitive and required to
be irreflexive (so there are no cycles in the plan).

The planning problem is the problem of transforming an incon-
sistent plan into a consistent plan. A plan is inconsistent when it
has plan flaws. Most research in planning has focused on the prob-
lem of plan generation (creating a plan from a starting state, a goal
state, and a set of operators). For the plan generation problem, a
plan flaw is either a causal link threat flaw or an open condition
flaw.

DEFINITION 3.2. A causal-link threat flaw in a POCL plan ex-
ists when there is some step sk and some causal link e ∈≺C of form
〈si,s j,c〉, s.t. not(c) ∈ post(sk), 〈sk,si〉 /∈≺T and 〈s j,sk〉 /∈≺T .

Intuitively, the presence of a causal-link threat flaw in a plan in-
dicates that there exist executions (linearizations) of the plan where
the step sk undoes (or “clobbers”) a condition after it is asserted by
si but before it can be used by step s j . Given a threat between a
step sk and a causal link 〈si,s j,c〉, standard plan-space methodolo-
gies add either 〈sk,si〉 or 〈s j,sk〉 to ≺T .

In addition to causal-link threat flaws, other causes of plan in-
consistency include open precondition flaws.

DEFINITION 3.3. An open precondition flaw exists when there
is some step s j with precondition c but there is no causal link
〈si,s j,c〉 ∈≺C.

An open precondition c of a step s j can be satisfied by adding
a causal link 〈si,s j,c〉 where c ∈ post(si) and either si ∈ S and
〈s j,si〉 /∈≺t (si is already in the plan and not ordered after s j), or
op(si)∈ O (si can be instantiated from the operator set of the plan).

In general, for any given flawed single-agent POCL plan, there
may be many possible consistent plans one could create by repair-
ing the various flaws. However, not all consistent plans will be op-
timal. Although there are many ways of measuring plan optimality,
including the number of plan steps, as well as their makespan (as
in Pecora’s work [15]), we will adopt the step-minimization metric
for this paper.

3.2 Plan Coordination Concepts and Problems
Just as individual agents want to create valid plans to achieve

their goals, multiple agents executing their plans in a shared en-
vironment will want to coordinate their individual plans to ensure
that all agents can achieve their goals as well. We define a multi-
agent plan coordination problem (MPCP) as the problem, given a
set of agents A and the set of their associated POCL plans P, of
determining if there is some subset of plan steps from the plans of
the agents that can form a consistent multiagent parallel plan that
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results in the establishment of all agents’ goals, given the initial
state of the agents (recall that the POCL representation represents
the agent’s initial and goal states as steps in the plan).

It is worth noting that any solution to the MPCP will only contain
plan steps from the plans of the individual agents. Thus, our defini-
tion of the multiagent plan coordination problem essentially makes
the problem a bounded-length planning problem, which in its most
general form is the problem of trying to determine if a consistent
plan exists that can have at most k steps (where k is the bound).
Just as optimal single-agent planning can be viewed as the problem
of trying to solve a series of increasing bounded-length problems
until a valid plan is found [2, 14], we could view multiagent plan-
ning the same way. For example, agents could iteratively submit
larger (and thus less-optimal) plans for plan coordination, until a
solution is found. While formulating such approaches to the more
general multiagent planning problem is outside the scope of this
paper, we note that the problem of plan coordination is likely to be
a fundamental component of the more general multiagent planning
problem.

Both the single-agent planning problem and the Multiagent Plan
Coordination Problem can be seen as the problem of transforming
an inconsistent plan into a consistent plan. That is, we can think of
the union of the individual agent plans as implicitly representing a
single, multiagent plan P with its own set of flaws that need to be re-
solved. However, to ensure that we address all possible plan flaws,
including those unique to the multiagent context, we must first ex-
tend our planning model to handle the concurrency that can arise
in multiagent planning and execution. That is, unlike the single-
agent planning case, multiple agents executing plans in the same
domain may possibly execute steps in parallel, and thus we will
want to extend our plan semantics to reason about action concur-
rency. First, we extend our operator model to include inconditions
(or “during” conditions) [4], which describe the state of the world
that holds during the execution of a plan step (we also relax our
implicit assumption that actions are instantaneous). Operators (and
thus steps) are now described by their preconditions, inconditions
(in(si)), and postconditions. With this extended action model, we
are ready to extend our model of a multiagent POCL plan:

DEFINITION 3.4. A multiagent parallel POCL plan is a tuple
P = 〈A,O,S,≺T ,≺C,#,=,X〉 where 〈O,S,≺T ,≺C〉 is the embed-
ded POCL plan, A is the set of agents, X is a set of tuples of form
〈s,a〉, representing that the agent a ∈ A is assigned to executing
step s1, = is the symmetric concurrency relation over the steps in
S, and # is a symmetric non-concurrency relation over the steps in
S.

The relation 〈si,s j〉 ∈ # is the same as the statement
(〈s j,si〉 ∈≺T )∨ (〈si,s j〉 ∈≺T ). The relation 〈si,s j〉 ∈= means that
si and s j are required to be executed simultaneously. For example,
if a plan has multiple goal steps and is intended to reach a state
where all goals are satisfied simultaneously, then all pairs of goals
steps would be elements of =.

Given this definition, it is clear that a POCL plan P is a special-
ization of a multiagent parallel plan P′ in which either all pairs of
steps in P′ are in #′ (if it is assumed an agent can do only one action
at a time) or none of them are (if all unordered actions are assumed
to be concurrently executable). Likewise, a POCL plan implicitly
requires that = be empty, unless a single agent can execute multiple
steps concurrently.

Given our multiagent plan definition, we can now introduce a
new kind of plan flaw:
1Although this element raises the possibility of step reassignment,
in this paper we do not consider reassigning actions among agents.

DEFINITION 3.5. A parallel step threat flaw exists in a mul-
tiagent parallel plan when there are steps belonging to different
agents2 s j and si where post(si) or in(si) is inconsistent with post(s j)
or in(s j), 〈s j,si〉 /∈≺T , 〈si,s j〉 /∈≺T and 〈si,s j〉 /∈ #.

This definition is an extension of the post-exclusion principle [1],
stating that actions cannot take place simultaneously when their
postconditions are not consistent. Parallel step threat flaws can al-
ways be resolved no matter what other flaw resolution choices are
made, and thus these flaws do not have to be considered using back-
tracking search for valid flaw resolutions. Thus, parallel step con-
flicts between two steps si and s j can be resolved by adding 〈si,s j〉

to #, leaving the enforcement of this constraint either to a simple
postprocessing step or to the plan execution platform.

Although our definition of a multiagent parallel plan extends the
standard partial-order plan definition, we note that in fact our def-
inition is itself somewhat of a restriction of Boutilier’s concurrent
interacting actions STRIPS planning model [3]. Specifically, while
we worry about some concurrent step interaction (via the post-
exclusion principle), in his work, Boutilier provides semantics for
reasoning about the effects of concurrent actions whose effects may
be different than the simple combination of the effects of the indi-
vidual steps (such as two agents picking up either end of a table).
Boutilier’s extension is straightforward, and in principle, it would
be possible to extend our model to support such extended interac-
tion semantics. Indeed, our representation is perhaps better adapted
to the multiagent context, as the step assignment element of our
plan representation is treated as a first-class variable, whereas in
Boutilier and Brafman’s work, the assignment of an agent is em-
bedded in the instantiation of a step. However, extending our model
to handle the kinds of interactions characterized in [3] would need-
lessly complicate the representation described in this paper, and de-
tract from our central claim of the efficiency of plan-space search
for loosely-coupled multiagent plan coordination.

The MPCP has other flaws that are not so easy to resolve. Since
the individual plans of the agents are complete, there are no open
condition flaws. However, causal link threat flaws are still present,
as well as possible inter-agent plan step merge flaws.

DEFINITION 3.6. A plan step merge flaw exists in a (poten-
tially inconsistent) multiagent plan P when there exists in P two
steps, si and sk and, for each causal link e ∈≺C of form 〈si,s j,c〉,
it is also the case that c ∈ post(sk) and 〈s j,sk〉 /∈≺T .

That is, there is some step whose postconditions subsume all of
the necessary postconditions (those postconditions associated with
the outgoing causal links) of another step. This definition is based
on the general form of Yang’s plan step merging criteria from [22].
An important difference between plan step merge flaws and threat
flaws is that threat flaws must be resolved for a multiagent plan to
be consistent, whereas a step merge flaw can be ignored if agents
are willing to tolerate the redundancy in the plan. The process by
which steps si and sk are merged (as defined in [22]) is as follows:

1. For each causal link l ∈≺C of form 〈si,s j,c〉 add new link of
form 〈sk,s j,c〉 to ≺C.

2. For each causal link l ∈≺C of form 〈si,s j,c〉 remove link
from ≺C.

3. For each causal link l ∈≺C of form 〈sp,si,c〉 remove link
from ≺C.

2We assume that a single agent cannot execute actions in parallel.
Obviously, if this restriction is relaxed we can also consider parallel
step threats between steps of the same agent.
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Figure 1: Visualizing Our Plan Coordination Algorithm

4. Remove si from S.

3.3 A Multiagent Plan Coordination Algorithm
To solve the MPCP, we have developed a general plan-space

search algorithm that searches through the space of possible flaw
resolutions between a set of agent plans to produce a coordinated
solution. Our algorithm optimizes with respect to the total number
of steps shared by all agents, which is a global optimality measure.

Algorithm 1: A Multiagent Plan Coordination Algorithm
Input : an inconsistent multiagent plan
Output : an optimal and consistent multiagent plan
Initialize Solution to null;
Add input plan to search queue;
while queue not empty do

Select and remove plan P from search queue;
if P not bounded by Solution then

if (P has no threat flaws) and (P is acyclic)
and(cost(P) < cost(Solution)) then

Solution = P;
end
Select and repair a flaw in P;
Enqueue all repaired plans in search queue;

end
end
return Solution;

The search algorithm (shown in Algorithm 1) begins by initial-
izing the search queue with whatever current (flawed) multiagent
plan it is to operate on, and by initializing the currently best solu-
tion, Solution, to null. Then, while the queue is not empty, it se-
lects and removes a plan-state from the queue (the order of which
is determined by the search’s heuristic function). If the plan-state
passes the bounding test, the algorithm then determines if the plan
is a consistent plan that is better than the best consistent plan seen
so far. If so, it becomes Solution. New plans are generated by
choosing a plan flaw and generating new plans by repairing it (as
even a consistent plan can still have optimality flaws in it). All
possible plan-states generated by the repair are then added to the
search queue. In this way, their algorithm converges to a globally
minimal solution.

Figure 1 illustrates our plan-space search algorithm graphically.
Intuitively, our algorithm first identifies and tries to repair flaws
within the plan (in the case of the figure, the pairs of steps with the
same letter can merge) and then tests the resultant plan for cycles in
the partial order of steps, using the Floyd-Warshall algorithm [5].
This cycle check is carried out by performing a depth-first search
on the partial order of steps, to determine if steps can be revisited
by the search.

3.4 Using A Branch-and-Bound Algorithm
In generative POCL planning, the presence of an admissible search

heuristic guarantees that the first consistent plan will also be the op-
timal one (given that the optimality measure is the number of steps
in the plan), as the planner will start with small plans and build
up. In contrast, given that our algorithm’s starting point of a set of
individually consistent POCL plans, there is no guarantee that the
first consistent coordinated plan that our algorithm finds will be an
optimal one.3 This is why our algorithm, when searching for an
optimal solution, cannot simply return the first consistent plan that
is found, but must keep track of the best solution found until it can
ensure that there is no other solution that is better.

Besides keeping track of the best solution seen so far, the algo-
rithm can use Solution to “prune” the search space by preventing
refinement of plan-states that can be determined to never lead to
plans better than those already discovered. This pruning is accom-
plished using a branch-and-bound algorithm, where Solution is the
effective upper bound. If a plan-state’s lower bound (a best-case
estimate of how good the plan-state is) is higher than the current
upper bound, the state can be discarded. By using a good bounding
mechanism, we can often dramatically reduce the size of the search
space. Of course, if a consistent solution is all that is required, then
the algorithm can terminate as soon as any consistent solution is
found.

In our algorithm, we prune any plan state whose cost (number of
plan steps) is higher than the current best solution, even if we as-
sume all plan step merges could be performed in the state (ignoring
unresolved threats and cycles in the network of steps). This is done
by counting all steps that have outgoing causal links where some
subset of the outgoing links could be replaced by other steps in
the plan, and the remaining outgoing links point to steps that could
also be removed by plan step merging. This bound is guaranteed
never to underestimate the potential value of a state, and as we will
see later, this bound gives the algorithm very good expected-case
performance.

3.5 Computational Complexity of Our Coor-
dination Algorithm

We can see the complexity of our algorithm by considering the
number of search states that it can generate. For n plans, each of
length d, the largest number of flaws f will be quadratic in d and
n in the worst case. For each flaw, the algorithm will branch on all
possible repaired plans b, resulting in an overall worst-case com-
plexity of b f , where f is worst-case (nd)2. Thus, in the worst case,
our algorithm will have to generate an exponential number of states
in the number of flaws in the problem before terminating. Past work
[22] has shown that the MPCP is NP-Hard,4 and thus a worst-case
exponential result is unavoidable.

4. EVALUATING OUR MULTIAGENT PLAN
COORDINATION ALGORITHM

Given the worst-case exponential complexity of our algorithm,
natural questions to ask are what classes of problems does it per-
form tractably on, and how does it compare to existing state-of-
the-art plan coordination mechanisms? In this section, we examine
how our algorithm performs on classes of coordination problems

3In fact, the initial multiagent plan formed as the union of the in-
dividual agent plans might already be consistent, but still have re-
dundant steps.
4To be precise, Yang established that a restricted formulation of
the MPCP was NP-Hard, which trivially proves the MPCP is also
NP-Hard.
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in which the agents are loosely-coupled. That is, we assume that
agents who plan independently and then coordinate their plans will
produce plans that are mostly independent of each other (recall that
this assumption was one of the reasons motivating this plan coor-
dination work). To provide some measure of performance compar-
ison, we also examine how our algorithm compares to prior work
on the plan coordination problem, particularly that of Yang [22].

Since Yang’s algorithm considers a restricted form of the MPCP,
for the purposes of making an empirical and analytical compar-
ison between his algorithm and our flaw-repair-based algorithm,
we adapt our algorithm to the particulars of the restricted problem
he considers. Here we review Yang’s dynamic programming algo-
rithm, and then show analytically and empirically the advantage our
algorithm has over his algorithm, particularly on loosely-coupled
multiagent plan coordination problems.

4.1 Yang’s Plan Merging Work
Yang [22] considers a general form of the single-agent plan co-

ordination problem (which he calls Plan Merging) that is easily ex-
tensible to the multiagent case we consider, and then he imposes
limitations on the problem’s form in order to use a particular dy-
namic programming method to coordinate the plans. Yang’s partic-
ular restrictions are as follows:

I Operator-Type Plan Step Merging - Two steps si and sk can
merge only when they have the same operator type, and
when the two steps are unordered in the plan. Yang assumes
that, given a plan coordination problem, there exists a step-
typing function that maps any given plan step to a type. 5

II Conflict-Free Assumption - Individual subplans are assumed
to be free of steps that conflict with other steps or causal links
between other steps.

Note that unlike our earlier definition of a plan step merge flaw,
this modified definition is inherently symmetric in nature, and thus
either of the pair of steps can be dropped.6 One other difference
between the problem Yang considers and the one we do is that when
two steps of the same type merge, the replacing step inherits all of
the ordering constraints from the two steps being merged. This
difference makes merging in the restricted case result in a more
tightly-constrained plan, which in turn can prevent further merges
from being performed. Yang thus considers a restricted form of
the multiagent plan coordination problem in which the initial plan
is assumed to be consistent, and the challenge is to optimize the
plan by removing as many redundant steps as possible given the
ordering restrictions on the plans. Despite these restrictions, the
problem remains NP-Hard [22].

To adapt our plan-space coordination algorithm to Yang’s re-
stricted problem, we need to tell it to ignore conflicts, and then
adjust how step merge flaws are repaired. To repair plan step merge
flaws, such that a step si can be replaced by step sk, we now do the
following:

1. For each temporal constraint t ∈≺T of form 〈si,s j〉 add new
constraint of form 〈sk,s j〉 to ≺T .

2. For each temporal constraint t ∈≺T of form 〈s j,si〉 add new
constraint of form 〈s j,sk〉 to ≺T .

5Yang speaks in fact of an arbitrary set of steps as being redundant,
but redundancies between more than two steps can be repaired in
an iterative manner, so we present a pairwise description.
6More generally, Yang assumes that the two steps can be replaced
by a single step, which he also assumes can be easily and uniquely
determined.

Figure 2: Visualizing Yang’s Plan Coordination Algorithm

3. For each temporal constraint t ∈≺T of form 〈si,s j〉 remove
link from ≺T .

4. For each temporal constraint t ∈≺T of form 〈s j,si〉 remove
link from ≺T .

5. Remove si from S.

All other aspects of our algorithm remain the same, save the
bounding mechanism. Significantly, because plan step merging in
this problem formulation only tighten the temporal structure of the
plan, we need only count the number of plan steps that can merge
with other steps that remain unordered with respect to these steps.
Although this still is often an overestimate of the quality of the plan,
it serves as an extremely good bound for evaluating the potential of
a given plan, as we show empirically, later in this paper.

4.2 Yang’s Dynamic Programming Algorithm
To solve his restricted plan coordination problem, Yang [22] de-

veloped an optimal plan coordination algorithm based on a standard
dynamic programming approach to the Shortest Common Superse-
quence problem [5]. In essence, the dynamic programming algo-
rithm identifies the optimal way to merge steps in the POCL plan
by recursively determining the optimal way to merge steps in the
various plan “prefixes” of the POCL plan. Here, a plan prefix is a
plan formed by performing vertical “cuts” through the partial order
of plan steps and only keeping steps on one side of the cut. Optimal
solutions to the subproblems are stored in a multidimensional table,
and when the table has been completely constructed, the algorithm
performs a polynomial search through the table to find the optimal
set of steps to merge.

Figure 2 illustrates the dynamic programming algorithm graph-
ically. Intuitively, Yang’s algorithm first identifies possible cuts
through the set of plans, where a cut groups together plan steps
that are unordered with respect to each other. Within a cut, his al-
gorithm then identifies sets of steps that can be merged, such as the
steps marked with an “X” in the slice indicated in the figure. Yang’s
algorithm recognizes that plan steps that must be ordered to occur at
strictly different times cannot possibly be merged together, and so
it first groups together only steps that could co-occur, and then only
looks for combinations within those sets for merging. Because the
NP-Hard nature of the problem arises from the search for all pos-
sible combinations of identically-redundant steps in a set, Yang’s
algorithm bounds the size of the set to only the steps that could co-
occur. His assumption (below) that the number of goals (plans) to
merge remains constant means that the “width” of a slice (the size
of any co-occurring set of plan steps) is bounded by a constant. As
the problem scales, the plans get longer, but this only leads to a
polynomial increase in computation because the number of slices
grows but the maximum size of each slice does not.
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We can see the complexity of Yang’s algorithm by considering
the number of cuts through a set of n plans to be coordinated. For
the n plans, each of length d, the number of cuts is dn, and for
each cut of width n, Yang’s algorithm has to consider merging all
possible subsets of steps in the slice, which is 2n. This means the
complexity of Yang’s dynamic programming algorithm is worst-
case O(2ndn). Thus, Yang’s algorithm has time complexity that
grows polynomially with the length of the plans to coordinate, but
exponentially in the number of plans n.

4.3 An Analytical Comparison
If we compare the worst-case computational complexity of Yang’s

algorithm and our algorithm, it is clear that our algorithm is no bet-
ter than Yang’s algorithm, as Yang’s algorithm is exponential with
respect to the number of agents n to be coordinated, whereas ours is
exponential with respect to the number of flaws in the plan (which
in the restricted problem Yang considers, corresponds to the num-
ber of pairs of steps m to merge), which in the worst-case will grow
quadratically with n and d.

However, unlike Yang’s dynamic programming algorithm, our
plan coordination algorithm is sensitive to the degree of interaction
between the agents, or their coupling. In a multiagent system, the
degree to which agents interact can range from being uncoupled,
meaning that no action an agent takes can materially impact an-
other agent (the agents are completely independent), to being fully
coupled, meaning that every action an agent takes will materially
impact all other agents (the agents are completely interdependent).
We can characterize the degree of coupling between agents in terms
of the number of flaws in the coordination problem (in this case, the
number of merge pairs m). Agents who are uncoupled will have no
steps to merge (m = 0), in which case the complexity of our al-
gorithm will be a constant. At the other extreme, agents whose
plans are fully coupled will have a number of steps to merge that
scales with the size of their plans ((nd)2), making the complexity
of our algorithm exponential. Such agents will typically be better
off planning from the outset as a team [16].

Somewhere in between these two extremes are situations where
agents are loosely coupled, which we define as being the case when
the number of interactions between the agents grows sublinearly
with the number of agents. One simple example of such a sublinear
relationship is to say that, as the number of agents grows linearly,
the number of merge pairs m grows logarithmically. When this is
the case, the complexity of our algorithm remains polynomial as
the number of agents n scales.

This result is significantly smaller than Yang’s complexity result,
which remains exponential in the number of agents because of his
use of a dynamic programming algorithm that is not affected by
the interaction of the agents’ plans. In contrast, our algorithm is
sensitive to not only the number of steps in the plan, but the way in
which they can be merged. Thus, as long as agents remain loosely-
coupled, our algorithm can exploit this to reduce the complexity
of the multiagent plan coordination problem in ways that Yang’s
algorithm cannot.7

4.4 An Empirical Comparison
We have shown how, in making reasonable assumptions about

characteristics of the multiagent plan coordination problem, the
worst-case performance of our search algorithm becomes tractable.
However, we cannot always rely on the assumption that agents are

7This is one reason why the complexity of Yang’s algorithm is not a
function of the number of types of plan steps, as counting the types
would be one way of measuring the degree of similarity between
different plans.

loosely coupled, as there may be situations in which agent plans
are highly interactive, but still need to be coordinated.

In this subsection, we demonstrate how, even when we relax the
assumption that agents are loosely coupled, our use of a branch-
and-bound approach to plan coordination can have significant com-
putational benefits in the expected case performance of our algo-
rithm, especially in comparison to Yang’s algorithm. To make the
comparison, we measure the computational cost of the algorithms
in terms of the number of step comparisons that they need to do.
For Yang’s algorithm, for each of the dn entries in the dynamic pro-
gramming table (corresponding to the number of “cuts” through the
agent plans), he considers 2n possible subsets to merge, but we will
instead be less stringent and assume that he only performs n2 pair-
wise comparisons. In our algorithm, although in this restricted case
it turns out that all possible pairs of steps to potentially merge can
be found once at the beginning, we will handicap our algorithm by
saying for each of the 2m search states generated, it must compare
all (nd)2 pairs of plan steps again.

To test Yang’s algorithm against our own, we ran both our al-
gorithm and an implementation of his algorithm on a series of re-
stricted multiagent plan coordination problems consisting of ran-
domly generated plans for an increasing number of agents. Al-
though we have implemented Yang’s algorithm for the purposes of
an empirical comparison, we could not practically run it on prob-
lems beyond four agents. Thus, we ran his algorithm on problems
up to this number, and then for problems up to this size and larger,
we have simply calculated the number of step comparisons based
on the size of the dynamic programming table his algorithm would
have to construct to solve the problem given the number of agents
and the size of each agent’s plan.8 This number effectively serves
as a lower bound on the computational complexity of Yang’s al-
gorithm, as any implementation of his dynamic programming al-
gorithm must construct the table in order to identify the optimal
solution.

The complexity of Yang’s algorithm is independent of the cou-
pling of the agents, and scales as the number of agents n or the
length of their plans d grow. Our algorithm differs from his in
this regard, and thus we consider three coupled cases in which
we test the performance of our algorithm. In one, the number of
merge pairs in the problem m = log (nd). This is the loosely cou-
pled case. The second is where m = 0.2(nd), and we call this the
tightly-coupled case.9 The last is where m = 0, which we call the
uncoupled case.

For Yang’s algorithm and for each coupling case, we generated a
random problem by building a totally-ordered plan for each agent.
Each of the plans consists of fifteen steps of different types, with
a total of m merges between the agents possible. For the loosely-
coupled, tightly-coupled, and uncoupled cases, the number of merges
m was calculated accordingly. This conjunctive set of plans was fed
as the initial input to each algorithm, and each algorithm was run
until the optimal solution was returned. For each number of agents,
we generated thirty problem instances and computed the average
number of plan-step comparisons made by each algorithm. The
results of our experiments are given in Figure 3.

As we can see in the graph, for these randomly-generated prob-
lems, our branch-and-bound algorithm clearly dominates in all cou-
pling cases, especially in the uncoupled case, in which the algo-

8The size of the table is the size of the agents’ plans (assuming they
are all of the same length) to the power of the number of agents.
9We used a coefficient of 0.2 because we did not want to assume
that the agents were fully-coupled, which would be a degenerate
instance of the problem, but still wanted the step merge flaws to
scale linearly with the number of agents.
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Figure 3: Empirical Comparison

rithm can determine by looking at the starting plan that there are no
merges to be performed, and then terminate the search before any
more states are visited. Surprisingly, even as the number of merges
grows in the tightly-coupled case, our algorithm scales well. This
performance is almost entirely attributable to the effective bound-
ing mechanism we use in our search, as the algorithm is able not
only to find the optimal solution quickly using a depth-first search,
but is able to use this optimal solution to prune large parts of the
search space. Specifically, for these randomized problem instances,
the algorithm could quickly find a solution in which it had imple-
mented the majority of step merges, and could use this solution to
bound much of the remaining search space.

We can see the effectiveness more clearly by comparing the al-
gorithm’s performance in the tightly-coupled case against the al-
gorithm without the bounding mechanism. In Figure 4, we see
the results of running our algorithm on the tightly-coupled prob-
lems from above, and on the same set of tightly-coupled coordi-
nation problems when the bounding mechanism is disabled, com-
puting the average number of plan-step comparisons made (note
again the graph’s logarithmic scale). As we can see from the graph,
the bounding test is a key component of our algorithm’s efficient
operation.

5. CONCLUSION AND DISCUSSION
In this paper, we have shown that assumptions made by past

work on the single-agent plan coordination problem do not gen-
erally hold for the multiagent plan coordination problem. As a
consequence, past methods [22] may not be well suited for solv-
ing the multiagent plan merging problem, as they may well be in-
tractable as the number of agents grows. We have described what
new assumptions we can make about the general multiagent prob-
lem, specifically the loosely-coupled multiagent problem, thus al-
lowing us to derive an efficient and optimal plan coordination algo-
rithm whose complexity compares favorably to the previous state-
of-the-art single-agent plan merging techniques. Other current and
related work not described in this paper includes work showing the
efficiency of our algorithm on coordination problems more general
than the ones that Yang considers, as well as work exploring ways
of solving multiagent plan coordination problems in a distributed
manner, [6].

Our future work includes the task of demonstrating more for-

Figure 4: Branch-and-Bound Effectiveness

mal properties of our algorithm for coordinating hierarchical plans,
combining the analytical work we have performed in this paper
with the initial empirical results demonstrated in our earlier work
[7], and the development of better search techniques to improve the
expected-case performance of our search algorithm for practically-
sized problems.
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