
Conditional XPath, the first order complete XPath dialect ∗

Maarten Marx
†

Language and Inference Technology
University of Amsterdam

marx@science.uva.nl

ABSTRACT
XPath is the W3C–standard node addressing language for
XML documents. XPath is still under development and its
technical aspects are intensively studied. What is missing at
present is a clear characterization of the expressive power of
XPath, be it either semantical or with reference to some well
established existing (logical) formalism. Core XPath (the
logical core of XPath 1.0 defined by Gottlob et al.) cannot
express queries with conditional paths as exemplified by “do
a child step, while test is true at the resulting node.” In a
first-order complete extension of Core XPath, such queries
are expressible. We add conditional axis relations to Core
XPath and show that the resulting language, called condi-
tional XPath, is equally expressive as first-order logic when
interpreted on ordered trees. Both the result, the extended
XPath language, and the proof are closely related to tem-
poral logic. Specifically, while Core XPath may be viewed
as a simple temporal logic, conditional XPath extends this
with (counterparts of) the since and until operators.

1. INTRODUCTION
XPath 1.0 [25] is a variable free language used for selecting
nodes from XML documents. XPath plays a crucial role in
other XML technologies such as XSLT [29], XQuery [28] and
XML schema constraints, e.g., [27]. The recent XPath 2.0
[26] is much more expressive and is close to being a full
fledged tree query language. It contains variables which are
used in if–then–else, for, and quantified expressions. The
available axis relations are the same in both versions. As

∗(Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. PODS 2004,
June 14–16, 2004, Paris, France. Copyright 2004 ACM 1-
58113-858-X/04/06 $5.00.
†Research supported by NWO grant 612.000.106.

XPath 2.0 adds variables and first order quantifiers it is
natural to ask whether XPath 1.0 is already expressively
complete with respect to first order logic. More precisely,
is every first order query φ(x) which selects a set of nodes
from an XML document model equivalent to an XPath ex-
pression?

As we will see, it is not, but a simple and natural addition
is sufficient. This paper introduces and motivates this addi-
tion, makes the connection with temporal logic and shows
expressive completeness of the resulting language.

We use the abstraction to the logical core of XPath 1.0
(called Core XPath) developed in [9, 8]. Core XPath is
interpreted on XML document tree models. The central ex-
pression in XPath is the location path axis :: node label [filter]
which when evaluated at node n yields an answer set con-
sisting of nodes n′ such that the axis relation goes from n to
n′, the node tag of n′ is node label , and the expression filter
evaluates to true at n′.

Core XPath cannot express the “until–like” query whose
answer set consists of all nodes n′ satisfying the first order
statement “n′ is a descendant of n, the label of n′ is A, and
for all z, if z is a descendant of n and n′ is a descendant of
z, then the label of z is A [15]. This query can be expressed
by (child :: A)+, which we call a conditional axis. As usual,
R+ denotes the transitive closure of the (binary) relation R.
Conditional axes are widely used in programming languages
and temporal logic specification and verification languages.
In temporal logic they are expressed by the Since and Until
operators. We show that XPath with the additional condi-
tional axis relations, abbreviated as CXPath, is closely re-
lated to temporal logic and use this connection to establish
the expressive completeness result.

Both the result, the new XPath language and the proof can
be seen as direct offspring of the seminal POPL 1980 paper
by Gabbay, Pnueli, Shelah and Stavi [6]. There it was shown
that the propositional temporal language with since and un-
til (now known as LTL) is just as expressive as first order
logic over linear structures. This result, which generalized
and gave an accessible proof to Kamp’s Theorem [12], is ar-
guably the clear technical basis which led to the acceptance
and widespread use of temporal logic in computer science.
XPath is already present in most XML applications. The
expressive completeness result of this paper justifies this cen-
tral position, and establishes CXPath as a natural fixed point

in the development of the family of XPath languages.

While CXPath is more expressive than Core XPath, in all
other aspects it is very conservative. CXPath has the same
unabbreviated syntax as XPath 1.0 and Core XPath, the
same (standard W3C) semantics, the same (linear time) up-
per bound for query evaluation, and the same (exponential
time) upper bound for query containment given a DTD or
a set of XSchema constraints [15].

The paper is organized as follows. Section 2 defines the
XPath language we study, gives examples and motivates our
main result. Section 3 makes the connection with first order
and temporal logic. Expressive completeness is shown in
Section 4, and complexity is discussed in Section 5. Proofs
of all claims in the text stated without proof are given in
the appendix.

Related work.
Variable free logical languages for reasoning about (finite)
sibling ordered trees exists since the early nineties [2, 14,
18]. These were developed as alternatives to monadic sec-
ond order logic which was used to develop model theoretic
syntax [20]. The study of expressive completeness with re-
spect to first order logic of modal languages originated with
Kamp’s thesis [12]. He showed that LTL is expressively
complete with respect to Dedekind complete linear struc-
tures. [6] made this result accessible and generalized it.
Gabbay’s notion of separation yielded a proof understand-
able to the non-specialist; Stavi’s until for gaps gave com-
pleteness with respect to all linear structures. Immerman
and Kozen [11] showed that first order logic with at most k
variables is expressively complete for k–branching trees. A
model–theoretic version of the separation property is She-
lah’s Composition Method [23].

Schlingloff [21] generalized Kamp’s Theorem to bounded and
unbounded trees. Besides since and until, he has a connec-
tive counting the number of daughters making a wff true:

t |= XkA ⇐⇒ ∃t1 . . . tk
∧

1≤i¬j≤k

(tR⇓ti ∧ ti 6= tj ∧ ti |= A).

Note that Xk is expressible over ordered trees. For k bounded
trees, the language with since and until plus all Xi, for
2 ≤ i ≤ k is expressively complete. For unbounded trees,
Xi is needed for every natural number i. Unfortunately this
result does not imply separation.1

Expressive completeness for a language closely related to
ours was announced in [18]. Unfortunately, [18] does not
mention any of the above works, the proof does not use sep-
aration, it is over 50 pages long and very hard to follow. Here
we just mentioned work about first order expressive com-
pleteness of variable free languages. [19] is a recent survey
on the expressivity of temporal logics covering also second
order expressivity results.

1This is most easily explained using the notation introduced
below. Consider the wff 〈⇑〉〈⇓〉A. On linear structures, this
is equivalent to 〈⇑〉> ∧ A, on ordered trees to 〈⇑〉> ∧ (A ∨
〈⇐+〉A ∨ 〈⇒+〉A), which are both separated formulas. But
the signature of unordered trees is too weak to separate this
formula.

2. A BRIEF INTRODUCTION TO XPATH
[8] proposes a fragment of XPath 1.0 which can be seen
as its logical core, but lacks much of the functionality that
account for little expressive power. In effect it supports
all XPath’s axis relations, except the attribute relation2,
it allows sequencing and taking unions of path expressions
and full booleans in the filter expressions. It is called Core
XPath, also referred to as navigational XPath. A similar
logical abstraction is made in [1]. As the focus of this paper
is expressive power, we also restrict XPath to its logical core.

We will define two XPath languages which only differ in the
axis relations allowed in their expressions. As in XPath 1.0,
we distinguish a number of axis relations. Instead of the
rather verbose notation of XPath 1.0, we use a self-explana-
tory graphical notation, together with regular expression op-
erators + and ∗.

For the definition of the XPath languages, we follow the pre-
sentation of XPath in [8]. The expressions obey the standard
W3C unabbreviated XPath 1.0 syntax, except for the differ-
ent notation of the axis relations. The semantics is as in [1]
and [7], which is in line with the standard XPath semantics
from [30].

Our simplest language XCore is slightly more expressive than
Core XPath (cf. Remark 2). We view XCore as the baseline
in expressive power for XPath languages. CXPath, for condi-
tional XPath, simply extends XCore with conditional paths.

Definition 1. The syntax of the XPath languages XCore

and CXPath is defined by the grammar

locpath ::= axis ‘::’ntst | axis ‘::’ ntst ‘[’fexpr‘]’ |
‘/’ locpath | locpath ‘/’ locpath |
locpath ‘|’ locpath

fexpr ::= locpath | not fexpr | fexpr and fexpr |
fexpr or fexpr

axis ::= self | primitive axis | primitive axis+ |
primitive axis∗.

The primitive axis of XCore are ⇓, ⇑, ⇒ and ⇐, and those
of CXPath are

| ⇓ | ⇑ | ⇒ | ⇐ | ⇓fexpr | ⇑fexpr | ⇒fexpr | ⇐fexpr.

where “locpath” (pronounced as location path) is the start
production, “axis” denotes axis relations and “ntst” denotes
tags labeling document nodes or the star ‘*’ that matches all
tags (these are called node tests). The “fexpr” will be called
filter expressions after their use as filters in location paths.
With an XPath expression we always mean a “locpath”.

The semantics of XPath expressions is given with respect to
an XML document modeled as a finite node labeled sibling
ordered tree3 (tree for short). Each node in the tree is labeled

2This is without loss of generality as instead of modeling
attributes as distinct axes, as in the standard XML model,
we may assign multiple labels to each node, representing
whether a certain attribute-value pair is true at that node.
3A sibling ordered tree is a structure isomorphic to
(N,R⇓, R⇒) where N is a set of finite sequences of natural
numbers closed under taking initial segments, and for any

[[X :: t]]M = {(n, n′) | n[[X]]Mn′ and t(n′)}
[[X :: t[e]]]M = {(n, n′) | n[[X]]Mn′ and t(n′) and EM(n′, e)}
[[/locpath]]M = {(n, n′) | (root, n′) ∈ [[locpath]]M}
[[locpath/locpath]]M = [[locpath]]M ◦ [[locpath]]M
[[locpath | locpath]]M = [[locpath]]M ∪ [[locpath]]M

[[⇓]]M := R⇓
[[⇒]]M := R⇒
[[⇑]]M := R−1

⇓
[[⇐]]M := R−1

⇒
[[self]]M := {(x, y) | x = y}
[[pfexpr]]M := {(x, y) | (x, y) ∈ [[p]]M and EM(y, fexpr) = true}
[[p+]]M := [[p]]M ∪ [[p]]M ◦ [[p]]M ∪ [[p]]M ◦ [[p]]M ◦ [[p]]M ∪ . . .
[[p∗]]M := [[self]]M ∪ [[p+]]M

EM(n, locpath) = true ⇐⇒ ∃n′ : (n, n′) ∈ [[locpath]]M
EM(n, fexpr1 and fexpr2) = true ⇐⇒ EM(n, fexpr1) = true and EM(n, fexpr2) = true
EM(n, fexpr1 or fexpr2) = true ⇐⇒ EM(n, fexpr1) = true or EM(n, fexpr2) = true
EM(n, not fexpr) = true ⇐⇒ EM(n, fexpr) = false.

Table 1: The semantics of XCore and CXPath.

with a set of primitive symbols from some alphabet. Sib-
ling ordered trees come with two binary relations, the child
relation, denoted by R⇓, and the immediate right sibling re-
lation, denoted by R⇒. Together with their inverses R⇑ and
R⇐ they are used to interpret the axis relations.

Each location path denotes a binary relation (a set of paths).
The meaning of the filter expressions is given by the predi-
cate E(n, fexpr) which assigns a boolean value. Thus a filter
expression fexpr is most naturally viewed as denoting a set
of nodes: all n such that E(n, fexpr) is true. For examples,
we refer to below and to [8]. Given a tree M and an expres-
sion A, the denotation or meaning of A in M is written as
[[A]]M. Table 1 contains the definition of [[·]]M.

Examples
Consider the following information need: give elements whose
next element in document order has tag A. This can be ex-
pressed in first order logic by

∃y(x� y ∧A(y) ∧ ¬∃z(x� z � y)),

in which � abbreviates descendant or ancestor or self/
following sibling/descendant or self. To “program”
this information need in navigational XPath we seem to
need to express the “next in document order” relation. To
do this we use a few macros: first, last and leaf abbreviate
self :: ∗[not⇒ :: ∗], self :: ∗[not⇐ :: ∗] and self :: ∗[not ⇓ :: ∗],
respectively. We also use the converses4 of the conditional
axis, written as last⇑

+ and so on. The meaning of last⇑
+ is

sequence s, if s · k ∈ N , then either k = 0 or s · k − 1 ∈ N .
For n, n′ ∈ N , nR⇓n

′ holds iff n′ = n · k for k a natural
number; nR⇒n

′ holds iff n = s · k and n′ = s · k + 1.
4Unlike XCore , the axis relations of CXPath are not closed
under taking converses. Still φ⇑+ :: t[ψ] is definable as

self :: ∗[φ]/⇑∗φ :: ∗/⇑ :: t[ψ],

and similarly for the other directions.

the transitive closure of the relation self :: ∗[last]/⇑ :: ∗.

Now we can write the “next in document order” relation in
conditional XPath by the following case distinction:

⇓ :: ∗[first] | self :: ∗[leaf]/⇒ :: ∗ | last⇑
+ :: ∗/⇒ :: ∗.

Having this it is easy to express the information need.

Our second example is an exercise suggested by Michael
Benedikt. Here the information need is in essence a Boolean
query. We implement that by returning the root of the doc-
ument if and only if the Boolean query evaluates to true.
The example is check whether nodetags of the frontier of the
tree (that is, the set of leaves in document order) is a word
in (ab)∗. It is not very hard to write a first order sentence
capturing this query. The crucial relation is the next frontier
node relation, expressible as

self :: ∗[leaf]/N/self :: ∗[leaf],

where N is the union of ⇒ :: ∗ and

last⇑
+ :: ∗/⇒ :: ∗/⇓∗first :: ∗.

The rest of the exercise is fairly easy as all dependencies are
local.

Motivation
Taking the risk of advocating the obvious, we give a brief
motivation of the main result of this paper. Consider the two
examples just given. From the natural language description
it is not obvious that one can express them at all in naviga-
tional XPath. Though also not immediate, it is a lot easier
to express the information needs in first order logic, that is,
giving a formal specification of the problem. The expressive
completeness theorem can be viewed as an insurance policy:
once a formal specification of the desired set of nodes in first
order logic is given, one is insured that there exists an XPath
“program” which computes the set. Of course it can, and

⇑∗
⇑+

⇑
⇐∗ ⇐+ ⇐ self ⇒ ⇒+ ⇒∗

⇓
⇓+

⇓∗

ancestor or self
ancestor
parent

− preceding − self − following −
sibling child sibling

descendant
descendant or self

XCore axis XPath 1.0 axis

Figure 1: Primitive axis of XCore and XPath 1.0.

often will, be hard to find an equivalent XPath expression
but it is guaranteed to exist. This insurance policy puts the
original problem in a radically different light. Compare this
with giving a student an exercise which you know is possible
to solve (though you might not know the solution) and an
exercise for which you do not know it. In the second case,
when will you stop encouraging or pushing the student?

Pushing the analogy a bit further, one could say: “Well you
gave me an insurance policy, can’t you give me an insurance
agent which compiles my first order specification into an
equivalent XPath expression?”. We can, but the practical
value will be rather limited in general, as we cannot give an
elementary time bound for such a compiler (see Section 5).

Remark 2. XPath 1.0 (and hence Core XPath) has a
peculiar asymmetry between the vertical (parent and child)
and the horizontal (sibling) axis relations. For the verti-
cal direction, both transitive and reflexive–transitive closure
of the basic steps are primitives. For the horizontal direc-
tion, only the transitive closure of the immediate left and
immediate right sibling axis are primitives (with the rather
ambiguous names following and preceding sibling). XCore

removes this asymmetry and has all 13 axis as primitives.
They are given on the left hand side of Figure 1. The right
hand side contains the corresponding 9 primitive “compass”
axis of XPath 1.0. XPath 1.0 also has two primitive axis re-
lated to the document order. These are just syntactic sugar,
as witnessed by the following definitions:

following :: t[φ] ≡ ⇑∗ :: ∗/⇒+ :: ∗/⇓∗ :: t[φ]
preceding :: t[φ] ≡ ⇑∗ :: ∗/⇐+ :: ∗/⇓∗ :: t[φ].

So we can conclude that XCore is at least as expressive as
Core XPath, and has a more elegant set of primitives.

3. CONDITIONAL XPATH, FIRST ORDER
AND TEMPORAL LOGIC

We now view XPath as a query language over trees and com-
pare it to first order and temporal logic interpreted on trees.
Before we can start, we must make clear what kind of queries
XPath expresses. This is formalized by the notion of the an-
swer set of an XPath expression. The answer set of locpath
evaluated on a tree M (notation: answerM(locpath)) is the
set

{n ∈ M | there exists an m, (m,n) ∈ [[locpath]]M}.

Thus for each expression A, answerM(A) equals

answerM(/⇓∗ :: ∗/A).

An XPath expression starting with /, indicating that it
should be evaluated at the root, is called an absolute ex-
pression. We will show that for every first order query φ(x)
there exists an absolute CXPath expression A which is equiv-
alent in the following strong sense: for each tree M, for each
node n, M |= φ(n) if and only if n ∈ answerM(A).

Conditional XPath and First order logic
Let Ltree

FO be the first order language in the signature with two
binary relation symbols < and ≺ and countably many unary
predicates P,Q, . . . Ltree

FO is interpreted on node labeled sib-
ling ordered trees in the obvious manner: < is interpreted
as the descendant relation R+

⇓ , ≺ as the strict total order

R+
⇒ on the siblings, and the unary predicates P as the sets

of nodes labeled with P .

One might expect that XPath expressions correspond to
conjunctive queries, but this is not true due to the free use
of boolean operators inside the filter expressions. It is easy
to see that the XCore expressions are equivalent to Ltree

FO for-
mulas. A little bit harder is

Proposition 3. Every CXPath (filter) expression is, on
ordered trees, equivalent to an Ltree

FO formula in two (one) free
variable(s). Moreover, the Ltree

FO formula contains at most
three variables.

The converse of this proposition would state that CXPath
is powerful enough to express every first order expressible
query. For one variable queries on Dedekind complete linear
structures, the converse is known as Kamp’s Theorem [12].
The main result of the present paper is a generalization to
ordered trees:

Theorem 4. Every Ltree
FO formula in one free variable is,

on ordered trees, equivalent to an CXPath filter expression.

Note that we do not make a restriction to finite trees. The
result holds for the class of all trees. For each filter ex-
pression fexpr, EM(n, fexpr) is true if and only if n ∈
answerM(/⇓∗ :: ∗[fexpr]). Thus we have

Corollary 5. Every Ltree
FO formula in one free variable

is, on ordered trees, equivalent to an absolute CXPath ex-
pression.

Both Proposition 3 and Theorem 4 have a constructive proof
by translation. The easy direction has a linear time transla-
tion, the hard direction a translation which takes necessarily
non–elementary time (see Section 5). The proof (given in
the following section) makes a detour via temporal logic.

Conditional XPath and temporal logic.
Several authors observed that fragments of XPath can be
embedded into Computation Tree Logic CTL [17, 9]. Tem-
poral logic comes with operators which look toward the fu-
ture and toward the past. Interpreted on trees, these opera-
tors obtain their meaning from the descendant relation and
its inverse. Because we work on sibling ordered trees, it is
natural to add temporal operators which work in the hori-
zontal or sibling dimension as well. This is exactly what we
do. Define Xuntil as the propositional modal language with
four binary until–like modal operators ⇓,⇑,⇒,⇐. The syn-
tax is given by the grammar

φ ::= pi | > | ¬φ | φ ∧ φ | π(φ, φ),

with i ∈ ω and π ∈ {⇓,⇑,⇒,⇐}. The pi are propositional
variables. The semantics is the standard one for temporal
logic, with each arrow interpreted as a strict “until” over the
relation corresponding to the direction of the arrow. For-
mally, a model M is a structure (T, h), with T a tree and
h an assignment function from the set of propositional vari-
ables to the powerset of the set of tree nodes. Truth of a
formula is defined relative to a model M and a node n in
that model via the following recursive definition: M, n |= pi
iff n ∈ h(pi); M, n |= ¬φ iff M, n 6|= φ; M, n |= φ ∧ ψ iff
M, n |= φ and M, n |= ψ; M, t |= π(φ, ψ) iff there exists a
t′ such that tR+

π t
′ and M, t′ |= φ and for all t′′ such that

tR+
π t
′′R+

π t
′ it holds that M, t′′ |= ψ.

Proposition 6. Every Xuntil formula is, on ordered trees,
equivalent to an CXPath filter expression.

The converse also holds, as a direct corollary of Proposi-
tions 3, 6 and the expressive completeness of Xuntil , to be
proved in the next section.

4. EXPRESSIVE COMPLETENESS OF CON-
DITIONAL XPATH

This section contains the proof of Theorem 4. Instead of
proving that Theorem directly we show expressive complete-
ness of the “temporal language” Xuntil , which is sufficient by
Proposition 6. We say that Xuntil is expressively complete
if for every Ltree

FO formula φ(x) there exists an Xuntil for-
mula θ such that for every tree model M, for all nodes n
in M, M |= φ(n) if and only if M, n |= θ. The change of
perspective to temporal logic allows us to use directly the
techniques developed in [6]. The proof given here follows as
closely as possible the very clear presentation in Section 10.2
of [5]. This involves some change of terminology and nota-
tion from the previous sections (e.g., instead of formula we
use wff, propositional variables are called atoms, etc). The
key idea of the proof is the brilliant notion of separation.

4.1 Separation
Let (T,R⇓, R⇒) be a tree and t ∈ T . Define the following
partition on T :

present(t) = {t}
future(t) = {s | tR+

⇓ s}
past(t) = {s | t(R+

⇑ ∪R
+
⇑ ◦ (R+

⇐ ∪R+
⇒) ◦R∗⇓)s}

left(t) = {s | tR+
⇐ ◦R∗⇓s}

right(t) = {s | tR+
⇒ ◦R∗⇓s}.

Note that this partition is different from the one in the
XPath 1.0 specification given by the axis relations self

for present, descendant for future, ancestor for past, and
following and preceding for right and left, respectively.
Our “past” is a much larger set defined by the relation

ancestor ◦ (self ∪ following ∪ preceding).

For lack of a better name, we simply called it “past”.

Now let h, h′ be two assignments and t ∈ T . We say that
h, h′ agree on the future of t iff for any atom q and any
s ∈ future(t), s ∈ h(q) iff s ∈ h′(q). We similarly define this
notion for the present, past, left and right.

We say that a wff A is a pure future wff iff for each tree T,
for all t ∈ T , for all assignments h, h′, if h, h′ agree on the
future of t, then t, h |= A iff t, h′ |= A. Similarly, we define
pure present, past, left and right wffs.

We say that a wff A is separable iff there exists a wff which
is a boolean combination of pure present, future, past, left
and right wffs and is equivalent to A everywhere on any tree.

Theorem 7. If every Xuntil wff is separable over trees,
then Xuntil is expressively complete.

The proof can be copied from the proof of Theorem 9.3.1 in
[5] which considers linear flows of time. The only change is
to use the partition in five sets given above instead of the
past, present and future for linear time.

Theorem 8. Each Xuntil wff is, over trees, separable.

The proof is provided in the next subsection. As an imme-
diate corollary we obtain expressive completeness of Xuntil .

The next lemma describes a syntactic criterion for pure wffs.
Theorem 8 is shown by rewriting each wff into a boolean
combination of wffs satisfying these syntactic criteria. For
π one of the four orientations, a π wff is a wff whose main
connective is π(·, ·).

Lemma 9. 1. Each boolean combination of atoms is a
pure present wff.

2. Each boolean combination of ⇓ wffs in whose scope
occur only atoms, ⇓, ⇐ and ⇒ wffs is a pure future
wff.

3. Each boolean combination of ⇒ wffs in whose scope
occur only atoms, ⇒ wffs and pure future wffs is a
pure right wff.

4. Each boolean combination of ⇐ wffs in whose scope
occur only atoms, ⇐ wffs and pure future wffs is a
pure left wff.

5. Each boolean combination of ⇑ wffs in whose scope
occur only atoms, ⇑ wffs and pure left and right wffs
is a pure past wff.

4.2 Separating formulas
Now we prove that each Xuntil formula is separable over
ordered trees. The proof follows the same structure as the
one given in Section 10.2 of [5] for integer time. Note that
integer time (or rather, natural number time) is a special
case of ordered trees in which each⇒ and⇐ wff is equivalent
to ⊥.

We shall describe a syntactic procedure for separating each
wff into a boolean combination of wffs of the form described
in Lemma 9. Then that Lemma yields the theorem. Before
we start let us summarize what we need to do. We must

1. pull out ⇐ wffs from under the scope of ⇒ wffs, and
conversely;

2. pull out ⇑ wffs from under the scope of ⇐,⇒ and ⇓
wffs;

3. pull out ⇓ wffs from under the scope of ⇑ wffs.
It should be clear that if we can manage this, the result is
in the form described in Lemma 9. 1) follows directly from
the linear case, as well as pulling out ⇑ from under ⇓, as the
past of a tree is a linear structure. Pulling ⇑ out from under
⇐ and ⇒ is easy. The real work is in showing 3).

With the first lemma we bring each formula into a normal
form.

Lemma 10. The following are valid on all structures, for
π any of the four orientations {⇑,⇓,⇐,⇒}:

π(A ∨B,C) ≡ π(A,C) ∨ π(B,C)

π(A,B ∧ C) ≡ π(A,B) ∧ π(A,C).

Let a literal be an atom or its negation or (a negation of) an
orientation wff π(C,D) where C is a conjunction, and D a
disjunction of literals. By boolean reasoning and Lemma 10
each wff is equivalent to a wff constructed from literals using
conjunction and disjunction only. So we only have to focus
attention on literals.

Notation 11. As usual in temporal logic, it is convenient
to create macros for the unary temporal connectives. For π
one of the four arrows, 〈π〉A abbreviates π(A,⊥) and 〈π+〉A
abbreviates π(A,>). [π]A abbreviates ¬〈π〉¬A. 〈π〉 corre-
sponds to the “next” operator, and 〈π+〉 to its transitive
closure. [⇓+]A expresses that everywhere below A holds.

Gabbay’s separation version of Kamp’s theorem allows us
to separate ⇒ and ⇐ wffs. Call a wff horizontal if it does
not contain ⇓ and ⇑ wffs.

Theorem 12 (Gabbay). Each horizontal wff is equiv-
alent to a wff in which no ⇒ wff occurs in the scope of a ⇐
wff and conversely.

The next lemma allows us to bring ⇑ wffs out of the scope
of horizontal wffs.

Lemma 13. Let a, q, A,B be arbitrary wffs. The follow-
ing are valid over trees. They are also valid if ⇐ is replaced
everywhere by ⇒.

1. ⇐(a ∧ ⇑(A,B), q) ≡ ⇐(a, q) ∧ ⇑(A,B);

2. ⇐(a ∧ ¬⇑(A,B), q) ≡ ⇐(a, q) ∧ ¬⇑(A,B);

3. ⇐(a, q ∨ ⇑(A,B)) ≡ ⇐(a, q) ∨ (⇑(A,B) ∧ 〈⇐+〉a);
4. ⇐(a, q ∨ ¬⇑(A,B)) ≡ ⇐(a, q) ∨ (¬⇑(A,B) ∧ 〈⇐+〉a).

We are halfway through the proof. As pure future and
pure past formulas may contain pure left and right formulas
(Lemma 9), the only cases left are ⇑ wffs in the scope of
⇓ wffs and conversely. The next Lemma, which is a copy
of Lemma 10.2.3 in [5] adjusted to trees takes care of these.
Note that the equivalents are pure past and pure future wffs.
Thus the Lemma tells us that we can separate all these for-
mulas. The proof is given in the Appendix.

Lemma 14. Let a, q, A and B be atoms. Consider the
followings wffs:

1. ⇑(a ∧ ⇓(A,B), q),

2. ⇑(a ∧ ¬⇓(A,B), q),

3. ⇑(a, q ∨ ⇓(A,B)),

4. ⇑(a, q ∨ ¬⇓(A,B)),

5. ⇑(a ∧ ⇓(A,B), q ∨ ⇓(A,B)),

6. ⇑(a ∧ ¬⇓(A,B), q ∨ ⇓(A,B)),

7. ⇑(a ∧ ⇓(A,B), q ∨ ¬⇓(A,B)),

8. ⇑(a ∧ ¬⇓(A,B), q ∨ ¬⇓(A,B)).

(i) Each of the above wffs is equivalent, over ordered trees,
to another wff in which the only appearances of the ⇓ con-
nective are as ⇓(A,B) and if an appearance of that wff is in
the scope of ⇑, then ⇓(A,B) is in the scope of a ⇐ or a ⇒
wff (which itself is in the scope of the ⇑).

(ii) Exchange ⇑ and ⇓ in the above wffs. For those wffs,
each of them is equivalent, over ordered trees, to another
wff in which the only appearances of the ⇑ connective are as
⇑(A,B) and no appearance of that wff is in the scope of ⇓.
Moreover the wff does not contain any ⇐ or ⇒ subformulas.

The final step.
We now know the basic steps of the separation proof. We
simply keep pulling out ⇓’s from under the scope of ⇑’s
etcetera until there are no more. Given a wff A, this process
will eventually lead to a syntactically separated wff, i.e. a
wff B which is a boolean combination of wffs as occurring
in the left hand side of Lemma 9. Clearly then, by that
Lemma, B is separated.

This process of pulling out goes by an inductive process
exactly the same as in Lemmas 10.2.4 to 10.2.8 in [5]. With
this we finish the proof of Theorem 8.

5. COMPLEXITY
Query evaluation for Core XPath is hard for ptime (com-
bined complexity) and can be done in time O(|D| · |Q|), with
|D| the size of the data and |Q| the size of the query [7, 8].
CXPath is more expressive, but the upper bound remains
[15]. Because we have expressive completeness, it is inter-
esting to compare this to results for first order logic. Query
evaluation for first order queries is pspace complete and can
be done in time O(|D|n · |Q|), where n is the number of vari-
ables inQ [3, 10, 24]. So we can explain ptime–completeness
of CXPath by the fact that it is a subset of Ltree

FO with at most
three variables (Proposition 3). That it is undesirable to al-
low an unlimited number of variables in queries (whence to
compute tables of unlimited size) becomes even clearer when
we look at parametrized complexity. [4] showed that under
some mild assumptions there is no model checking algorithm
for Ltree

FO on the class of unbounded trees whose running time
is bounded by f(|Q|) · p(|D|), for an elementary function f
and a polynomial p.

Satisfiability for conditional XPath over finite trees is com-
plete for exponential time [15]. Satisfiability of first order
sentences with < over finite words is in no elementary space-
bounded complexity class. Whence, no translation from
CXPath into the first order logic of trees can be elementary
space-bounded.

6. CONCLUSION
We defined an easy to use, variable free XPath dialect which
is expressively complete with respect to first order logic
when interpreted on ordered trees. XPath is already present
in most XML applications. The expressive completeness re-
sult of this paper justifies this central position, and estab-
lishes CXPath as a natural fixed point in the development of
the family of XPath languages. We think that the lack of
variables is one of the reasons for the success of XPath, so
it is nice to know that they are not needed for expressivity
reasons. Besides that, query evaluation for CXPath can still
be done in linear time, while for first order logic there is no
algorithm which is elementary in the query and polynomial
in the data [4].

Several research questions remain. Is CXPath closed un-
der intersection and complementation, as defined in [1]? Is
CXPath also expressively complete with respect to first order
formulas in two free variables? We conjecture that all these
questions can be answered positively. Neven and Schwentick
have argued that not FO but unary MSO should be the
goal of a natural XPath dialect. Several proposals have
been made (we mention the efficient tree logic of Neven and
Schwentick [16] and monadic datalog of Gottlob and Koch
[9]) but, as far as we know, none have a simple variable free
XPath like syntax. In [15] we considered next to conditional
XPath also a language called regular XPath. It has almost
the same syntax as conditional XPath, but now also tran-
sitive closure of arbitrary location paths is allowed. E.g.,
the non first order query (⇓ :: ∗/⇓ :: ∗)+ is expressible in it.
Is (some natural extension of) regular XPath expressively
complete for unary MSO? At present we only know that
one of the simplest truly MSO queries (though not a unary
but a boolean query) –the boolean circuit problem– can be
expressed in regular XPath (see [16] for a formulation of the
problem in terms of trees).

7. REFERENCES
[1] M. Benedikt, W. Fan, and G. Kuper. Structural

properties of XPath fragments. In Proc. ICDT’03,
2003.

[2] P. Blackburn and W. Meyer-Viol. Linguistics, logic,
and finite trees. Logic J. of the IGPL, 2:3–29, 1994.

[3] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational databases. In
Proceedings of 9th ACM Symposium on Theory of
Computing, pages 77–90, 1977.

[4] M. Frick and M. Grohe. The complexity of first-order
and monadic second-order logic revisited. In Proc.
LICS’02, pages 215–224, 2002.

[5] D.M. Gabbay, I. Hodkinson, and M. Reynolds.
Temporal Logic. Oxford Science Publications, 1994.
Volume 1: Mathematical Foundations and
Computational Aspects.

[6] D.M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On
the temporal analysis of fairness. In Proc. 7th ACM
Symposium on Principles of Programming Languages,
pages 163–173, 1980.

[7] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing XPath queries. In Proc.
VLDB’02, 2002.

[8] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In Proc. PODS 2003,
pages 179–190, 2003.

[9] G. Gottlob and C. Koch. Monadic queries over
tree-structured data. In Proc. LICS’02, 2002.

[10] N. Immerman. Upper and lower bounds for first order
expressibility. J. Comput. Syst. Sci., 25:76–98, 1982.

[11] N. Immerman and D. Kozen. Definability with
bounded number of bound variables. In Proc. LICS ,
pages 236–244, Washington, 1987. Computer Society
Press.

[12] J.A.W. Kamp. Tense Logic and the Theory of Linear
Order. PhD thesis, U. of California, LA, 1968.

[13] C. Koch. Efficient processing of expressive
node-selecting queries on XML data in secondary
storage: A tree automata-based approach. In VLDB
2003, pages 249–260, 2003.

[14] M. Kracht. Inessential features. In Christian Retore,
editor, Logical Aspects of Computational Linguistics,
number 1328 in LNAI, pages 43–62. Springer, 1997.

[15] M. Marx. XPath with conditional axis relations. In
Proc. EDBT’04, pages 477–494. 2004.

[16] F. Neven and T. Schwentick. Expressive and Efficient
Pattern Languages for Tree-Structured Data. In Proc.
PODS’02, pages 145–156. 2000.

[17] G. Miklau and D. Suciu. Containment and equivalence
for an XPath fragment. In Proc. PODS’02, pages
65–76, 2002.

[18] A. Palm. Transforming tree constraints into formal
grammars. PhD thesis, Universität Passau, 1997.

[19] A. Rabinovich. Expressive power of temporal logics. In
CONCUR 2002, Proceedings, volume 2421 of LNAI,
pages 57–75, 2002.

[20] J. Rogers. A descriptive approach to language theoretic
complexity. CSLI Press, 1998.

[21] B-H. Schlingloff. Expressive completeness of temporal
logic of trees. Journal of Applied Non–Classical Logics,
2(2):157–180, 1992.

[22] A. Tarski and S. Givant. A Formalization of Set
Theory without Variables, volume 41. AMS
Colloquium publications, Providence, Rhode Island,
1987.

[23] W. Thomas. Ehrenfeucht Games, the Composition
Method, and the Monadic Theory of Ordinal Words.
In Structures in Logic and Computer Science, A
Selection of Essays in Honor of Andrzej Ehrenfeucht.
Pages 118–143,Springer, 1997.

[24] M. Vardi. On the complexity of bounded–variable
queries. In Proceedings PODS-95, pages 266–276, 1995.

[25] W3C. XML path language (XPath): Version 1.0.
http://www.w3.org/TR/xpath.html.

[26] W3C. XML path language (XPath): Version 2.0.
http://www.w3.org/TR/xpath20/.

[27] W3C. XML schema part 1: Structures.
http://www.w3.org/TR/xmlschema-1.

[28] W3C. Xquery 1.0: A query language for XML.
http://www.w3.org/TR//xquery/.

[29] W3C. XSL transformations language (XSLT): Version
2.0. http://www.w3.org/TR/xslt20/.

[30] P. Wadler. Two semantics for XPath. Technical
report, Bell Labs, 2000.

APPENDIX
Proof of Proposition 3. We provide a translation (·)t
from CXPath expressions into the language of relation alge-
bra5 in the signature {<,≺, P0, P1, . . . }. This is easier and
yields the stronger result, as every relation algebraic expres-
sion is equivalent to a first order formula in two free variables
and with at most three variables [22].

First we create some abbreviations: R⇓ ≡ < ∩(< ◦ <),

R⇒ ≡ ≺ ∩(≺ ◦ ≺), and for every expression A, ?A ≡ (1′ ∩
A).

The only tricky part in the translation is that of the tran-
sitive closure of a conditional axis. For example, (n,m) ∈
[[(⇓p)+]]M iff the test p succeeds at m, n < m and there is no
n′ with n < n′ < m at which the test p fails. This translates
very naturally to < ◦?p ∩ (< ◦?p◦ <).

The translation (·)t uses two other translations (·)tl and (·)tf
translating labels and location paths occuring as filter ex-
pressions, respectively. It is given in Table 2. By just writing
out the definitions we obtain that for every CXPath expres-
sion A, for every tree M, and for all nodes x, y, (x, y) ∈ [[A]]M
if and only if M |= xAty. Moreover, each filter expression A
is translated as ?Atf , which is equivalent to 1′ ∩Atf , which
translates to a first order formula in one free variable. qed

5We use ∩, ∪ and (·) for the boolean operators, and ◦ and
(·)−1 for composition and inverse, respectively. 1′ denotes
the identity relation and > the universal relation. In relation
algebra (not to be confused with relational algebra) every
expression denotes a binary relation.

(self :: n[φ])t = ?(ntl ∩ φtf)
(⇓ :: n[φ])t = R⇓◦?(ntl ∩ φtf)
(⇒ :: n[φ])t = R⇒◦?(ntl ∩ φtf)
(⇑ :: n[φ])t = R−1

⇓ ◦?(ntl ∩ φtf)
(⇐ :: n[φ])t = R−1

⇒ ◦?(ntl ∩ φtf)
(πψ :: n[φ])t = (π :: n[φ])t◦?ψtf
(⇓+ :: n[φ])t = < ◦?(ntl ∩ φtf)
(⇓∗ :: n[φ])t = (self :: n[φ])t ∪ (⇓+ :: n[φ])t

((⇓ψ)+ :: n[φ])t = (< ◦?ψtf) ∩
(< ◦?ψtf◦ <))◦?(ntl ∩ φtf)

((⇓ψ)∗ :: n[φ])t = (self :: n[φ])t ∪ ((⇓ψ)+ :: n[φ])t

and similarly for the other three arrows.

(/locpath)t = (1′∪ <−1)◦?(<−1 ◦>) ◦
(locpath)t

(locpath1/locpath2)
t = locpath1

t◦locpath2t
(locpath1 | locpath2)t = locpath1

t ∪ locpath2
t.

ntl =

{
> if n = ∗
n otherwise

(locpath)tf = (locpath)t◦>
(·)tf commutes with the booleans.

Table 2: Translating CXPath into relation algebra.

Proof of Proposition 6. Consider the translation (·)t
from Xuntil formulas to CXPath filter expressions:

(pi)
t = self :: pi

(¬φ)t = not φt

(φ ∧ ψ)t = φt and ψt

(Untilπ(φ, ψ))t = π :: ∗[φt] or (πψt)+ :: ∗/π :: ∗[φt].

Writing out the definitions it is immediate that for every
Xuntil formula φ, for every tree M, and for every node n, it
holds that M, n |= φ if and only if E(n, φt) is true. qed

Proof of Lemma 9. Simple. qed

Proof of Lemma 10. Simple. qed

Proof of Lemma 13. The equivalences follow from the
observation that if xR+

⇒y, then for any ⇑(A,B), x |= ⇑(A,B)
if and only if y |= ⇑(A,B). qed

Proof of Lemma 14. Part (ii) follows immediately from
Lemma 10.2.3 in [5] because the past of a tree is a linear
structure. For part (i), we follow the argumentation in that
Lemma, but adjust it where needed.

1. Let t |= ⇑(a∧⇓(A,B), q) and s |= a∧⇓(A,B). Let the
node which forces A be u. Thus sR+

⇓ t and sR+
⇓u. In a

tree, there are 5 excluding cases for such a situation:

• t = u

• tR+
⇓u

• uR+
⇓ t

• t 6= u and not tR+
⇓u and not uR+

⇓ t and

∀z(sR+
⇓ zR

+
⇓u→ ¬zR∗⇓t)

• t 6= u and not tR+
⇓u and not uR+

⇓ t and

∃z(sR+
⇓ zR

+
⇓u ∧ zR

+
⇓ t).

The first three separate in the same way as in linear
structures. For the last two, we use a formula which
will be used repeatedly. It states “my parent forces
⇓(A,B) because of a sibling of mine”. This can be
expressed by a disjunction of pure left and pure right
wffs as:

〈⇐+〉(A ∨ (B ∧ ⇓(A,B))) ∨ 〈⇒+〉(A ∨ (B ∧ ⇓(A,B))).
(1)

Now cases 4 and 5 split each into two subcases:

• ∀z(sR+
⇓ zR

+
⇓u→ ¬zR∗⇓t) and (sR⇓t or ∃w(sR+

⇓wR
+
⇓ t))

• ∃z(sR+
⇓ zR

+
⇓u∧zR

+
⇓ t) and (zR⇓t or ∃w(zR+

⇓wR
+
⇓ t)).

All these cases together correspond to the following sep-
aration of ⇑(a ∧ ⇓(A,B), q):

⇑(a, q ∧B) ∧A
∨ ⇑(a, q ∧B) ∧B ∧ ⇓(A,B)
∨ ⇑(A ∧ q ∧ ⇑(a, q ∧B), q)
∨ 〈⇑〉a ∧ (1)
∨ ⇑(q ∧ 〈⇑〉a ∧ (1), q)
∨ 〈⇑〉(q ∧B ∧ ⇑(a, q ∧B)) ∧ (1)
∨ ⇑(q ∧ ⇑(a, q ∧B) ∧ (1), q).

2. Let t |= ⇑(a ∧ ¬⇓(A,B), q) and s |= a ∧ ¬⇓(A,B).
Consider two excluding cases:

• ∀z(sR+
⇓ zR

+
⇓ t→ z |= B).

• ∃z(sR+
⇓ zR

+
⇓ t ∧ z |= ¬B).

In the first case, all z such that sR+
⇓ zR

∗
⇓t force ¬A ∧

¬(1). In addition, t also forces ¬(B ∨⇓(A,B)). In this
case, ⇑(a ∧ ¬⇓(A,B), q) is equivalent to ⇑(a, q ∧ B ∧
¬A ∧ ¬(1)) ∧ ¬A ∧ ¬(1) ∧ ¬(B ∨ ⇓(A,B)).

For the second case, let z be the first such ¬B node
below s. Then z forces

¬A ∧ ¬B ∧ q ∧ ⇑(a,B ∧ q ∧ ¬A ∧ ¬(1)). (2)

We consider two subcases: zR⇓t and ∃w : zR+
⇓wR

+
⇓ t.

In these cases, ⇑(a∧¬⇓(A,B), q) is equivalent to 〈⇑〉(2)∧
¬(1)∧¬A (abbreviate this wff by (∗)) and ⇑(q∧ (∗), q),
respectively.

Summing up ⇑(a ∧ ¬⇓(A,B), q) is equivalent to

⇑(a, q ∧B ∧ ¬A ∧ ¬(1)) ∧ ¬A ∧ ¬(1) ∧ ¬(B ∨ ⇓(A,B))
∨ ⇑((2),⊥) ∧ ¬(1) ∧ ¬A (∗)
∨ ⇑(q ∧ (∗), q).

3. To separate ⇑(a, q ∨ ⇓(A,B)) we look at its negation
and use the validity (cf. Lemma 10.2.2 in [5])

¬⇑(A,B) ≡ [⇑]¬A ∨ ⇑(¬A ∧ ¬B,¬A). (3)

to obtain ⇑(a, q ∨ ⇓(A,B)) ≡ ¬([⇑]¬a ∨ ⇑(¬a ∧ ¬q ∧
¬⇓(A,B),¬a)). The right hand side can now be sepa-
rated with elimination (2).

4. ⇑(a, q∨¬⇓(A,B)) can be separated on linear time into

⇑(a,¬a ∧ [⇑(¬q ∧ ¬a,¬a ∧B) → ¬A])
∧ (⇑(¬q ∧ ¬a,¬a ∧B) → ¬A ∧ ¬(B ∨ ⇓(A,B))).

To obtain the equivalent on branching structures we
should add formulas for the cases that ⇓(A,B) is forced

because of another branch. This is simply done by
adding to both occurances of ¬A in the above formula
the conjunct ¬(1).

5. ⇑(a ∧ ⇓(A,B), q ∨ ⇓(A,B)) can be separated on linear
time6 into

⇑(a,B) ∧ (A ∨ (B ∨ ⇓(A,B)))
∨ ⇑(A ∧ ⇑(a,B),⇑(¬q,¬A) → A ∨B)

∧ ⇑(¬q,¬A) → A ∨ (B ∨ ⇓(A,B)).

The first disjunct holds when the A from ⇓(A,B) is
true in the future or present of the node of evalutaion,
the second when it is true in the past. As in the previ-
ous case we must add formulas in the second disjunct
allowing for ⇓(A,B) being forced in another branch.
This is done by simply adding (1) as a disjunct to the
consequent of the implications in the second and third
line

6. The case of ⇑(a ∧ ¬⇓(A,B), q ∨ ⇓(A,B)). Let s be the
node forcing a∧¬⇓(A,B). On linear time the formula
separates into two disjuncts, considering when the first
occurrence (if any) of ¬B after s is:

⇑(a, q ∧ ¬A) ∧ ¬A ∧ ¬(B ∧ ⇓(A,B))
∨ ⇑(¬B ∧ ¬A ∧ (q ∨ ⇓(A,B)) ∧ ⇑(a, q ∧ ¬A),

q ∨ ⇓(A,B).

As in the previous two cases, we obtain the equiva-
lent formula on branching structures by considering the
branches: add (1) as a disjunct to each occurance of ¬A
in the above formula. Eliminations (3) and (5) can be
used to finish the separating.

7. Be prepared, this is again a seven case distinction. Let
t |= ⇑(a ∧ ⇓(A,B), q ∨ ¬⇓(A,B)) and s |= a ∧ ⇓(A,B).
Let the node which forces A be u. Hence sR+

⇓ t and

sR+
⇓u. Consider the same 5 cases as in elimination (1).

The last two cases split each into the same two subcases
as in elimination (1).

All these seven cases together correspond to the for-
mula in Figure 2. This formula is not separated yet.
The third disjunct can be separated by using distribu-
tion in the first argument and then eliminations (4) and
(8). The fifth and the last are separated by elimination
(4).

8. The last case is exactly the same as with linear struc-
tures. We include the argument for completeness of the
paper. The case D = ⇑(a∧¬⇓(A,B), q∨¬⇓(A,B)) can
be reduced to cases already discussed since

¬⇑(a ∧ x, q ∨ y) ≡ [⇑](¬a ∨ ¬x)
∨ ⇑(¬q ∧ ¬y ∧ ¬a,¬a ∨ ¬x)
∨ ⇑(¬q ∧ ¬y ∧ ¬x,¬a ∨ ¬x).

Substituting y = x = ¬⇓(A,B) we obtain

¬D ≡ [⇑](¬a ∨ ⇓(A,B))
∨ ⇑(¬q ∧ ⇓(A,B) ∧ ¬a,¬a ∨ ⇓(A,B))
∨ ⇑(¬q ∧ ⇓(A,B) ∧ ⇓(A,B),¬a ∨ ⇓(A,B)).

Notice that the last disjunct in ¬D is redundant. These
cases can be handled by other eliminations, especially
(5). qed

6For this case, the formula in [5] contains a typo. The last
conjunction in the last line should be a disjunction.

⇑(a,B ∧ q) ∧A
∨ ⇑(a,B ∧ q) ∧B ∧ ⇓(A,B)
∨ ⇑(A ∧ ⇑(a,B ∧ q) ∧ (q ∨ ¬⇓(A,B)), q ∨ ¬⇓(A,B))
∨ 〈⇑〉(a ∧ (1)) (call this wff (*))
∨ ⇑((∗), q ∨ ¬⇓(A,B))
∨ 〈⇑〉(⇑(a,B ∧ q) ∧B ∧ q) ∧ (1) (call this wff (**))
∨ ⇑((∗∗) ∧B ∧ q, q ∨ ¬⇓(A,B)).

Figure 2: The formula of case 7.

	Introduction
	A brief introduction to XPath
	Conditional XPath, first order and temporal logic
	Expressive completeness of conditional XPath
	Separation
	Separating formulas

	Complexity
	Conclusion
	REFERENCES

	page1: 13
	page2: 14
	page3: 15
	page4: 16
	page5: 17
	page6: 18
	page7: 19
	page8: 20
	page9: 21
	page10: 22

