
First order paths in ordered trees

Maarten Marx

Informatics Institute University of Amsterdam

Abstract. We give two sufficient conditions on XPath like languages
for having first order expressivity, meaning that every first order defin-
able set of paths in an ordered node-labeled tree is definable in that
XPath language. They are phrased in terms of expansions of naviga-
tional (sometimes called “Core”) XPath. Adding either complementa-
tion, or the more elegant conditional paths is sufficient. A conditional
path is an axis relation of the form (one step axis::n[F])+, denoting
the transitive closure of the relation expressed by one step axis::n[F].
As neither is expressible in navigational XPath we also give character-
izations in terms of first order logic of the answer sets and the sets of
paths navigational XPath can define. The first in terms of a suitable two
variable fragment, the second in terms of unions of conjunctive queries.

1 Introduction

[8] showed how a simple addition to Core XPath led to expressive completeness:
every first order definable set of nodes in an XML tree is definable as the answer
set of an expression //[fexpr] in which the filter expression is generated by the
following grammar:

step ::= down | up | right | left
locpath ::= step::ntst[fexpr] | (step::ntst[fexpr])+

fexpr ::= locpath | not fexpr | fexpr and fexpr.

Here ntst is a node test consisting of a tag name or the wild card ∗. The steps
correspond to the four basic steps in an ordered tree. The semantics is as with
standard Core Xpath [5], with (·)+ interpreted as the transitive closure.

Although the choice of the syntax can be motivated by its close relation to
temporal logic with since and until, it may still seem rather ad hoc. Moreover
the result is really about the expressive power of filter expressions, rather than
about location paths. In this paper we present additional evidence for the great
expressive power of the construction (step::ntst[fexpr])+, and obtain an expressive
completeness result for location paths. Extensive motivation for such a result can
be found in [1].

In the above definition it was not needed to close the location path expressions
under composition (the ′/′) and union (the ′|′). This is because we dealt with
filter expressions only. When defining paths in a tree they are obviously needed.
So in the following, assume that the language is closed under these two operations
as well. We show that

1. any extension of Core XPath which is closed under complementation can
define every first order definable set of paths;

2. the above defined language (called Conditional XPath) is closed under com-
plementation, whence first order complete for expressing paths.

The first result states a sufficient condition for an XPath dialect having full first
order expressivity. The second states that very little is needed to achieve it: allow
unions and compositions of path expressions, and allow transitive closure of the
simplest location path step::ntst[fexpr]. More abstractly, the first result states
that the class of ordered trees has the three variable property: every first order
formula in at most three free variables is equivalent to a first order formula in
at most three free and bound (possibly reused) variables.

These results are about expansions of Core XPath. This language was defined
by Gottlob, Koch and Pichler [5] as the logical core of XPath 1.0. Core XPath is
strictly weaker than Conditional XPath, so the question remains which fragment
of first order logic is picked out by Core XPath. It turns out that this is a very
natural one indeed:

1. The answer sets definable in Core XPath are exactly those definable with
first order formulas φ(x) which use only two (free and bound) variables
in a signature with predicates corresponding to the child, descendant and
following sibling relations.

2. The paths definable in Core XPath are exactly those which can be defined
by unions of conjunctive queries consisting of the child, descendant and fol-
lowing sibling relations and unary first order formulas as in item 1.

3. Core XPath is closed under intersection but not under complementation.

We thus give a precise characterization of both Core and Conditional XPath,
both in terms of defining answer sets and sets of paths. For general related work,
we refer to [8] and to the conclusions. Specific relations are given in the running
text.

The paper is organized as follows. Section 2 introduces the needed definitions.
Section 3 contains all results and some of the more easy proofs. Section 4 is
devoted to the proof of the most important result: closure of Conditional XPath
under complementation. We motivate our work in the conclusion. Proofs not
given in the main text are provided in the Appendix. We note that the expressive
completeness result for Conditional XPath’s answer sets (shown in [8]) follows
from the result presented here, but not conversely. The results about Core XPath
have been presented at the Twente workshop on Database Managment [9]. They
are included here in order to give a complete picture.

2 Navigational XPath

We use an XPath syntax which is better suited for mathematical manipulation
and easier to read when formulas tend to get large. (And they will . . .) The
relation with the official W3C syntax should be clear.

2

Let Σ be a set of atomic symbols. XPath languages are two sorted languages,
defined by mutual recursion. There are formulas denoting sets of nodes (called
node wffs), and formulas denoting a binary relation between nodes (called path
wffs). An XPath step is one of the following four atomic relation symbols

step ::= down | up | right | left.

We define Core XPath and Conditional XPath. They differ only in de operations
allowed on path wffs. The node wffs are generated by (with σ ∈ Σ)

node wff ::= σ | > | 〈〈path wff〉〉 | ¬node wff | node wff ∧ node wff.

Here > denotes the predicate which always evaluates to true. The path wffs of
Core XPath are generated by

path wff ::= step | step+ |?node wff | path wff/path wff | path wff ∪ path wff.

The path wffs of Conditional XPath differ only in that we allow (step/?node wff)+

instead of just step+. We call this construction a conditional path and the lan-
guage derives its name from it. The main purpose of conditional paths is to
define an until like relation. For instance, the relation between a node n and it’s
descendant n′ at which A holds, and for which at all nodes strictly in between
n and n′ B holds is defined by

(down/?B)∗/down/?A.

Here and elsewhere we use R∗ as an abbreviation of R+∪?>, denoting the transi-
tive reflexive closure of R. We use variables R,S, T for path wffs and A,B,C for
node wffs. The differences with the standard XPath syntax are small. Our node
wffs correspond to XPath’s filter expressions. Our formulas ?node wff (called
tests) mean the same as XPath’s self:: ∗ [node wff]. We abolished the two differ-
ent tests on nodes in XPath, and capture node tests as follows:

axis::A[F] ≡ axis:: ∗ [self::A ∧ F] ≡ axis/?(A ∧ F).

To make the language context-free, we use 〈〈path wff〉〉 inside node wffs instead of
just path wff. For axis one of step, step+, (step/?A)+, we often write axis?node wff
instead of axis/?node wff. Just as in XPath, we consider these expressions as the
basic expressions of the language.

The semantics of XPath expressions is given with respect to node labeled sib-
ling ordered trees1 (trees for short). Each node in the tree is labeled with a set of
primitive symbols from some alphabet. Sibling ordered trees come with two bi-
nary relations, the child relation, denoted by R↓, and the immediate right sibling
relation, denoted by R→. Together with their inverses R↑ and R← they are used
to interpret the axis relations. We denote such trees as first order structures
(N,R↓, R→, σi)i∈Σ .
1 A sibling ordered tree is a structure isomorphic to (N, R↓, R→) where N is a set of

finite sequences of natural numbers closed under taking initial segments, and for any
sequence s, if s ·k ∈ N , then either k = 0 or s ·k−1 ∈ N . For n, n′ ∈ N , nR↓n

′ holds
iff n′ = n · k for k a natural number; nR→n′ holds iff n = s · k and n′ = s · k + 1.

3

Remark 1. Unlike in most of the literature on XPath we do not restrict the
class of structures to trees corresponding to XML documents (the DOM). So
our trees can be infinitely deep, infinitely branching and may contain multiple
atomic labels at each node. All our results apply to document object models as
well. This is because our theorems are of the following form: for every first order
formula φ, there is an XPath expression α such that on all trees, the denotations
of φ and α coincide.

Remark 2. Although we borrowed the name Core XPath from [5], our language
is slightly more expressive, due to the availability of the left and right axis
relations. Arguably, these must be available in an XPath dialect which calls
itself navigational. For instance we need them to express XPath’s child::A[n]
for n a natural number.

Given a tree M and an expression R, the denotation or meaning of R in M
is written as [[R]]M. As promised, path wffs denote sets of pairs, and node wffs
sets of nodes. Table 1 contains the definition of [[·]]M. The equivalence with the
W3C syntax and semantics (cf., e.g., [5,14]) should be clear.

Let us spell out the semantics of the conditional axis relation, as it does
not occur in standard navigational XPath. The path wff (down?A)+ denotes all
pairs (n, n′) for which there exists a finite sequence of nodes n = n1 . . . nk = n′

(k > 1) such that for all i, ni+1 is a child of ni and A is true at all nj (j > 1).
As an example of its expressive power, consider the next frontier node relation
which holds between leaves which are consecutive in document order. Let us use
the following abbreviations:

leaf = ¬〈〈down〉〉, first = ¬〈〈left〉〉, last = ¬〈〈right〉〉.

Then the next frontier node relation is definable as

?leaf/right/?leaf ∪ ?leaf/(?last/up)+/right/(down?first)∗/?leaf.

Here (?last/up)+ abbreviates ?last/(up?last)∗/up.

3 First order characterizations of XPath

This section contains all our results: first order characterizations of both the
node wffs and the path wffs of Core and Conditional XPath, as well as sufficient
conditions for first order expressivity.

Let FOtree denote the first-order language over the signature with binary
predicates {R⇓, R⇒} and countably many unary predicates. FOtree is interpreted
on ordered trees in the obvious way: R⇓ is interpreted by the transitive closure
of the child relation, and R⇒ is interpreted by the transitive closure of the
right sibling relation. Note that both one step relations are first order definable
from R⇓ and R⇒.

4

[[σ]]M = {n | M |= σ(n)}
[[>]]M = {n | n ∈ M}

[[〈〈R〉〉]]M = {n | ∃n′, (n, n′) ∈ [[R]]M}
[[¬A]]M = {n | n 6∈ [[A]]M}

[[A ∧ B]]M = [[A]]M ∩ [[B]]M.

[[down]]M = R↓

[[up]]M = [[down]]M
−1

[[right]]M = R→

[[left]]M = [[right]]M
−1

[[R+]]M = [[R]]M
+ (= [[R]]M ∪ ([[R]]M ◦ [[R]]M) ∪ ([[R]]M ◦ [[R]]M ◦ [[R]]M) ∪ . . .)

[[?A]]M = {(n, n) | n ∈ [[A]]M}
[[R/S]]M = [[R]]M ◦ [[S]]M

[[R ∪ S]]M = [[R]]M ∪ [[S]]M.

Table 1. The semantics of Core and Conditional XPath.

3.1 Answer sets

The answer set of an XPath expression R consists of the range of R, or the nodes
which are reachable from some node by R [5,3]. The main result of [8] stated
that every first order definable set of nodes is definable as the answer set of some
Conditional XPath expression. Here we give a characterization of Core XPath’s
expressions as the two variable fragment2 of first order logic in an expanded
signature. In FOtree we can define the one step axis relations from the transitive
relations using three variables3. With two variables this is not possible, hence
we should expand the signature with relations R↓ and R→ corresponding to the
child and to the right sibling axis, respectively. Let FOtree

2 denote the restriction
of FOtree in this expanded signature to the two variable fragment.

Theorem 1. (1) The answer sets of Core XPath are exactly the sets definable
in FOtree

2 .
(2) FOtree

2 formulas in one free variable and Core XPath’s node wffs are equally
expressive.

The hard direction follows more or less directly from the argument used to show
a similar statement for linear orders —characterizing temporal logic with only
unary temporal connectives— by Etessami, Vardi and Wilke [4]. The proof shows
that a similar statement holds for the version of Core XPath of Gottlob, Koch
and Pichler [5] which does not have the right and left sibling axis but just their

2 With the two variable fragment we mean the set of formulas in which at most two
variables may occur. Variables might be reused. Thus ∃y∃z(xR⇓y ∧ yR⇓z ∧ P (z)) is
not in the two variable fragment, but it is equivalent to ∃y(xR⇓y∧∃x(yR⇓x∧P (x)))
which is equivalent to the node wff 〈〈down+/down+/?A〉〉.

3 For instance, xchildy is defined as xR⇓y ∧ ¬∃z(xR⇓z ∧ zR⇓y).

5

τ(x, y) ∃y(τ(x, y) ∧ A(y))

x = y A′

x R↓ y 〈〈down?A′〉〉
y R↓ x 〈〈up?A′〉〉
x R→ y 〈〈right?A′〉〉
y R→ x 〈〈left?A′〉〉

x R⇒ y ∧ ¬x R→ y 〈〈right/right+?A′〉〉
y R⇒ x ∧ ¬y R→ x 〈〈left/left+?A′〉〉
x R⇓ y ∧ ¬x R↓ y 〈〈down/down+?A′〉〉
y R⇓ x ∧ ¬y R↓ x 〈〈up/up+?A′.〉〉

Table 2. Order types and their translations

transitive closures. That language can define each set definable in FOtree
2 without

the right sibling relation.

Proof. Because the path wffs of Core XPath are closed under taking inverses,
for every path wff R there exists a node wff A such that the answer set of R
equals the denotation of A in every model. Thus we need only work with the
node wffs and only prove the second equivalence in the theorem. By the standard
translation well known from modal logic each node wff translates into a one free
variable FOtree

2 formula (cf., [13] which takes care to use only two variables).
The translation is just the definition from Table 1 written in first order logic.
This takes care of the easy direction.

For the other direction, let φ(x) be a first order formula. We want a node
wff A such that for every tree M, {n | M |= φ(n)} = [[A]]M. The proof is a copy
of the one for linear temporal logic in [4] (Theorem 1). The only real change
needed is in the set of order types: they are given in the right hand side of
Table 2, together with the needed translations (A′ denotes the translation of A).

Remark 3. The answer sets of both Core and Conditional XPath have a first
order characterization. An interesting question is how the sizes of the first or-
der formulas and their corresponding equivalent XPath node wffs compare. For
conditional XPath, the blow up is non elementary and this is unavoidable [8].
For Core XPath, it is much better. The blow up is “only” single exponential,
which is also unavoidable [4]. The difference can be explained as follows. For
Core XPath, we translate first order formulas in at most two variables into Core
XPath wffs, which are again (equivalent to) first order formulas in at most two
variables. For Conditional XPath, every first order formula (in one free variable)
translates to a Conditional XPath node wff, which is (equivalent to) a first order
formula in at most three variables.

6

3.2 Sets of paths

In the previous section we characterized the answer sets of XPath. We now turn
to the sets of paths that can be defined in XPath; they too admit an elegant
characterization which we provide here. Not every first order definable path set
can be defined in Core XPath. As in [1], consider the relation

(x descendant y ∧A(y) ∧ ∀z((x descendant z ∧ z descendant y) → B(z))).
(1)

A standard argument shows that the range of this relation cannot be specified
using less then three variables. Whence the relation is not expressible in Core
XPath by Theorem 1. Note that the relation is expressible in Conditional XPath,
as

(down?B)∗/down?A.

It is also expressible in Core XPath expanded with a complementation operator,
as

down+?A ∩ down+/?¬B/down+,

where ∩ is defined as usual from union and complementation.
Being able to express complementation or the relation (1) in all four directions

are both closely connected to first order expressive completeness for path sets:
each of them is a sufficient condition.

We say that an XPath language L is first order complete if for every FOtree

formula φ(x, y) there exists an L expression R such that for all trees M, {(n, n′) |
M |= φ(n, n′)} = [[R]]M.

Theorem 2. Any expansion of Core XPath which is closed under complemen-
tation is first order complete.

Proof. Let L be such an expansion. Then L can express every binary relation ex-
pressible in Tarski’s relation algebras4. But that formalism is equally expressive
as FO2

3, first order logic in a signature with at most binary relations symbols
in which every formula contains at most three free and bound (possibly reused)
variables and at most two free variables [12]. Thus it is sufficient to show that
—on ordered trees and in the signature of FOtree— FO2

3 is equally expressive as
FO2

ω. This will be done in Appendix A using Ehrenfeucht–Fräıssé pebble games
from [7].

Our main result, proved in Section 4, is

4 Tarski’s set relation algebras are algebras of the form (A,∪, (·), ◦, (·)−1, ε) with A a
set of binary relations, and the operators have the standard set theoretic meaning.
As the atoms of Core XPath are closed under −1, the language is closed under it. id
is definable as ?>.

7

Theorem 3. Conditional XPath is closed under complementation, whence first
order complete.

This gives the second sufficient condition for being first order complete. We finish
the section with a characterization of Core XPath’s path sets. First we make the
connection with unions of conjunctive queries.

Definition 1. An XPath query is a formula of the form

Q(x, y) :−
∨
i

∧
(Ri

1 ∧ . . . ∧Ri
n ∧Ai

1 ∧ . . . ∧Ai
m), (2)

in which the Ai
j are of the form node wff(u) and the Ri

j of the form u path wff v
or x = y.
It is a Core (Conditional) XPath query if the path and node wffs are from Core
(Conditional) XPath.

Such queries do not provide extra expressivity, since

Lemma 1. Each Conditional (Core) XPath query is equivalent to a Conditional
(Core) path wff.

We immediately obtain the following generalization of the results in [1]:

Theorem 4. The sets of path wffs of both Core and Conditional XPath are
closed under intersection.

We note that the result for Core XPath in Lemma 1 is essentially Theorem 6.1
in [6]. The proof of the lemma is provided in the Appendix.

Now define the following variant on the queries of the form in (2): the relations
are from the signature {R↓, R→, R⇓, R⇒} and all of the Ai

j are formulas in FOtree
2

in one free variable. An example is

Q(x, y) : −z R⇓ x, z R⇒ z′, z′R⇓ y, P1(z),∀x(y R↓ x → P2(x)),

which is equivalent to the XPath expression

up+?P1/right+/down+?¬〈〈down?¬P2〉〉.

So these are like unions of usual conjunctive queries, except that properties may
contain negations. We call them first order core queries. From the definition of
[[·]]M, it is easy to see that every Core XPath expression is equivalent to a first
order core query.

By Theorem 1 and Lemma 1 the converse also holds, yielding a first order
characterization of the Core XPath definable sets of paths.

Theorem 5. Every first order core query is equivalent to a Core XPath path
wff and conversely.

We note that Benedikt, Fan and Kuper [1] gave a characterization of positive
Core XPath without the sibling axis relations as unions of conjunctive queries, in
which the φi are just atomic node tag predicates. Their theorem extends to the
case with sibling axis included. With negation added, one must allow all unary
FOtree

2 formulas as the φi, reflecting the characterization of the filter expressions
in Theorem 1.

8

4 Closure under complementation

In this section we prove Theorem 3. We first establish that path wffs have a
disjunctive normal form resembling the separation property of [8].

To start a bit of terminology. An atom is a path wff of the form step?A, or
(step?B)+?A. A test is a path wff of the form ?A. A basic composition is a test
followed by a composition of atoms. We call an atom down if it is of the form
down?A, or (down?B)+?A. Analogously, we define atoms being up, right , and
left . A path wff has form T if it is a test. It has form D,U,R, L if it is a basic
composition of down, up, right or left atoms, respectively. We say that a basic
composition is separated if it has one of the following forms:

D, U, U∗/R/D∗, U∗/L/D∗. (3)

Here we use U∗/R/D∗ as an abbreviation for the forms U/R, R, R/D, U/R/D,
and similarly for U∗/L/D∗. Separated basic compositions (3) are, sub-relations
of

down+, up+, up∗/right+/down∗, up∗/left+/down∗, (4)

which correspond to XPath’s axis relations

descendant, ancestor, following, preceding,

respectively. As is well known, given a tree and a node n, the answer sets of
these relations evaluated at n, together with the set {n} form a partition of the
tree [3].

Lemma 2. Every path wff is equivalent to a union of tests and separated basic
compositions.

Proof. Each path wff is equivalent to a union of basic compositions and tests, by
the equivalence ?A/?B ≡?(A∧B) and distribution of / over ∪. So, to prove the
Lemma it is enough to describe a procedure that separates basic compositions.
Table 3 shows how every composition of two atoms can be separated. A repeated
application of the rewriting in this table combined with distributing / over ∪
yields the desired form.

The proofs for the equivalences in the table are standard semantic arguments.
As an example we consider the first case. So consider a composition of the form
D/U . If one of them is just a step followed by a test, the rewriting is easy:

down?A/up?B ≡ ?(B ∧ 〈〈down?A〉〉).
down?A/(up?C)+?B ≡ ?(C ∧B ∧ 〈〈down?A〉〉)

∪
?(C ∧ 〈〈down?A〉〉)/(up?C)+?B.

(down?C)+?A/up?B ≡ ?(B ∧ 〈〈down?(C ∧A)〉〉)
∪

(down?C)+?(B ∧ 〈〈down?(C ∧A)〉〉).

9

A having form is separated as a union of forms

D/U D, T, or U
D/R D
D/L D
U/D D, T, U, U∗/R/D∗, or U∗/L/D∗

U/R U/R
U/L U/L
R/D R/D
R/U U
R/L T, L, or R
L/D L/D
L/U U
L/R T, L, or R

Table 3. Syntactical separation for compositions of two atoms.

The last case (down?C1)+?A/(up?C2)+?B is most demanding. Suppose nodes
x, y are related in this way. Then there is a z such that

x (down?C1)+?A z and z (up?C2)+?B y.

Thus xdown+z and ydown+z. The union depends on the position of y relative
to x. There are three cases, given together with the equivalent path wff. Let E
abbreviate

〈〈(down?(C1 ∧ C2))+/down?(C1 ∧A)〉〉.

case equivalent path wff

x down+ y (down?C1)+?(C2 ∧B ∧ E)
x = y ?(C2 ∧B ∧ E)
y down+ x ?(C2 ∧ E)/(up?C2)+?B.

Note that these three disjuncts are of the form D, T , and U , respectively. It
is worthwhile to note that we really just reason on linear structures. Except
formulas of the form U/D, all other cases in Table 3 are treated similarly: reason
with linear structures. Only in the case of U/D do we really have to reason about
trees, and obtain the full case distinction.

Now Theorem 3 follows from Lemmas 1, 2 and

Lemma 3. The complement of each separated basic composition is definable as
a Conditional XPath query.

Proof of Theorem 3. Let R be a path wff. Then by Lemma 2 R ≡
⋃

i Ri,
with the Ri tests and separated basic compositions. Whence R ≡

⋂
i Ri. By

10

Theorem 4, the path wffs are closed under intersection. The complement of a
test is equivalent to a path wff, as is not hard to see. By Lemmas 3 and 1 each
complement of a separated basic composition is equivalent to a path wff. Hence
the theorem. qed

The proof of Lemma 3 consists of an easy and a hard part, separated in the
following two lemmas.

Lemma 4. The complement of each separated basic composition is definable
from path wffs and formulas of the form

(down+ ∩D), (up+ ∩ U), (right+ ∩R), and (left+ ∩ L). (5)

Lemma 5. Each relation in (5) is definable as a Conditional XPath query.

We start with proving the easy Lemma.

Proof of Lemma 4. Consider a separated basic composition. We may assume
it has form U∗/R+/D∗ or U∗/L+/D∗, otherwise the lemma holds trivially. We
show how to define the complement of a composition of the form U/R. The other
cases follow an identical argument. Now

U/R ≡ (up+/right+ ∩ U/R) ∪ (up+/right+ ∩ U/R). (6)

Because |= U/R ⊆ up+/right+, the first disjunct is equivalent to up+/right+,
which is equivalent to

down∗ ∪ up∗/left+/down∗ ∪ up+ ∪ right+/down∗ ∪ up+/right+/down+. (7)

For the second disjunct, we use the following equation:

up+/right+ ∩ U/R ≡ (up+ ∩ U)/right+ ∪ up+/(right+ ∩R). (8)

The left to right direction holds for all relations. For the other direction use the
fact that for all x, y if x U/R y then there exists a unique z such that xUz
and zRy. Now both disjuncts of (6) are rewritten into the form required by the
Lemma. qed

Proof of Lemma 5. Let xRy for R one of the relations defined in (5). For
all four cases we just need to reason about the points in between x and y. So
the argument is identical in all cases. For concreteness, we consider the case for
down compositions.

To reduce the number of cases, we turn to a formalism well known from
temporal logic. For A,B node wffs, define the operator until(A,B) with the
semantics

x until(A,B) y ⇐⇒ xR⇓y ∧A(y) ∧ ∀z(xR⇓ z R⇓ y → B(z)).

11

Both down atoms are expressible as an until formula: down?A ≡ until(A,¬>)
and (down?B)+?A ≡ until(A∧B,B). Thus it is sufficient to show how to define
down+ ∩ ?C/R, for R a composition of until formulas, and C an arbitrary test.
We call such formulas until wffs. In order to increase readability we use < and
≤ instead of down+ and down∗, respectively. We define complementation by
induction on the number of /’s in R. The base case is

< ∩ ?C/until(A,B) ≡ ?¬C/< ∪ ?C/</?¬A ∪ </?¬B/<. (9)

The inductive case needs an elaborate case distinction. Let R = S/until(A,B).
Then

< ∩R ≡ (S/< ∩ < ∩ R) ∪ (S/< ∩ < ∩ R). (10)

As |= S/< ⊆ S/until(A,B), the first disjunct is simply equivalent to < ∩ S/<.
Note that S is shorter than R. So we need to be able to express <∩S/<, saying
that no subinterval having the same beginning is in S. The base case is

< ∩ until(A,B)/< ≡ down ∪ (11)
until(>,¬A) ∪
?〈〈down?¬A〉〉 / (until(A,¬A) ∩ </?¬B/<) / ≤.

Note that we used ∩ in this definition, but that is warranted by Theorem 4.
The formula until(A,¬A) ∩ </?¬B/< expresses that before the first A there is
already a ¬B. The inductive case is Lemma 8.

Now we explain how to define S/< ∩ < ∩ R, the second disjunct in (10).
Suppose x and y stand in this relation. Then x < y and there is a z such that
xSz and z < y. Let z′ be the last between x and y such that xSz′. Then we must
enforce z′until(A,B)y, which we can by (9). But that is enough, because suppose
to the contrary that there is a z such that xSz and zuntil(A,B)y and z < z′ < y.
From the last two conjuncts we obtain that z′until(A,B)y, a contradiction. So
if we can express that

(x, z) is the largest subinterval in (x, y) which is in S, (12)

we have defined complementation. This is shown in Lemma 7. The statement
(12) is a first order formula in three free variables. As we need it quite a lot, we
make an abbreviation. For S an until wff, define max(S, x, z, y) as the ternary
relation

x < z < y ∧ xSz ∧ ¬∃w(z < w < y ∧ xSw).

In defining both S/< and the max predicate we use a crucial lemma, which we
prove first.

For R a path wff, let range(R) be the node wff which is true at a point x iff
there exists a point y such that yRx holds. For R an arbitrary until wff, range(R)
is defined inductively as

range(?C/until(A,B)) = 〈〈?A/since(C,B)〉〉
range(R/until(A,B)) = 〈〈?A/since(range(R), B)〉〉,

12

where since(C,B) is the counterpart of until in the upward direction.5

Lemma 6. Let R be an until wff. For all points x, y, a, b, such that x < a ≤ y ≤
b, if xRa and xRb and range(R)y, then also xRy. See Figure 1.

If x
R
((

R

""
a

range(R)
y b then also x

R

&&
a y .

Fig. 1. Lemma 6 in a picture.

Proof. By induction on the number of /’s in R. First let R =?C/until(A,B).
Then Ay, because range(R)y. As x < y ≤ b and xRb, C is true at x and B
at all points in between x and b, hence a fortiori between x and y. Whence
x ?C/until(A,B) y holds.

For the inductive step, let S be an until wff and let R = S/until(A,B). We
obtain a′, b′, y′ such that

• y′ < y and y′until(A,B)y and range(S)y′,
• x < a′ < a and xSa′ and a′until(A,B)a, and
• x < b′ < b and xSb′ and b′until(A,B)b.

Without loss of generality, we may assume that a′ ≤ b′. Then there are three
cases: (1) y′ < a′, (2) a′ ≤ y′ ≤ b′, and (3) b′ < y′.

If y′ < a′, then from y′until(A,B)y, we obtain a′until(A,B)y, whence with
xSa′, we get x S/until(A,B) y.

If a′ ≤ y′ ≤ b′, by inductive hypothesis we get xSy′, whence with y′until(A,B)y
we obtain x S/until(A,B) y.

Let b′ < y′. If y = b we are done. Otherwise b′ < y < b. By y′until(A,B)y,
A holds at y. As b′until(A,B)b (and b′ < y < b), we thus have b′until(A,B)y.
Together with xSb′ this yields x S/until(A,B) y.

Lemma 7. For R an until wff, max(R, x, z, y) is definable as a Conditional
XPath query.

Proof. We define max(R, x, z, y) by induction on the number of /’s in R. If
R =?C/until(A,B), then max(R, x, z, y) is the conjunction of x < z < y, C(x),
xuntil(A,B)z and a formula forbidding that there is a larger until(A,B) interval
in (x, y) starting in x. This is done by the formula ¬B(z)∨z(<∩until(A,B)/<)y.
The latter disjunct is defined in (11).
5 since(C, B) is definable as (up?B)∗/up?C.

13

Now let R = S/until(A,B). Then max(R, x, z, y) is defined as

∃w(x < w < z < y ∧max(S, x, w, z) ∧max(until(A,B), w, z, y))
∨

∃w(x < z < w < y ∧max(S, x, w, y) ∧ wuntil(A,B)/<y
∧ xRz ∧ zuntil(¬range(R),¬range(R))w).

By Lemma 6 this definition is correct.

Now we show how to define R/<.

Lemma 8. For R an until wff, < ∩ R/< is definable as a Conditional XPath
query.

Proof. Again the definition is by induction on the number of /’s in R. The base
case is (11). Thus let R = S/until(A,B). Then < ∩ R/ < is equivalent to

(< ∩ S/< ∩ R/ <) ∪ (< ∩ S/< ∩ R/ <).

As R/< = S/until(A,B)/< ⊆ S/</< ⊆ S/<, the second disjunct is equivalent
to < ∩ S/<. As S is shorter than R, this is definable by IH.

Rest us to define x(< ∩ S/< ∩ S/until(A,B)/ <)y as a Conditional XPath
query. The formula uses two existentially quantified variables z, z′, which are
ordered like x < z ≤ z′ < y. The interval (x, z) is the smallest subinterval of
(x, y) which is in S. This is expressed by x(S ∩ S/ <)z. The interval (x, z′) is the
largest S subinterval, which we express using the max predicate. Now we must
ensure that x(S/until(A,B)/<)y holds. So we must say that z′(until(A,B)/ <)y,
and that starting at z there is no until(A,B) interval. Moreover, there should
not be a z′′ in between z and z′ such that xRz′′. This is done by saying that
either z = z′ or zuntil(¬range(R),¬range(R))z′. So the final formula becomes

∃zz′(x < z ≤ z′ < y ∧
xSz ∧ xS/ <z ∧
max(S, x, z′, y) ∧
z′until(A,B)/ <y ∧
(z = z′ ∨ zuntil(¬range(R),¬range(R))z′)

).

By Lemma 6 this definition is correct.

Now we are prepared to finish the proof of Lemma 5, that is to show that for
each until wff R, < ∩R is equivalent to a Conditional XPath query. Again, the
definition is by induction on the number of /’s in R. The base case is (9). So let
R = S/until(A,B). As in Lemma 8, < ∩R is equivalent to

(< ∩ S/< ∩ S/until(A,B)) ∪ (< ∩ S/< ∩ S/until(A,B)).

The first disjunct is equivalent to < ∩ S/< and definable by Lemma 8. The last
is equivalent to

∃z(x < z < y ∧max(S, x, z, y) ∧ zuntil(A,B)y),

as explained in the beginning of the proof. qed

14

5 Conclusion

The results make us conclude that both Core and Conditional XPath are very
natural languages for talking about ordered trees. Their simplicity and visual
attractiveness make them suitable candidates for a user-friendly alternative to
first order logic. The expressive completeness result for paths is very important,
as arguably the relations in Conditional XPath are still “drawable”. With draw-
able we mean that one can make an intuitive picture which exactly captures the
meaning of the query. Composition and union are obviously drawable, whereas
intersection and negation are not. The conditional step (step?A)+ is also draw-
able using ellipsis. Of course one should not draw the filter expressions, but just
indicate them with formulas attached to nodes in the drawings.

In this context it is interesting to note a repitition in history. The natural class
of models in computational linguistics is the class of finite ordered trees. In the
beginning of the field of model theoretic syntax Monadic Second Order Logic was
invariably used to reason about these structures [11]. Later, formalisms based on
modal logic were proposed as alternatives. Arguments for the alternatives were
both based on computational complexity (which is lower both for model checking
and theorem proving) and on “naturalness” of expressing properties (in this case
of grammars). In fact, both Core and Conditional XPath have their roots in the
nineties: [2] and [10] define isomorphic variants of the filter expressions of Core
and Conditional XPath, respectively.

From a theoretical point of view, Conditional XPath is not harder than Core
XPath: the query evaluation problem is still solvable in time O(|Q| · |D|), with
|Q|, |D|, the sizes of the query and the data, respectively. It would be exciting
to see how existing XPath algorithms can be adjusted in order to deal efficiently
with conditional path expressions.

Acknowledgments

Maarten Marx was supported by the Netherlands Organization for Scientific Re-
search (NWO), under project number 612.000.106. Thanks are due to Loredana
Afanasiev, David Gabelaia, Evan Goris, Jan Hidders, Sanjay Modgil, Maarten
de Rijke, Thomas Schwentick, Petrucio Viana and in particular to Yde Venema.

References

1. M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath fragments.
In Proceedings. ICDT 2003, 2003.

2. P. Blackburn, W. Meyer-Viol, and M. de Rijke. A proof system for finite trees. In
H. Kleine Büning, editor, Computer Science Logic, volume 1092 of LNCS, pages
86–105. Springer, 1996.

3. World-Wide Web Consortium. XML path language (XPath): Version 1.0.
http://www.w3.org/TR/xpath.html.

15

4. K. Etessami, M. Vardi, and Th. Wilke. First-order logic with two variables and
unary temporal logic. In Proceedings 12th Annual IEEE Symposium on Logic in
Computer Science, pages 228–235, Warsaw, Poland, 1997. IEEE.

5. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In Proc. of the 28th International Conference on Very Large Data Bases
(VLDB 2002), 2002.

6. G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. In Proceedings
of PODS, pages 189–200, 2004.

7. N. Immerman and D. Kozen. Definability with bounded number of bound variables.
In Proceedings of the Symposium of Logic in Computer Science, pages 236–244,
Washington, 1987. Computer Society Press.

8. M. Marx. Conditional XPath, the first order complete XPath dialect. In Proceed-
ings of PODS’04, 2004.

9. M. Marx and M. de Rijke. Semantic characterizations of XPath. In TDM’04 work-
shop on XML Databases and Information Retrieval., Twente, The Netherlands,
June 21, 2004.

10. A. Palm. Propositional tense logic for trees. In Sixth Meeting on Mathematics of
Language. University of Central Florida, Orlando, Florida, 1999.

11. J. Rogers. A Descriptive Approach to Language Theoretic Complexity. CSLI Press,
1998.

12. A. Tarski and S. Givant. A Formalization of Set Theory without Variables, vol-
ume 41. AMS Colloquium publications, Providence, Rhode Island, 1987.

13. M. Vardi. Why is modal logic so robustly decidable? In DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science 31, pages 149–184. American
Math. Society, 1997.

14. P. Wadler. Two semantics for XPath. Technical report, Bell Labs, 2000.

A Ordered trees have the three variable property

A first order language L is said to have the three variable property over a class
of structures C if every L formula in at most three free variables is equivalent
within the class C to an L formula in at most three (free and bound) variables.
Thus the next theorem finishes the proof of Theorem 2.

Theorem 6. The class of ordered trees has the three variable property.

We prove the theorem using k pebble n round Ehrenfeucht–Fräıssé games as
in [7]. We recall some of the terminology. Let L be a first order language with
variables x1, x2, A partial assignment over a structure A for L is a partial
function u : {x1, x2, . . . } −→ A. The domain of u is denoted ∂u. The cardinality
of ∂u is denoted |u|. A k-configuration over A,B is a pair (u, v), where u, v are
partial assignments over A,B, respectively such that ∂u = ∂v ⊆ {x1, . . . , xk}.
For A,B structures and (u, v) a k–configuration, G(u, v, k, n) denotes the n–
round, k–pebble game played on structures A,B starting at configuration (u, v).
The fundamental result on games is that for L a first order language in a finite
signature without function symbols it holds that Player II (assumed to be female)
has a winning strategy in G(u, v, k, n) if and only if A, u and B, v satisfy exactly
the same L formulas of quantifier rank at most n written in at most k (free and

16

bound) variables. The theorem now follows by a standard argument6 from the
following lemma.

Lemma 9. For any two ordered trees A,B, for any 3-configuration (u, v), if
player II has a winning strategy in G(u, v, 3, 7n) (played on A,B) , then she has
a winning strategy in G(u, v, k, n), for all k.

Proof. Let A,B be ordered trees and (u, v) a 3-configuration. Suppose player
II has a winning strategy in G(u, v, 3, 7n). We describe her winning strategy in
G(u, v, k, n) and prove the lemma by induction on the number of rounds. By
standard game arguments, the lemma holds for 0 rounds, and also that

(*) if |u| = |v| < 3 and she has a winning strategy in G(u, v, 3, 7n+1), then she
also has a winning strategy in G(u, v, k, n + 1), for all k.

So assume |u| = |v| = 3, she has a winning strategy for G(u, v, 3, 7 · (n + 1)) and
no two pebbles occupy the same position (otherwise one of them can be removed
and we obtain the result by (*)). We must show that she has a winning strategy
in G(u, v, k, n +1), for all k. By standard game arguments, we may assume that
k > n + 1, so that Player I never needs to remove a pebble.

Renumber the variables if needed so that u(x1) � u(x2) � u(x3). Here
� denotes the document order defined as down+ ∪ up∗/right+/down∗. On each
ordered tree � is a total linear order, so the assumption that u(x1) � u(x2) �
6 Let φ(x̄) be a first order formula in three free variables. Let n be its quantifier rank.

Let Cφ be all structures (A, ā) such that A is a tree and A |= φ(ā). Let Cφ = C¬φ.
First observe that for any (A, ā) ∈ Cφ, for any (B, b̄) 6∈ Cφ, there exists a formula
δAB(x̄) of quantifier rank at most 7n written in three free and bound variables such
that

A |= δAB(ā) and B 6|= δAB(b̄).

For, suppose to the contrary. Then (A, ā) and (B, b̄) satisfy the same formulas in three
variables of quantifier rank 7n. But then, by the fundamental result on games, with
some abuse of notation, Player II has a winning strategy in the game G(ā, b̄, 3, 7n).
But by the lemma she then has a winning strategy for the game G(ā, b̄, k, n), for any
k. But that means that the two structures satisfy the same L formulas of quantifier
rank at most n. In particular, as A |= φ(ā), also B |= φ(b̄), a contradiction.
Now define

δ(x̄) =
∨

(A,ā)∈Cφ

∧
(B,b̄)∈Cφ

δAāBb̄(x̄).

As the δAāBb̄ are of quantifier rank at most 7n and in a finite signature, δ is finite
modulo logical equivalence. We claim that δ(x̄) is the desired formula equivalent
to φ(x̄). For suppose A |= φ(ā), for A, ā arbitrary. Then (A, ā) in Cφ. But then
A |=

∧
B∈Cφ

δAāBb̄(ā), and a fortiori also δ. Conversely, suppose B 6|= φ(b̄). Then

(B, b̄) ∈ Cφ. Now suppose to the contrary that B |= δ(b̄). Then for some A, ā,
B |=

∧
(B,b̄)∈Cφ

δAāBb̄(x̄). In particular B |= δAāBb̄(x̄), a contradiction with the fact

that (B, b̄) ∈ Cφ and the definition of δAāBb̄.

17

u(x3) can always be made. Here and below we use the XPath notation for binary
relations as it is easier to follow. Thus xdown+y iff xR⇓y, xup∗y iff x = y∨yR⇓x,
etc.

As � consists of five disjuncts we have quite a large number of cases. The
simplest case is when

u(x1)down+u(x2)down+u(x3).

Now just as in the linear case discussed in [7], we break up the game into two
subgames on disjoint regions of the respective structures, each containing two
pebbles. Using (*) we may then argue that she has a winning strategy in the
games G(u�(x1,x2), v�(x1,x2), k, n + 1) and G(u�(x2,x3), v�(x2,x3), k, n + 1) played
on the respective regions. Then it is a matter of combining these two winning
strategies into one for the whole game G(u, v, k, n + 1).

We now describe these subgames. Consider the pair of corresponding regions

{a ∈ A | u(x2)((left∗ ∪ right∗)/down∗)a} and {b ∈ B | v(x2)((left∗ ∪ right∗)/down∗)b}.

Associate with this pair of regions the game G(u�(x2,x3), v�(x2,x3), 3, 7 · (n +
1)). We call these the regions below, and their complements the regions above
u(x2) and v(x2), respectively. Associate with the pair of complements the game
G(u�(x1,x2), v�(x1,x2), 3, 7 · (n + 1)).

As each restricted game contains just two pebbles, by (*), she has a winning
strategy in the games G(u�(x2,x3), v�(x2,x3), k, n+1) and G(u�(x1,x2), v�(x1,x2), k, n+
1), played on the respective subdomains. The crucial property of this partition
is that for all a in the region above and b in the region below u(x2) it holds that

neither aR⇒b nor bR⇒a nor bR⇓a holds, and aR⇓b only if aR⇓u(x2). (13)

And of course similarly for v(x2).
Now take the combined strategy for Player II in the game G(u, v, k, n + 1)

played on the whole structures as described7 in [7]. The property (13) ensures
that the global configuration is a local isomorphism.
7 We repeat its construction for completeness, and we also need it later on. We describe

a strategy for Player II in the game G(u, v, k, n + 1). Assume k > n + 1 so Player
I never needs to remove a pebble from the board. The result follows for smaller k.
Whenever Player I moves in one of the designated regions of either A or B, Player II
responds using her winning strategy in the game associated to that region. Player II
will then move in the corresponding region in the other structure. She knows where
it is since there is always a pebble of u(x2). If (u′, v′) is any subsequent (global)
configuration, the restriction of (u′, v′) to either of the two pairs of regions is a local
isomorphism, since Player II has a winning strategy in the game associated to that
region. Now suppose u′(xi) = a and u′(xj) = b and a, b come from the two different
regions. By construction of the strategy, then also v′(xi) and v′(xj) come from the
corresponding (different) regions. By property (13) they cannot be R⇒ related. So
(u′, v′) is a local isomorphism for R⇒. Now suppose u′(xi)R⇓u′(xj). Then by (13),
u′(xi)R⇓u′(x2) and by construction u′(x2) = u′(xj) or u′(x2)R⇓u′(xj). But then
v′(xi)R⇓v′(x2) and v′(x2) = v′(xj) or v′(x2)R⇓v′(xj), because (u′, v′) restricted to
the regions is a local isomorphism. But then also v′(xi)R⇓v′(xj). Thus (u′, v′) is a
local isomorphism.

18

Now we consider the most complicated case. When

u(x1)up+/right+/down+u(x2)up+/right+/down+u(x3).

Let a4, a5, a6, a7 be the unique nodes such that

u(x1)up+ a4 right+ a5 down+u(x2)up+ a6 right+ a7 down+u(x3).

There are three ways in which a5 and a6 can be related: a5down+a6, a5 = a6

and a6down+a5. We consider the first, depicted in Figure 2. The other two are
treated similarly. As in the simplest case, we partition the trees into different

a4

||yy
yy

yy
yy

a5

""E
EE

EE
EE

EE

u(x1) a6

}}zzzzzzzz
a7

!!D
DDDDDDD

u(x2) u(x3)

Fig. 2. Location of the pebbles and their corner points.

corresponding regions, though this time we need six of them. We assumed she
has a winning strategy in the game G(u, v, 3, 7 · (n + 1)). She uses the extra
moves to put the pebbles on the corner points ai and make the partition. Stated
differently she uses the extra moves to let the other player help her.

First she lets Player I move pebbles x3 to a4 and x2 to a5 and uses her
winning strategy to move accordingly in the other structure. Thus she has a
winning strategy in the game with 7n + 5 rounds when the pebbles are as in

x3
a4

~~}}
}}

}}
}}

x2
a5

x1

u(x1)

and correspondingly in the other structure. Partition both structures into three
corresponding parts as follows:

I = {a | a4down+a}
II = A \ (I ∪ Rest1)

Rest1 = {a | a5down+a}

19

The important property of the partition given in the previous case was (13). It
stated that points in different regions are related only if they were both related
to the corner point u(x2). Here we are after a similar property, and we need
the extra points a4, . . . , a7 as additional corner points. Observe that for all a, b
which are not in the same region it holds that

not aR⇒b (14)

aR⇓b iff adown∗a4down+b or adown∗a5down+b. (15)

Let (u′, v′) be any 2-configuration such that the pebbles are placed as in the latest
picture. She has a winning strategy in the games G(u′, v′, 3, 7n+5) restricted to
each of the three regions. So by (*) she also has a winning strategy in the games
G(u′, v′, k, n + 1) restricted to those regions. For regions I and II we are done.
She plays on in order to partition Rest1.

She lets Player I move x3 to a6 and x1 to u(x2) (as in the original game in
Figure 2), obtaining

x2
a5

!!B
BB

BB
BB

BB

x3
a6

~~}}
}}

}}
}}

x1

u(x2)

Partition the restriction to Rest1 = {a | a5down+a} of both structures into three
corresponding parts as follows:

III = {a | a5down+a ∧ a6up+/(left∗ ∪ right∗)/down∗a}
IV = {a | a6down+a}

Rest2 = Rest1 \ (III ∪ IV) = {a | a6 (left∗ ∪ right∗)/down∗ a}

We obtain that for all a, b ∈ Rest1 which are not in the same region it holds that

not aR⇒b (16)

aR⇓b iff adown∗a6(left∗ ∪ right∗)/down∗b (17)

In all the subgames restricted to the regions and the appropriate two pebbles
she has a winning strategy for 7n+3 rounds. Thus, by (*), also for the k pebble
n + 1 round game on those regions.

20

Finally she partitions Rest2. Now she let Player I move x2 to a7 and x1 to
u(x3), obtaining

x3
a6

x2
a7

 A
AA

AA
AA

A

x1

u(x3)

and she can partition Rest2 into two parts

V = {a | a7down+a}
V I = Rest2 \ V.

We obtain that for all a, b ∈ Rest2 which are not in the same region it holds that

not aR⇒b (18)

aR⇓b iff a = a7 and a7R⇓b (19)

She still has a winning strategy in the 3 pebble 7n + 1 round games restricted
to these two regions and their corresponding two pebbles. So by (*) she also has
a winning strategy for the k pebble n + 1 round games on these two regions.

Thus she has winning strategies for the k pebble n + 1 round games, restricted
to the regions I . . . V I. Now we put all six winning strategies together and show
that she has a winning strategy for the game G(u, v, k, n + 1) with u as in
Figure 2. But that should now be rather obvious. Given the location of the
pebbles x1, x2, x3, the corner points a4, a5, a6, a7 are uniquely determined. As we
may assume that k > n+1, these three pebbles are never removed. Her combined
winning strategy consists as before of the winning strategies corresponding to
the regions. If Player I plays a pebble x4 say in region X, she responds according
to her winning strategy in that region. As the pebbles x1, x2, x3 are not removed,
she can play in the corresponding region X in the other structure. Now let (u′, v′)
be any subsequent (global) configuration. The restriction of (u′, v′) to any of the
six regions is a local isomorphism since she has a winning strategy in the game
according to that region. Moreover, by the properties (14)–(19) the relations R⇓
and R⇒ between elements in different regions are uniquely determined by their
relation to one of the corner points a5 . . . a7. Thus (u′, v′) is a local isomorphism,
hence she has a winning strategy in G(u, v, k, n + 1).

The other cases for u(x1) � u(x2) � u(x3) are all treated similarly. Whence
the lemma.

B Proof of Lemma 1

Proof. We need a general result first. Let’s say a structure M = (N,R⇓, R⇒, Pi)i∈ω

is connected if for all n, n′ ∈ N , n and n′ are connected by a path of the form

=, R⇓, R⇒, R⇑/R⇒, R⇒/R⇓, R⇑/R⇒/R⇓, (20)

21

with R⇑ shorthand for R−1
⇓ . Obviously all ordered trees are connected. For M

a model and X ⊆ N , we say that X is path-closed if M�X is connected. The
set of points in Figure 2 is path closed. The set {u(x1), u(x2), u(x3)} is not. A
query is said to be path-closed if for φ(x̄) the body of the query, for each model
M, if M |= φ(ā), then ā is path closed. A query is said to be determined if in
every model of the query, each two variables in the body are related by the same
relation from (20). For instance, Q(x, y) :−xdown+y, wdown+y is connected but
not determined. The following claim has a straightforward proof

Claim. Every query is equivalent to a union of path closed determined conjunc-
tive queries, in which the binary relations are of the form x = y and

– step and step+, in the case of Core XPath;
– step and (step?A)+, in the case of Conditional XPath.

Thus we may restrict our attention to these conjunctive queries.
Consider the graph of the query, in which the nodes are variables, labeled

with the node wffs and the edges are labeled with the path wffs (in the case the
query contains x = y, there is just one node for both x and y). The node wffs
are not important to our argument. The graph is generally a multigraph. It is
easy to see that if it is a tree, then the query is expressible as a path wff (cf. e.g.,
[1]). Thus our goal is to turn the multigraph into an equivalent tree, achieving
that for each node v, there exists at most one node u such that uRv is part of
the query, for R one of the edge labels.

As the query is path closed, there is a path as in (20) between each two nodes,
and none of these is the identity. If nodes u and v are connected by a path as in
(20) containing a / then each conjunct uRv is inconsistent, so the whole query
is equivalent to ⊥ (expressible as the path wff ?¬>). Now we describe how to
remove other edges, first for the simple case of Core XPath. If udown+v and uRv
for some edge label R, then either it is inconsistent or uRv implies udown+v.
In the last case, the latter can be removed. If the graph contains udown+v and
wdown+v, then either it is inconsistent, or (because the query is determined)
it implies one of udown+w,wdown+u. But then one of udown+v and wdown+v
can be removed. Similarly when uright+v. Now suppose we have udown+v and
wRv, for R one of right, right+. Then replace udown+v by udown+w. Do the
same when udownv. Repeating this process the final graph has the shape of a
tree.

For Conditional XPath we have to be more careful. If u(down?A)+v and
u(down?B)+v, then replace both by u(down?(A ∧ B))+v. If u(down?A)+v and
there exists a w in between u and v, then replace u(down?A)+v by u(down?A)+w
and w(down?A)+v. Similarly for the sibling labels. Repeating this process leads
to a graph in which every node has at most one incoming down and at most
one incoming sibling edge. So the only case left is when a node has both, as in
u(down?A)+v and wright+v. There are three cases:

– u is the parent of v. Remove u(down?A)+v, and add udownw and A(v).
– The parent z of v and w is a node in the graph. Remove u(down?A)+v, and

add u(down?A)+z and A(v).

22

– The parent is not part of the graph. Add a new node z and add u(down?A)+z,
A(v), zdownw.

Repeating this process, the final graph has the shape of a tree.

23

