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In this lecture, we review some of the basics of number theory that will be used in the 
following lectures. 

Definitions 
Additive Group 
Consider the following Set: Zp = {0,1,2, … , p-1} with the operation ‘addition mod p’ 
(to be denoted by +). The set Zp with the + operation is an Additive Group because it 
has the following properties: 
• It is closed – for every a and b in Zp, a+b is also a member of that set. 

Formally:  ∀ (a ∈ Zp) , ∀(b ∈ Zp) :  (a+b) ∈ Zp. 
• It has a “Zero” element – there is an element z in Zp, that for each member a in Zp, 

performing the operation + on those 2 numbers will result in a. 
Formally:  ∃(z ∈ Zp): ∀(a ∈ Zp)  a+z = a. 

• Every element has an opposite element – for every element a in Zp, there exists an 
element b in Zp, so that a+b=0. 
Formally:  ∀(a ∈ Zp) : ∃(b ∈ Zp) :  a+b =0. 

• Associativity – for every 3 elements in Zp, no matter in which order the + operation 
is performed, it always yields the same result. 
Formally:  ∀ (a ∈ Zp) , ∀(b ∈ Zp),∀ (c ∈ Zp) :  (a+b)+c = a+(b+c). 

Multiplicative Group 
Let us look at the set Zp* = {1,2,3,…, p-1} with the operation ‘multiplication mod p’ 
(to be denoted by *). Similarly, this set is called a Multiplicative Group if it has the 
following properties: 
• It is closed – for every a and b in Zp, (a*b) is also a member of that set. 

Formally:  ∀ (a ∈ Zp) , ∀(b ∈ Zp) :  (a*b) ∈ Zp. 
• It has a “Unity” element – there is an element u in Zp, that for each member a in Zp, 

performing the operation * on those 2 numbers will result in a. 
Formally:  ∃(u ∈ Zp) ∀(a ∈ Zp) : a*u = a. 

• Every element has an inverse element (denoted as a-1 ) – for every element a in Zp, 
there exists an element b in Zp, so that a*b =1. 
Formally:  ∀(a ∈ Zp)  ∃(b ∈ Zp) :  a*b =1. 

• Associativity – for every 3 elements in Zp, no matter in which order the * operation 
is performed, it always yields the same result. 
Formally:  ∀ (a ∈ Zp) , ∀(b ∈ Zp),∀ (c ∈ Zp) :  (a*b)*c = a*(b*c). 
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Field 
A set is a Field if it is both an Additive Group and a Multiplicative Group, and it has the 
following properties: 

• Commutativity – ∀ (a ∈ Zp) ∀(b ∈ Zp) : a+b = b+a  and  a*b = b*a 
• Distributivity – ∀ (a ∈ Zp) , ∀(b ∈ Zp),∀ (c ∈ Zp) : a*(b+c) = a*b + a*c)  
An example of a Field is the set of integers modulo a prime p: the group (Zp, +,*,0,1) 
where  Zp = {0,1,2, … , p-1}. 

Properties 
If p is prime, then the set Zp* = {1, 2, …, p-1} with the operation multiplication modulo 
p defined on it, has the following properties: 

Zp* is Cyclic 
Zp* is Cyclic, meaning it has a generator. A generator is an element g of Zp* so that 
every element i of Zp*, is the result of raising g to the j-th power, where 1 ≤ j ≤ p-1. 
Formally:  Zp* = {gi : i = 1, 2, … , p-1} = {g1, g2, g3, …, gp-1}. 
A cyclic group may have more than one generator. 
Let us consider the following example: 
For Z 7* = {1, 2, 3, 4, 5, 6} the element 3 is a generator, since: 
31 = 3 (mod 7)   34 = 4 (mod 7) 
32 = 2 (mod 7)   35 = 5 (mod 7) 
33 = 6 (mod 7)   36 = 1 (mod 7) 

Fermat’s Little Theorem 
If p is prime, then for each element a in the set Zp* : a p -1  = 1 (mod p). 

Let us prove this theorem: p is prime, and therefore a and p are relatively prime (The 
term ‘relatively prime’ means that they do not share any common factor other than 1.) 
In this case, a has an inverse, and therefore: a*b = a*c (mod p) implies b = c (mod p). 
Since a and p are relatively prime, there is no k in Zp* for which a*k=p (mod p).  This 
is why the following multiples a (mod p), 2a (mod p), …, (p-1)a (mod p) give all the 
residues 1, 2, …, p-1 permuted: 
a * 2a * … * (p-1)a   =   1 * 2 * … * (p-1) (mod p)        
a p-1 * [1 * 2 * … * (p-1)]   =   [1 * 2 * … * (p-1)] mod p 
Since Zp* is a multiplicative group, we can remove [1*2* …* (p-1)] from both sides of 
the equation to obtain: a p - 1 = 1 (mod p) 
From this theorem, we can easily deduce that: 

1. a p = a (mod p)         because     a⋅ap-1 = a⋅1 = a 
2. a-1 = a p-2 (mod p)     because    a⋅a p-2 = a p-1 = 1 

The second deduction gives us a way to calculate the inverse of an element (a–1 is the 
inverse of a)  in O(log p) steps, in comparison to a search that takes O(p) steps. This is 
possible because ap-2 can be calculated in O(log p) steps. 

Properties regarding order(a) 
The order of a, denoted as order (a), is the smallest b that satisfies the equation ab = 1. 
For example: order (1) = 1.  
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1. For every a in Zp*, order (a) is a divisor of p-1 (order (a) divides p-1). 
Formally: ∀a ∈ Z*

p :  order (a) | p-1. 
2. An element a of Zp* is square  (meaning there exists such a b in Zp* so that a = b2)  

if and only if  a(p-1)/2 = 1 (mod p). 
Formally: ∃(b ∈ Zp) , a= b2  ⇔  a(p-1)/2 = 1 (mod p). 

3. The equation gx ≡ gy (mod p) is true if and only if x = y (mod (p-1)). Where g is a 
generator. 
Formally: gx ≡ gy (mod p) ⇔  x = y (mod (p-1)). 
In the general case: ax ≡ ay (mod p) ⇔  x = y (mod order(a)). 


