Graphical Models - problem set 3
 November 17, 2004

Submission date: 24/11

1. Recall the definitions

$$
\begin{equation*}
\Phi_{i j \downarrow}=\prod_{k, l \in i j \downarrow} \Psi_{k l}\left(x_{k}, x_{l}\right) \prod_{k \in i j \downarrow} \Psi_{k k}\left(x_{k}, y_{k}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{j i}\left(x_{i}\right)=\sum_{x_{i j \downarrow}} \Psi_{i j}\left(x_{i}, x_{j}\right) \Phi_{i j \downarrow}\left(x_{i j \downarrow}\right) \tag{2}
\end{equation*}
$$

That is, $m_{j i}\left(x_{i}\right)$ is the product of all cliques from the side of the tree that is separated from i by j times the clique over i and j (this is all of the "information" that i needs to get from j 's side).
Use the above definitions directly (and NOT the recursion formula for $m_{i j}$) to show that having calculated all messages $m_{i j}$ in the graph, we can exactly calculate $P\left(x_{i}, x_{j} \mid y\right)$ for all connected pairs of nodes in the graph. (hint: try to generalize the equation that we derived for HMMs).
2. Recall that $P\left(x_{i} \mid y\right)$ can be written as a product of incoming "messages":

$$
\begin{equation*}
P\left(x_{i} \mid y\right)=c \Psi_{i i}\left(x_{i}, y_{i}\right) \prod_{j \in N(i)} m_{j i}\left(x_{i}\right) \tag{3}
\end{equation*}
$$

Use this property, the results of the previous question and the marginalization constraint:

$$
\begin{equation*}
P\left(x_{i} \mid y\right)=\sum_{x_{j}} P\left(x_{i}, x_{j} \mid y\right) \tag{4}
\end{equation*}
$$

to give an alternative proof for the recursion over messages:

$$
\begin{equation*}
m_{j i}\left(x_{i}\right)=\sum_{x_{j}} \Psi_{i j}\left(x_{i}, x_{j}\right) \Psi_{j j}\left(x_{j}, y_{j}\right) \prod_{k \in N(j) \backslash i} m_{k j}\left(x_{j}\right) \tag{5}
\end{equation*}
$$

