Graphical Models - problem set 1

October 31, 2004

Due date: Sunday, 7/11

1. In class we proved that $\alpha_t(i)$ satisfies a recursion formula. Show that $\beta_t(j)$ satisfies the backward recursion:

$$\beta_t(j) = \sum_{i=1}^N A(j,i)B(i,y_{t+1})\beta_{t+1}(i)$$

2. Assume that you have calculated $\alpha_t(i)$ and $\beta_t(j)$ for all values of t, i, j. Show how to use this to compute

$$P(X_{t+1} = j \mid X_t = i, Y)$$

for any t, i and j.

3. Given a point \boldsymbol{x}^0 in a *d* dimensional space ($\boldsymbol{x} = (x_1..x_d)$) find the closest point to it on the hyper plane $\sum_{i=1}^{d} (x_i) = 0$. In other words find :

$$\arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{x}^0\|^2$$

$$\text{such that } \sum_{i=1}^d (x_i) = 0$$

$$\text{where } \|\boldsymbol{x} - \boldsymbol{x}^0\| = \sqrt{\sum_{i=1}^d (x_i - x_i^0)^2}$$
(1)