Graphical Models - problem set 1

October 31, 2004

Due date: Sunday, 7/11

1. In class we proved that $\alpha_{t}(i)$ satisfies a recursion formula. Show that $\beta_{t}(j)$ satisfies the backward recursion:

$$
\beta_{t}(j)=\sum_{i=1}^{N} A(j, i) B\left(i, y_{t+1}\right) \beta_{t+1}(i)
$$

2. Assume that you have calculated $\alpha_{t}(i)$ and $\beta_{t}(j)$ for all values of t, i, j. Show how to use this to compute

$$
P\left(X_{t+1}=j \mid X_{t}=i, Y\right)
$$

for any t, i and j.
3. Given a point \boldsymbol{x}^{0} in a d dimensional space $\left(\boldsymbol{x}=\left(x_{1} \ldots x_{d}\right)\right)$ find the closest point to it on the hyper plane $\sum_{i=1}^{d}\left(x_{i}\right)=0$. In other words find :

$$
\begin{align*}
& \arg \min _{\boldsymbol{x}} \frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{0}\right\|^{2} \tag{1}\\
& \text { such that } \sum_{i=1}^{d}\left(x_{i}\right)=0
\end{align*}
$$

where $\left\|\boldsymbol{x}-\boldsymbol{x}^{0}\right\|=\sqrt{\sum_{i=1}^{d}\left(x_{i}-x_{i}^{0}\right)^{2}}$

