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Lecturer: Amnon Shashua Scribe: Amnon Shashua 1

In the previous lecture we saw that the VC dimension d of the concept class C plays an important
role in designing learning algorithms. We have seen that for a given training sample size m, the
lower d is the better accuracy ε and confidence δ one could obtain by simply finding a concept h ∈ C
which minimizes the sample error. Conversely, for a fixed accuracy and confidence parameters, the
smaller d is the smaller m needs to be:

m = O

(
1
ε

log
1
δ

+
d

ε
log

1
ε

)
.

The large margin principle used by the support vector machine minimizes d while looking for a
consistent hypothesis. Another possibility for reducing d is to reduce the dimension n of the input
space X — as for example, the VC dimension of separating hyperplanes is n + 1. There are
two possible ways to achieve the dimension reduction: (i) select a susbset of coordinates (”feature
selection”), or (ii) compress the data into a lower dimensional representation (”feature extraction”).

In this lecture we will focus on feature extraction from a very specific (and constrained) stan-
point. We would be looking for a mixing (linear combination) of the input coordinates such that
we obtain a linear projection from Rn to Rq for some q < n. In doing so we wish to reduce the
redundancy while preserving as much as possible the variance of the data. From a statistical stand-
point this is achieved by transforming to a new set of variables, called principal components, which
are uncorrelated so that the first few retain most of the variation present in all of the original co-
ordinates. For example, in an image processing application the input images are highly redundant
where neighboring pixel values are highly correlated. The purpose of feature extraction would be to
transform the input image into a vector of output components with the least redundancy possible.
Form a geometric standpoint, this is achieved by finding the ”closest” (in least squares sense) linear
q-dimensional susbspace to the m sample points S. The new subspace is a lower dimensional ”best
approximation” to the sample S. These two, equivalent, perspectives on data compression (dimen-
sionality reduction) form the central idea of principal component analysis (PCA) which probably
the oldest (going back to Pearson 1901) and best known of the techniques of multivariate analysis in
statistics. The computation of PCA is very simple and the definition is straightforward, but has a
wide variety of different applications, a number of different derivations, quite a number of different
terminologies (especially outside the statistical literature) and is the basis for quite a number of
variations on the basic technique.

We will also describe a non-linear extension of PCA known as Kernel-PCA, but the focus would
be mostly on PCA itself and its analysis from a couple of vantage points: (i) PCA as an optimal
reconstruction after a dimension reduction, i.e., data compression, and (ii) PCA for redundancy
reduction (decorrelation) of the output components.
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9.1 PCA: Statistical Perspective

Let x1, ...,xm ∈ Rn be our sample data S of vectors in Rn, arranged as columns of a matrix A. It
will be convenient to assume that the data is centered, i.e.,

∑
xi = 0. If the data is not centered

we can always center it by computing the mean vector µ = (1/m)
∑

i xi and replace the original
data sample with the new sample xi − µ. In a statistical sense, the coordinates of the vector
x ∈ Rn are considered as random variables, thus a row in the matrix A is the sample of values of
a particular random variable, drawn from some unknown probability distribution, associated with
the row position. We wish to find a new basis u1, ...,uq (arranged as columns of a matrix U), where
q ≤ min(n, m), such that the coordinates of the original input vectors (or the projection onto the
subspace spanned by the ui) in the new basis, y = U>x, have certain desirable properties.

9.1.1 Maximizing the Variance of Output Coordinates

The property we would like to maximize is that the projection of the sample data on the new axes
is as spread as possible. To start this analysis, assume q = 1, i.e., the n components of the input
vector x are reduced to a single output component y = u>x. We are looking for a single vector
u ∈ Rn whose direction maximizes the variance of the output component y.

Formally, we are looking for a unit vector u which maximizes
∑

i(u
>xi)2 (see Appendix A for

basic statistical definitions). In other words, the projected points onto the axis represented by the
vector u are as spread as possible (in a least squares sense). In vector notation, the optimization
problem takes the following form:

maxu
1
2
‖u>A‖2 subject to u>u = 1

The Lagrangian of the problem is:

L(u, λ) =
1
2
u>AA>u− λ(u>u− 1)

By taking the partial derivative ∂L/∂u = 0 we obtain the following necessary condition (see
Appendix B):

AA>u = λu,

which tells us that u is an eigenvector of the n× n (symmetric and positive definite) matrix AA>.
There are n eigenvectors associated with AA> and we can easily convince ourselves that we are
looking for the one associated with the maximal eigenvalue: substitute λu instead of AA>u in
the criterion function u>AA>u to obtain λ(u>u) = λ and since the eigenvalues must be positive
(since AA> is positive definite), then the optimum is obtained for the maximal eigenvalue. The
leading eigenvector u of AA> is called the first principal axis of the data sample represented by the
columns of the matrix A, and y = u>x is called the first principal component of the data sample.

For convenience, we denote u1 = u and λ1 = λ as the leading eigenvector and eigenvalue of
AA>. Next, we look for y2 = u>2 x which is uncorrelated with y1 = u>1 x and which has maximum
variance (and so on for u3, ...,uq). Two random variables are uncorrelated if their covariance
vanishes. By definition of covariance (see Appendix A) we obtain:

Cov(y1y2) =
∑

i

(u>1 xi)(u>2 xi) = u>1 (
∑

i

xix>i )u2

= u>1 AA>u2 = u>2 AA>u1 = λ1u>1 u2 = 0
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We can therefore use the condition u>1 u2 = 0 to specify zero correlation between y1, y2. The
functional to be optimized becomes:

maxu2

1
2
‖u>2 A‖2 subject to u>2 u2 = 1, u>1 u2 = 0,

with the Lagrangian being:

L(u2, λ, δ) =
1
2
u>2 AA>u2 − λ(u>2 u2 − 1)− δu>1 u2.

By taking the partial derivative with respect to u2 we obtain the necessary condition:

AA>u2 − λu2 − δu1 = 0.

Multiply the equation by u1 from the left:

u>1 AA>u2 − λu>1 u2 − δu>1 u1 = 0,

and noting from above that u>1 AA>u2 = u>1 u2 = 0 we obtain δ = 0. As a result we obtain:

AA>u2 = λu2,

so once more we have that λ,u2 form an eigenvalue/eigenvector pair of AA>. As before, λ should
be as large as possible. Assuming that AA> does not have repeated eigenvalues (a complication
which we will not consider here) λ should be the next highest eigenvalue after λ1 and u2 the
corresponding eigenvector (note that λ 6= λ1 because otherwise it follows that u1 = u2 which
contradicts the constraint u>1 u2 = 0). By induction, it can be shown that the remaining principal
vectors u3, ...,uq are the decreasing order eigenvactors of AA> and the variance of the i’th principal
component yi = u>i x is λi.

Taken together, the PCA is the solution of the following optimization problem:

maxu1,...,uq

1
2

∑
i

‖u>i A‖2 subject to u>i ui = 1, u>i uj = 0, i 6= j = 1, ..., q.

It will be useful for later to write the optimization function in a more concise manner as follows.
Let U be the n × q matrix whose columns are ui and D = diag(λ1, ..., λq) is an q × q diagonal
matrix and λ1 > λ2 > ... > λq. Then from above we have that U>U = I and AA>U = UD. Using
the fact that trace(xy>) = x>y, trace(AB) = trace(BA) and trace(A+B) = trace(A)+ trace(B)
we can convert

∑
i ‖u>i A‖2 to trace(U>AA>U) as follows:∑
i

u>i AA>ui =
∑

i

trace(A>uiu>i A) = trace(A>(
∑

i

uiu>i )A)

= trace(A>UU>A) = trace(U>AA>U)

Thus, PCA becomes the solution of the following optimization function:

max
U∈Rn×q

trace(U>AA>U) subject to U>U = I. (9.1)

The solution, as saw above, is that U = [u1, ...,uq] consists of the decreasing order eigenvectors
of AA>. At the optimum, trace(U>AA>U) is equal to trace(D) which is equal to the sum of
eigenvalues λ1 + ... + λq.
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It is worthwhile noting that when q = n, UU> = U>U = I, and the PCA transform is a change
of basis in Rn known as Karhunen-Loeve transform.

To conclude, the PCA transform looks for q orthogonal direction vectors (called the principal
axes) such that the projection of input sample vectors onto the principal directions has the maximal
spread, or equivalently that the variance of the output coordinates y = U>x is maximal. The
principal directions are the leading (with respect to descending eigenvalues) q eigenvectors of the
matrix AA>. When q = n, the principal directions form a basis of Rn with the property of
maximizing the variance of the coordinates of the sample input vectors.

9.1.2 Decorrelation: Diagonalization of the Covariance Matrix

In the previous section we saw that PCA generates a new coordinate system y = U>x where the
coordinates y1, ..., yq of x in the new system are uncorrelated. This means that the covariance matrix
over the principle components should be diagonal. In this section we will explore this perspective
in more detail.

The covariance matrix Σx of the sample data x1, ...,xm with zero mean is

(1/m)
∑

i

xix>i = (1/m)AA>,

therefore the matrix AA> we derived above is a scaled version of the covariance of the sample
data (see Appendix A). The scale factor 1/m was unimportant in the process above because the
eigenvectors are of unit norm, thus any scale of AA> would produce the same set of eigenvectors.

The off-diagonal entries of the covariance matrix Σx represent the correlation (a measure of
statistical dependence) between the i’th and j’th component vectors, i.e., the entries of the input
vectors x. The existence of correlations among the components (features) of the input signal is
a sign of redundancy, therefore from the point of view of transforming the input representation
into one which is less redundant, we would like to find a transformation y = U>x with an output
representation y which is associated with a diagonal covariance matrix Σy, i.e., the components of
y are uncorrelated.

Formally, Σy = (1/m)
∑

i yiy
>
i = (1/m)U>AA>U , therefore we wish to find an n × q matrix

for which U>AA>U is diagonal. If in addition, we would require that the variance of the output
coordinates is maximized, i.e., trace(U>AA>U) is maximal (but then we need to constrain the
length of the column vectors of U , i.e., set ‖ui‖ = 1) then we would get a unique solution for U
where the columns are orthonormal and are defined as the first q eigenvectors of the covariance
matrix Σx. This is exactly the optimization problem defined by eqn. (7.1).

We see therefore that PCA “decorrelates” the input data. Decorrelation and statistical indepen-
dence are not the same thing. If the coordinates are statistically independent then the covariance
matrix is diagonal, but it does not follow that uncorrelated variables must be statistically inde-
pendent — covariance is just one measure of dependence. In fact, the covariance is a measure
of pairwise dependency only. However, it is a fact that uncorrelated variables are statistically
independent if they have a multivariate normal distribution (a Gaussian). In other words, if the
sample data x are drawn from a probability distribution p(x) which has Gaussian form, the PCA
transforms the sample data into a statistically independent set of variables y = U>x. The details
are explained below.

Recall that a multivariate normal distribution of the random variables x = (x1, ..., xn)> is
defined as p(x) ≈ N(µ,Σ):

p(x) =
1

(2π)n/2|Σ|1/2
e−

1
2
(x−µ)>Σ−1(x−µ).
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Also recall that a linear combination of the variables produces also a normal distribution N(U>µ,U>ΣU),
therefore choose U such that Σy = U>ΣU is a diagonal matrix Σy = diag(σ2

1, ..., σ
2
n). We have in

that case:

p(x) =
1

(2π)n/2
∏

i σi
e
− 1

2

∑
i

(
xi−µi

σi

)2

which can be written as a product of univariate normal distributions pxi(xi):

p(x) =
n∏

i=1

1
(2π)1/2σi

e
− 1

2

(
xi−µi

σi

)2

=
n∏

i=1

pxi(xi),

which proves the assertion that decorrelated normally distributed variables are statistically inde-
pendent.

9.2 PCA: Optimal Reconstruction

A different, yet equivalent, perspective on the PCA transformation is as an optimal reconstruction
(in a least squares sense) after a dimension reduction. We are given a sample data as before
x1, ...,xm and we are looking for a small number of orthonormal principal vectors u1, ...,uq where
q < min(n, k) which define a q-dimensional linear subspace of Rn which best approximate the
original input vectors in a least squares sense. In other words, the projection x̂i of the sample points
xi onto the q-dimensional subspace should minimize

∑
i ‖xi − x̂i‖2 over all possible q-dimensional

subspaces of Rn.
Let U be the subspace spanned by the principal vectors (columns of U) and let P be the n× n

projection matrix mapping a point x ∈ Rn onto its projection x̂ ∈ U . From the definition of
projection, the vector x − x̂ must be orthogonal to the subspace U . Let y = (y1, ..., yq) be the
coordinates of x̂ with respect to the principal vectors, i.e., Uy = x̂. Then, from orthogonality we
have that (x−Uy)>Uw = 0 for all vectors w ∈ Rn. Since this is true for all w then U>Uy−U>x =
0. Therefore, y = (U>U)−1U>x and as a result the projection matrix P becomes:

P = U(U>U)−1U>,

satisfying Px = x̂. In the case the columns of U are orthonormal, U>U = I, we have P = UU>.
We are ready now to describe the optimization problem on U : we wish to find an orthonormal set
of principal vectors, U>U = I, such that

∑
i ‖xi − UU>xi‖2 is minimized.

Note that
∑

i ‖xi −UU>xi‖2 = ‖A−UU>A‖2
F where ‖B‖2

F =
∑

i,j b2
ij is the square Frobenious

norm of a matrix. The optimal reconstruction problem therefore becomes:

min
U
‖A− UU>A‖2

F subject to U>U = I.

We will show now that:

argminU‖A− UU>A‖2
F = argmax trace(U>AA>U),

which shows that the optimal reconstruction problem is solved by PCA (recall Eqn. 7.1).
From the identity ‖B‖2

F = trace(BB>), we have:

‖A− UU>A‖2
F = trace((A− UU>A)(A− UU>A)>).
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Expanding the right hand side gives us:

trace((A− UU>A)(A− UU>A)>) = trace(AA>)− trace(AA>UU>)
− trace(UU>AA>) + trace(UU>AA>UU>)

The second and third term are equal (commutativity of trace) and is also equal to the 4th term
due to commutativity of the trace and U>U = I. Taken together:

‖A− UU>A‖2
F = trace(AA>)− trace(U>AA>U).

To conclude, we have proven that by taking the first q eigenvectors of AA> we obtain a linear
subspace which is as close as possible (in a least squares sense) to the original sample data. Hence,
PCA can be viewed as a vehicle for optimal reconstruction after dimension reduction.

9.3 The Case n >> m

Consider the situation where n, the dimension of the input vectors, is relatively large compared to
the number of sample vectors m. For example, consider input vectors representing 50 × 50 sized
images of faces, i.e., n = 2500, where m = 100. In other words, we are looking for a small number of
“face templates” (known as “eigenfaces”) which approximate well the original set of 100 face images.
In this case, AA> is very large, 2500 × 2500, yet the number of non-vanishing eigenvalues cannot
be higher than 100. Given that the eigendecomposition process is O(25003), the computational
burden would be very high. However, it is possible to perform an eigendecomposition on A>A (a
100× 100 matrix) instead, as shown next.

Let the columns of Q be the first q < m eigenvectors of A>A, i.e., A>AQ = QD where D
is diagonal containing the corresponding eigenvalues. After pre-multiplying both sides by A we
obtain:

AA>(AQ) = (AQ)D,

from which we conclude that AQ contains the first q eigenvectors (but un-normalized) of AA>. We
have therefore that U = AQD− 1

2 because:

U>U = D− 1
2 Q>A>AQD− 1

2 = D− 1
2 DD− 1

2 = I,

where we used the fact that Q>A>AQ = D. Note that eigenvalues of A>A and AA> are the same
(because AA>(AQD− 1

2 ) = (AQD− 1
2 )D).

9.4 Kernel PCA

We can take the case n >> m described in the previous section one step further and consider such
large values of n which are practically uncomputable — a situation which results when mapping the
original input vectors to a high dimensional space: φ(x) where φ : Rn → F for which dim(F) >> n.
For example, φ(x) representing the d’th order monomials of the coordinates of x, i.e., dim(F) =(n+d−1

d

)
which is exponential in d. The mappings of interest are those which are paired with a

non-linear kernel function: k(x,x′) = φ(x)>φ(x′) (see Lecture 5).
Performing PCA on A = [φ(x1), ..., φ(xm)] is equivalent to finding the non-linear surface in Rn

(the nature of the non-linearity depends on the choice of φ()) which best approximates the original
sample data x1, ...,xk. The problem is that AA> is not computable — however A>A is computable
because (A>A)ij = k(xi,xj).
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From the previous section, U = AQD− 1
2 = AV contains the first q eigenvectors of AA>(where

Q and D are computable). Since A itself is not computable we cannot represent U explicitly, but
we can project a new vector φ(x) onto the principal directions u1, ...,uq and obtain the principal
components, i.e., the output vector y = U>φ(x), as follows. First, note that

ui = Avi =
q∑

j=1

vijφ(xj),

where V = [v1, ...,vq] and vij is the j’th coordinate of vi. Therefore,

yi = φ(x)>ui =
q∑

j=1

vijk(x,xj).

Given the principal components (entries of y = U>φ(x) of φ(x)) we can measure, for example, the
distance between φ(x) and the projection ˆφ(x) = UU>φ(x) = Uy onto the linear subspace spanned
by u1, ...,uq (without the need to explicitly compute the principal axes ui), as follows.

‖φ(x)− ˆφ(x)‖2 = φ(x)>φ(x) + ˆφ(x)
> ˆφ(x)− 2φ(x)> ˆφ(x)

= k(x,x) + y>U>Uy− 2φ(x)>(UU>φ(x))
= k(x,x)− y>y− 2y>y

= k(x,x)− ‖y‖2

A Variance, Covariance, etc.

Let X, Y be two random variables and let f(x, y) be some function on x ∈ X, y ∈ Y , and let p(x, y)
be the probability of the event x and y occurring together. The expectation E[f(x, y)] is defined:

E[f(x, y)] =
∑
x∈X

∑
y∈Y

f(x, y)p(x, y)

. The mean, variance and covariance are defined:

µx = E[X] =
∑
x

∑
y

xp(x, y)

µy = E[Y ] =
∑
x

∑
y

yp(x, y)

σ2
x = V ar[X] = E[(x− µx)2] =

∑
x

∑
y

(x− µx)2p(x, y)

σ2
y = V ar[Y ] = E[(y − µy)2] =

∑
x

∑
y

(y − µy)2p(x, y)

σxy = Cov(XY ) = E[(x− µx)(y − µy)] =
∑
x

∑
y

(x− µx)(y − µy)p(x, y)

In vector-matrix notation, let x represent the n random variables of X1, ..., Xn, i.e., x = (x1, ..., xn)>

is an instance vector and p(x) is the probability of the instance occurrence. Then the mean is a
vector µ and the covariance matrix E are defined:

µ =
∑

x∈{X1,...,Xn}
xp(x)

E =
∑
x

(x− µ)(x− µ)>p(x)
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Note that the covariance matrix E is the linear superposition of rank-1 matrices (x − µ)(x − µ)>

with coefficients p(x). The diagonal of E containes the variances of the variables x1, ..., xn. For a
uniform distribution and a sample data S consisting of m points, let A = [x1−µ, ...,xm−µ] be the
matrix whose columns consist of the points centered around the mean: µ = 1

m

∑
i xi. The (sample)

covariance matrix is E = 1
mAA>.

B Derivatives of Matrix Operations: Scalar Functions of a Vector

The two most important examples of a scalar function of a vector x are the linear form a>x and
the quadratic form x>Ax for some square matrix A.

d(a>x) = a>dx

d(x>Ax) = (dx)>Ax + x>A(dx)

=
(
(dx)>Ax

)>
+ x>A(dx)

= x>(A + A>)dx

where the derivative d(x>Ax) using the rule of products d(f · g) = (df) · g + f · (dg) where g = Ax
and f = x> and noting that d(Ax) = Adx. Thus, d

dx(a>x) = a> and d
dx(x>Ax)) = x>(A + A>).

If A is symmetric then d
dx(x>Ax)) = (2Ax)>.


