
67577 – Intro. to Machine Learning Fall semester, 2003/4

Lecture 8: Boosting Algorithms

Lecturer: Yoram Singer Scribe: Yoram Singer 1

This lecture focuses on the idea of boosting. Algorithms in PAC learning models can produce
hypothesis with arbitrary error rate, as long as sample complexity is satisfied. However, suppose a
learning algorithm can do a little bit better than random, that is, its error rate is less than 50%, can
we take this error rate and drive it down to zero? We start by repeating the (standard) definition
of PAC learnability and then introduce the notion of weak-learnability.

Definition 1: C is learnable if ∃ algorithm A such that, ∀c ∈ C, ∀D, ∀ε > 0, ∀δ > 0, whenever A
is given m = poly(1

ε
, 1

δ
) examples (x1, c(x1)), . . . (xm, c(xm)), A returns h for which PrD[err(h) >

ε] ≤ δ.

Definition 2: C is efficiently learnable if A runs in time polynomial in 1
ε
, 1

δ
, s, n, where s is the size

of the target concept, and n is the size of the instances. For example, n is the instance size when
the domain Xn is {0, 1}n or <n.

Definition 3: C is weakly learnable if ∃γ > 0, ∃ algorithm A, such that, ∀c ∈ C, ∀D, ∀δ >
0, whenever A is given m = poly(1

δ
) examples (x1, c(x1)), . . . (xm, c(xm)) A returns h for which

PrD[err(h) > 1
2 − γ] ≤ δ

A weak learner can be trivial. For example if given a sample set of more than 60% positive
examples, a learner can output a hypothesis that always predicts positive. However such a concept
class is not weakly learnable since the latter is defined as having an error rate slightly smaller than
50% on any distribution of examples. Thus, if we use an equalized distribution (mass of positive
examples is equal to the mass of negative examples), then clearly the cannot reach an error different
than 50%.

Weak learnability does not necessarily mean strong learnability given a fixed distribution. For
example, let C be all boolean functions on {0, 1}n ∪ {Z0}, let the distribution be 1

4 on the point Z0

and uniform on all the remaining points. Take a sample of size m, Z0 is likely to be included. Also
included are a tiny fraction of other points because m is small compared to the 2n possibilities of
0/1 string. Assuming Z0 got its label correct, the total error rate in this case is roughly 3

4 ·
1
2=3

8 < 1
2

because we are getting so few samples on the other points that we are merely guessing. On the
other hand, for this fixed distribution, there is really no way of driving the error rate significantly
below 3

8 with a polynomial size sample.
Boosting is the idea of converting weak learning to strong learning. The pseudo-code of a boost-

ing algorithm called AdaBoost is given below. The code is for the case of discrete binary hypotheses
of the form ht : X → {−1,+1}. The algorithm receives a sample S = {(x1, y1), . . . , (xm, ym)} where
xi ∈ X, yi ∈ {−1, 1}. The boosting algorithm also gets access to a weak learning algorithm A, which
∀D, returns (computes) h, such that Pr[errD(h) ≤ 1

2 − γ] ≥ 1 − δ. The goal of th boosting al-
gorithm is to achieve an arbitrary low empirical error. The key point is that the booster call A
several times where on each round it feeds A with a different distribution. (Otherwise the learner
A could output the same h every time.) Therefore for each running of A, we will change D to force
A to learn something new every time. Each time A will output a hypothesis ht, t ∈ [1 . . . T]. In the

1Based on course notes by Rob Schapire and Jie Chen.

8-1

Lecture 8: Boosting Algorithms 8-2

end we combine all the hypotheses ht into a final resulting H. We denote by Dt the distribution
constructed on given examples while Dt(i) is the weight on example (xi, yi). The general AdaBoost
of boosting goes like this:

D1(i) = 1
m

For t = 1 . . . T
Run A on Dt and get ht : X → {−1, 1}
Compute εt = PrDt

[ht(xi) 6= yi] = εt = 1
2 − γt ≤

1
2 − γ

αt = 1
2 ln

(

1−εt

εt

)

Dt+1(i) = Dt(i)
Zt

·

{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

where Zt is a normalization constant s.t.
∑

i Dt+1(i) = 1
EndFor
Output: H(x) = sign(

∑T
t=1 ht(x) · αt).

Originally the algorithm A had access to all the examples and their labels. To incorporate the
distribution Dt, two approaches exist in practice: (1) the algorithm picks a set of examples according
to Dt; (2) the algorithm A tries to directly minimize weighted training error

∑

i:ht(xi) 6=yi
Dt(i).

AdaBoost is the first practical boosting algorithm. The intuition is we want to focus on the hard
example, which is the example that a weak classifier misclassified. So we increase weight on a
previous wrong example and lower weight on a previous correct one. Zt in the formula is simply
a normalization factor. We now analyze the empirical error of AdaBoost as a function of εt. The
empirical loss theorem can be states as follows.

Theorem: ˆerr(H) ≤ 2T
∏T

t=1

√

εt(1 − εt)

Based on the theorem it simple to show that,

ˆerr(H) ≤
T
∏

t=1

[2
√

εt(1 − εt)]

= exp

(

−
∑

t

RE(
1

2
||εt)

)

=
∏

t

√

1 − 4γ2
t

≤ exp

(

−2
∑

t

γ2
t

)

.

Furthermore, if we assume γt ≥ γ then

ˆerr(H) ≤ e−2γ2T .

The theorem shows the training error would decrease exponentially as the number of times to
repeat increases. Specifically, if T > 1

2γ2 lnm, then ˆerr(H) < 1
m

, which implies the training error
will be zero. Note the theorem does not have any assumptions on ht and where samples are from.
We are going to prove the theorem in 3 steps.

1. Show that

DT+1(xi) =
exp(−yif(xi))

m
∏

t Zt

Lecture 8: Boosting Algorithms 8-3

where f(xi) =
∑T

t=1 αt · ht(xi)

Proof :

DT+1(i) =
DT (i) · exp(−αT yihT (xi))

ZT

=
DT−1(i) · exp(−αT−1yihT−1(xi)) · exp(−αT yihT (xi)

ZT−1 · ZT

...

=
1

m
·
exp(−yi ·

∑

t αtht(xi))
∏

t Zt

2. Show that
ˆerr(H) ≤

∏

t

Zt

Proof :

ˆerr(H) =
1

m
·

m
∑

i=1

[[yi 6= H(xi)]]

=
1

m
·

m
∑

i=1

[[yif(xi) ≤ 0]]

≤
1

m

m
∑

i=1

e−yif(xi)

=
1

m
·

m
∑

i=1

DT+1(i) · m ·
∏

t

Zt

=
1

m

∏

t

Zt ·
m
∑

i=1

DT+1(i) · m

=
∏

t

Zt.

Here, [[π]] is 1 if π is true, and 0 otherwise. Note the third line follows because for each term
that yif(xi) ≤ 0, the corresponding e−yif(xi) is greater than 1 while for each term yif(xi) > 0
the term e−yif(xi) is greater than zero. The fourth line comes from step 1 above.

3. Finally we show that

Zt ≤ 2
√

εt(1 − εt).

Proof :

Zt =
m
∑

i=1

Dt(i) · e
−αtyiht(xi)

=
∑

i:ht(xi)6=yi

Dt(i) · e
αt +

∑

i:ht(xi)=yi

Dt(i) · e
−αt

= εt · e
αt + (1 − εt) · e

−αt .

Lecture 8: Boosting Algorithms 8-4

The value αt was in fact chosen so that Zt is minimized. In this case,

αt =
1

2
ln

(

1 − εt

εt

)

and
Zt = 2

√

εt(1 − εt).

Note the third line follows the definition of weighted training error.

The remaining question is whether AdaBoost also generalizes well. We leave this question to a
more advanced course on learning theory...

