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Lecture 7: Generalization II

Lecturer: Amnon Shashua Scribe: Amnon Shashua 1

In this lecture will use the measure of VC dimension, which is a combinatorial measure of
concept class complexity, to bound the sample size complexity. We first would like to obtain
a bound on the growth of |ΠS(C)| when the sample size |S| = m is much larger than the VC
dimension V Cdim(C) = d of the concept class. We will need few more definitions:

Definition 1 (Growth function)

ΠC(m) = max{|ΠS(C)| : |S| = m}

The measure ΠC(m) is the maximum number of dichotomies induced by C for samples of size m.
As long as m ≤ d then ΠC(m) = 2m. The question is what happens to the growth pattern of
ΠC(m) when m > d. We will see that the growth becomes polynomial — a fact which is crucial
for the learnability of C.

Definition 2 For any natural numbers m, d we have the following definition:

Φd(m) = Φd(m− 1) + Φd−1(m− 1)
Φd(0) = Φ0(m) = 1

By induction on m, d it is possible to prove the following:

Theorem 1
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Proof: by induction on m, d. For details see Kearns & Vazirani pp. 56.
For m ≤ d we have that Φd(m) = 2m. For m > d we can derive a polynomial upper bound as
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From which we obtain: (
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Dividing both sides by
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= O(md).

We need one more result before we are ready to present the main result of this lecture:
1
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Theorem 2 (Sauer’s lemma) If V Cdim(C) = d, then for any m, ΠC(m) ≤ Φd(m).

Proof: By induction on both d,m. For details see Kearns & Vazirani pp. 55–56.
Taken together, we have now a fairly interesting characterization on how the combinatorial

measure of complexity of the concept class C scales up with the sample size m. When the VC
dimension of C is infinite the growth is exponential, i.e., ΠC(m) = 2m for all values of m. On the
other hand, when the concept class has a bounded VC dimension V Cdim(C) = d < ∞ then the
growth pattern undergoes a discontinuity from an exponential to a polynomial growth:

ΠC(m) =

{
2m m ≤ d

≤
(

em
d

)d
m > d

}

As a direct result of this observation, when m >> d is much larger than d the entropy becomes
much smaller than m. Recall than from an information theoretic perspective, the entropy of a
random variable Z with discrete values z1, ..., zn with probabilities pi, i = 1, ..., n is defined as:

H(Z) =
n∑

i=0

pi log2

1
pi
,

where I(pi) = log2
1
pi

is a measure of ”information”, i.e., is large when pi is small (meaning that
there is much information in the occurrence of an unlikely event) and vanishes when the event is
certain pi = 1. The entropy is therefore the expectation of information. Entropy is maximal for
a uniform distribution H(Z) = log2 n. The entropy in information theory context can be viewed
as the number of bits required for coding z1, ..., zn. In coding theory it can be shown that the
entropy of a distribution provides the lower bound on the average length of any possible encoding
of a uniquely decodable code fro which one symbol goes into one symbol. When the distribution
is uniform we will need the maximal number of bits, i.e., one cannot compress the data. In the
case of concept class C with VC dimension d, we see that one when m ≤ d all possible dichotomies
are realized and thus one will need m bits (as there are 2m dichotomies) for representing all the
outcomes of the sample. However, when m >> d only a small fraction of the 2m dichotomies
can be realized, therefore the distribution of outcomes is highly non-uniform and thus one would
need much less bits for coding the outcomes of the sample. The technical results which follow are
therefore a formal way of expressing in a rigorous manner this simple truth — If it is possible to
compress, then it is possible to learn. The crucial point is that learnability is a direct consequence of
the ”phase transition” (from exponential to polynomial) in the growth of the number of dichotomies
realized by the concept class.

7.1 A Polynomial Bound on the Sample Size m for PAC Learning

In this section we will follow the material presented in Kearns & Vazirani pp. 57–61 and prove the
following:

Theorem 3 (Double Sampling) Let C be any concept class of VC dimension d. Let L be any
algorithm that when given a set S of m labeled examples {xi, c(xi)}i, sampled i.i.d according to
some fixed but unknown distribution D over the instance space X, of some concept c ∈ C, produces
as output a concept h ∈ C that is consistent with S. Then L is a learning algorithm in the formal
sense provided that the sample size obeys:

m ≥ c0

(
1
ε

log
1
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d

ε
log

1
ε

)



Lecture 7: Generalization II 7-3

for some constant c0 > 0.

The idea behind the proof is to build an ”approximate” concept space which includes a finite
number of concepts arranged on a grid such that the distance between the approximate concepts
h and the target concept c is at least ε — where distance is defined as the weight of the region in
X which is in conflict with the target concept. The probability that a random sample S will not
hit all the error regions between each approximate concept and the target concept is shown to be
bounded by δ provided that the sample complexity m obeys the bound above. Since the learner
produces a consistent concept h∗ with S and each point of S hits one of the error regions (whose
weight is larger than ε) then err(h∗) ≤ ε. To formalize this story we will need few more definitions.
Unless specified otherwise, c ∈ C denotes the target concept and h ∈ C denotes some concept.

Definition 3
c∆h = h∆c = {x : c(x) 6= h(x)}

c∆h is the region in instance space where both concepts do not agree — the error region. The
probability that x ∈ c∆h is equal to (by definition) err(h).

Definition 4

∆(c) = {h∆c : h ∈ C}
∆ε(c) = {h∆c : h ∈ C and err(h) ≥ ε}

∆(c) is a set of error regions, one per concept h ∈ C over all concepts. The error regions are with
respect to the target concept. The set ∆ε(c) ⊂ ∆(c) is the set of all error regions whose weight
exceeds ε. Recall that weight is defined as the probability that a point sampled according to D will
hit the region.

It will be important for later to evaluate the VC dimension of ∆(c). Unlike C, we are not looking
for the VC dimension of a class of function but the VC dimension of a set of regions in space. Recall
the definition of ΠC(S) from the previous lecture: there were two equivalent definitions one based
on a set of vectors each representing a labeling of the instances of S induced by some concept. The
second, yet equivalent, definition is based on a set of subsets of S each induced by some concept
(where the concept divides the sample points of S into positive and negative labeled points). So
far it was convenient to work with the first definition, but for evaluating the VC dimension of ∆(c)
it will be useful to consider the second definition:

Π∆(c)(S) = {r ∩ S : r ∈ ∆(c)},

that is, the collection of subsets of S induced by intersections with regions of ∆(c). An intersection
between S and a region r is defined as the subset of points from S that fall into r. We can easily
show that the VC dimensions of C and ∆(c) are equal:

Lemma 4
V Cdim(C) = V Cdim(∆(c)).

Proof: we have that the elements of ΠC(S) and Π∆(c)(S) are susbsets of S, thus we need to show
that for every S the cardinality of both sets is equal |ΠC(S)| = |Π∆(c)(S)|. To do that it is sufficient
to show that for every element s ∈ ΠC(S) there is a unique corresponding element in Π∆(c)(S). Let
c ∩ S be the subset of S induced by the target concept c. The set s (a subset of S) is realized by
some concept h (those points in S which were labeled positive by h). Therefore, the set s∩ (c∩ S)
is the subset of S containing the points that hit the region h∆c which is an element of Π∆(c)(S).
Since this is a one-to-one mapping we have that |ΠC(S)| = |Π∆(c)(S)|.
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Definition 5 (ε-net) For every ε > 0, a sample set S is an ε-net for ∆(c) if every region in ∆ε(c)
is hit by at least one point of S:

∀r ∈ ∆ε(c), S ∩ r 6= ∅.

In other words, if S hits all the error regions in ∆(c) whose weight exceeds ε, then S is an ε-net.
Consider as an example the concept class of intervals on the line [0, 1]. A concept is defined by
an interval [α1, α2] such that all points inside the interval are positive and all those outside are
negative. Given c ∈ C is the target concept and h ∈ C is some concept, then the error region h∆c
is the union of two intervals: I1 consists of all points x ∈ h which are not in c, and I2 the interval
of all points x ∈ c but which are not in h. Assume that the distribution D is uniform (just for the
sake of this example) then, prob(x ∈ I) = |I| which is the length of the interval I. As a result,
err(h) > ε if either |I1| > ε/2 or |I2| > ε/2. The sample set

S = {x =
kε

2
: k = 0, 1, ..., 2/ε}

contains sample points from 0 to 1 with increments of ε/2. Therefore, every interval larger than ε
must be hit by at least one point from S and by definition S is an ε-net.

It is important to note that if S forms an ε-net then we are guaranteed that err(h) ≤ ε. Let
h ∈ C be the consistent hypothesis with S (returned by the learning algorithm L). Becuase h is
consistent, h∆c ∈ ∆(c) has not been hit by S (recall that h∆c is the error region with respect to
the target concept c, thus if h is consistent then it agrees with c over S and therefore S does not
hit h∆c). Since S forms an ε-net for ∆(c) we must have h∆c 6∈ ∆ε(c) (recall that by definition
S hits all error regions with weight larger than ε). As a result, the error region h∆c must have a
weight smaller than ε which means that err(h) ≤ ε.

The conclusion is that if we can bound the probability that a random sample S does not form
an ε-net for ∆(c), then we have bounded the probability that a concept h consistent with S has
err(h) > ε. This is the goal of the proof of the double-sampling theorem which we are about to
prove below:
Proof (following Kearns & Vazirani pp. 59–61): Let S1 be a random sample of size m
(sampled i.i.d. according to the unknown distribution D) and let A be the event that S1 does not
form an ε-net for ∆(c). From the preceding discussion our goal is to upper bound the probability
for A to occur, i.e., prob(A) ≤ δ.

If A occurs, i.e., S1 is not an ε-net, then by definition there must be some region r ∈ ∆ε(c)
which is not hit by S1, that is S1 ∩ r = ∅. Note that r = h∆(c) for some concept h which is
consistent with S1. At this point the space of possibilities is infinite, because the probability that
we fail to hit h∆(c) in m random examples is at most (1− ε)m. Thus the probability that we fail
to hit some h∆c ∈ ∆ε(c) is bounded from above by |∆(c)|(1− ε)m — which does not help us due
to the fact that |∆(c)| is infinite. The idea of the proof is to turn this into a finite space by using
another sample, as follows.

Let S2 be another random sample of size m. We will select m (for both S1 and S2) to guarantee
a high probability that S2 will hit r many times. In fact we wish that S2 will hit r at least εm

2 with
probability of at least 0.5:

prob(|S2 ∩ r| >
εm

2
) = 1− prob(|S2 ∩ r| ≤

εm

2
).

We will use the Chernoff bound (multiplicative form) to obtain a bound on the right-hand side
term. Recall that if we have m Bernoulli trials (coin tosses) Z1, ..., Zm with expectation E(Zi) = p
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and we consider the random variable Z = Z1 + ... + Zm with expectation E(Z) = µ (note that
µ = pm) then for all 0 < ψ < 1 we have:

prob(Z < (1− ψ)µ) ≤ e−
µψ2

2 .

Considering the sampling of m examples that form S2 as Bernoulli trials, we have that µ ≥ εm
(since the probability that an example will hit r is at least ε) and ψ = 0.5. We obtain therefore:

prob(|S2 ∩ r| ≤ (1− 1
2
)εm) ≤ e−

εm
8 =

1
2

which happens when m = 8
ε ln 2 = O(1

ε ). To summarize what we have obtained so far, we have
calculated the probability that S2 will hit r many times given that r was fixed using the previous
sampling, i.e., given that S1 does not form an ε-net. To formalize this, let B denote the combined
event that S1 does not form an ε-event and S2 hits r at least εm/2 times. Then, we have shown
that for m = O(1/ε) we have:

prob(B/A) ≥ 1
2
.

From this we can calculate prob(B):

prob(B) = prob(B/A)prob(A) ≥ 1
2
prob(A),

which means that our original goal of bounding prob(A) is equivalent to finding a bound prob(B) ≤
δ/2 because prob(A) ≤ 2 · prob(B) ≤ δ. The crucial point with the new goal is that to analyze
the probability of the event B, we need only to consider a finite number of possibilities, namely to
consider the regions of Π∆ε(c)(S1 ∪S2). This is because the occurrence of the event B is equivalent
to saying that there is some r ∈ Π∆ε(c)(S1 ∪ S2) such that |r| ≥ εm/2 and S1 ∩ r = ∅. This is
because Π∆ε(c)(S1 ∪ S2) contains all the subsets of S1 ∪ S2 realized as intersections over all regions
in ∆ε(c). Thus even though we have an infinite number of regions we still have a finite number of
subsets. We wish therefore to analyze the following probability:

prob
(
r ∈ Π∆ε(c)(S1 ∪ S2) : |r| ≥ εm/2 and S1 ∩ r = ∅

)
.

Let S = S1 ∪ S2 a random sample of 2m (note that since the sampling is i.i.d. it is equivalent to
sampling S1 and S2 separately) and r satisfying |r| ≥ εm/2 being fixed. Consider some random
partitioning of S into S1 and S2 and consider then the problem of estimating the probability that
S1 ∩ r = ∅. This problem is equivalent to the following combinatorial question: we have 2m balls,
each colored Red or Blue, with exaclty l ≥ εm/2 Red balls. We divide the 2m balls into groups of
equal size S1 and S2 and we are interested in bounding the probability that all of the l balls fall
in S2 (that is, the probability that S1 ∩ r = ∅). This in turn is equivalent to first dividing the 2m
uncolored balls into S1 and S2 groups and then randomly choose l of the balls to be colored Red
and analyze the probability that all of the Red balls fall into S2. This probability is exactly(m

l

)(2m
l

) =
l−1∏
i=0

m− i

2m− i
≤

l−1∏
i=0

1
2

=
1
2l

= 2−εm/2.

This probability was evaluated for a fixed S and r. Thus, the probability that this occurs for some
r ∈ Π∆ε(c)(S) satisfying |r| ≥ εm/2 (which is prob(B)) can be calculated by summing over all
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possible fixed r and applying the union bound prob(
∑

i Zi) ≤
∑

i prob(Zi):

prob(B) ≤ |Π∆ε(c)(S)|2−εm/2 ≤ |Π∆(c)(S)|2−εm/2

= |ΠC(S)|2−εm/2 ≤
(

2εm
d

)d

2−εm/2 ≤ δ

2
,

from which it follows that:
m = O

(
1
ε

log
1
δ

+
d

ε
log

1
ε

)
.

Few comments are worthwhile at this point:

1. It is possible to show that the upper bound on the sample complexity m is tight by showing
that the lower bound on m is Ω(d/ε) (see Kearns & Vazirani pp. 62).

2. The treatment above holds also for the unrealizable case (target concept c 6∈ C) with slight
modifications to the bound. In this context, the learning algorithm L must simply minimize
the sample (empirical) error ˆerr(h) defined:

ˆerr(h) =
1
m
|{i : h(xi) 6= yi}| xi ∈ S.

The generalization of the double-sampling theorem (Derroye’82) states that the empirical
errors converge uniformly to the true errors:

prob

(
max
h∈C

| ˆerr(h)− err(h)| ≥ ε

)
≤ 4e(4ε+4ε2)

(
εm2

d

)d

2−mε2/2 ≤ δ,

from which it follows that
m = O

(
1
ε2

log
1
δ

+
d

ε2
log

1
ε

)
.

Taken together, we have arrived to a fairly remarkable result. Despite the fact that the distribution
D from which the training sample S is drawn from is unknown (but is known to be fixed), the learner
simply needs to minimize the empirical error. If the sample size m is large enough the learner is
guaranteed to have minimized the true errors for some accuracy and confidence parameters which
define the sample size complexity. Equivalently,

|Opt(C)− ˆerr(h)| −→m→∞ 0.

Not only is the convergence is independent of D but also the rate of convergence is independent
(namely, it does not matter where the optimal h∗ is located). The latter is very important because
without it one could arbitrarily slow down the convergence rate by maliciously choosing D. The
beauty of the results above is that D does not have an effect at all — one simply needs to choose
the sample size to be large enough for the accuracy, confidence and VC dimension of the concept
class to be learned over.
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7.2 So Why Does SVM Work?

In lectures 4 and 5 we discussed the large margin principle for finding an optimal separating
hyperplane. It is natural to ask how does the theory presented in lectures 6,7 relate to the reason
as to why a maximal margin hyperplane is optimal with regard to the formal sense of learning (i.e.
to generalization from empirical errors to true errors)? We saw in the previous section that the
sample complexity m(ε, δ, d) depends also on the VC dimension of the concept class — which is
n + 1 for hyperplanes in Rn. Thus, another natural question that may certainly arise is what is
the gain in employing the ”kernel trick”? For a fixed m, mapping the input instance space X of
dimension n to some higher (exponentially higher) feature space might simply mean that we are
compromising the accuracy and confidence of the learner (since the VC dimension is equal to the
instance space dimension plus 1).

Given a fixed sample size m, the best the learner can do is to minimize the empirical error and
at the same time to try to minimize the VC dimension d of the concept class. The smaller d is, for
a fixed m, the higher the accuracy and confidence of the learning algorithm. Likewise, the smaller
d is, for a fixed accuracy and confidence values, the smaller sample size is required.

There are two possible ways to decrease d. First is to decrease the dimension n of the instance
space X. This amounts to ”feature selection”, namely find a subset of coordinates that are the
most ”relevant” to the learning task. We will not discuss feature selection in this course. A second
approach is to maximize the margin. Let the margin associated with the separating hyperplane
h (i.e. consistent with the sample S) be γ. Let the input vectors x ∈ X have a bounded norm,
|x| ≤ R. It can be shown that the VC dimension of the concept class Cγ of hyperplanes with
margin γ is:

Cγ = min

{
R2

γ2
, n

}
+ 1.

Thus, if the margin is very small then the VC dimension remains n+ 1. As the margin gets larger,
there comes a point where R2/γ2 < n and as a result the VC dimension decreases. Moreover,
mapping the instance space X to some higher dimension feature space will not change the VC
dimension as long as the margin remains the same. It is expected that the margin will not scale
down or will not scale down as rapidly as the scaling up of dimension from image space to feature
space.

To conclude, maximizing the margin (while minimizing the empirical error) is advantageous as
it decreases the VC dimension of the concept class and causes the accuracy and confidence values
of the learner to be largely immune to dimension scaling up while employing the kernel trick.


