67577 — Intro. to Machine Learning Fall semester, 2003 /4

Lecture 6: Generalization I

Lecturer: Amnon Shashua Scribe: Amnon Shashua

The result of the PAC model (also known as the ”formal” learning model) is that if the
concept class C' is PAC-learnable then the learning strategy must simply consist of gathering a
sufficiently large training sample S of size m > my(¢,§), for given accuracy € > 0 and confidence
0 < 6 < 1 parameters, and finds a hypothesis A € C' which is consistent with S. The learning
algorithm is then guaranteed to have a bounded error err(h) < e with probability 1 —¢§. The error
measurement includes data not seen by the training phase.

This state of affair also holds (with some slight modifications on the sample complexity bounds)
when there is no consistent hypothesis (the unrealizable case). In this case the learner simply needs
to minimize the empirical error err(h) on the sample training data S, and if m is sufficiently large
then the learner is guaranteed to have err(h) < Opt(C) + e with probability 1 — §. The measure
Opt(C) is defined as the minimal err(g) over all g € C. Note that in the realizable case Opt(C) = 0.
More details in Lecture 2.

The property of bounding the true error err(h) by minimizing the sample error err(h) is very
convenient. The fundamental question is under what conditions this type of generalization property
applies? We saw in Lecture 2 that a satisfactorily answer can be provided when the cardinality of
the concept space is bounded, i.e. |C| < oo, which happens for Boolean concept space for example.
In that lecture we have proven that:

1
mo(€,0) = O(E In %),

is sufficient for guaranteeing a learning model in the formal sense, i.e., which has the generalization
property described above.

In this lecture and the one that follows we have two goals in mind. First is to generalize the
result of finite concept class cardinality to infinite cardinality — note that the bound above is
not meaningful when |C| = co. Can we learn in the formal sense any non-trivial infinite concept
class? (we already saw an example of a PAC-learnable infinite concept class which is the class
of axes aligned rectangles). In order to answer this question we will need to a general measure
of concept class complexity which will replace the cardinality term |C] in the sample complexity
bound m,(€,6). It is tempting to assume that the number of parameters which fully describe the
concepts of C can serve as such a measure, but we will show that in fact one needs a more powerful
measure called the Vapnik-Chervonenkis (VC) dimension. Our second goal is to explain why the
large margin principle we studied in Lectures 4,5 is a good learning strategy and how does it fit
into the generalization property material.

6.1 The VC Dimension

The basic principle behind the VC dimension measure is that although C' may have infinite cardi-
nality, the restriction of the application of concepts in C' to a finite sample S has a finite outcome.
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This outcome is typically governed by an exponential growth with the size m of the sample S —
but not always. The point at which the growth stops being exponential is when the ”complexity”
of the concept class C has exhausted itself, in a manner of speaking.

We will assume C'is a concept class over the instance space X — both of which can be infinite.
We also assume that the concept class maps instances in X to {0, 1}, i.e., the input instances are
mapped to ”"positive” or "negative” labels. A training sample S is drawn i.i.d according to some
fixed but unknown distribution D and S consists of m instances x1, ..., X,;,. In our notations we will
try to reserve ¢ € C to denote the target concept and h € C to denote some concept. We begin
with the following definition:

Definition 1
Mo (S) = {(h(x1),.... h(xm) : heC}

which is a set of vectors in {0,1}™.

II¢(S) is set whose members are m-dimensional Boolean vectors induced by functions of C. These
members are often called dichotomies or behaviors on S induced or realized by C'. If C' makes a full
realization then II¢(S) will have 2™ members. An equivalent description is a collection of subsets
of S:

IIc(S) ={hNS : heC}

where each h € C makes a partition of S into two sets — the positive and negative points. The
set IIo(S) contains therefore subsets of S (the positive points of S under k). A full realization will
provide Y% (") = 2. We will use both descriptions of II¢(S) as a collection of subsets of S and
as a set of vectors interchangeably.

Definition 2 If|IIc(S)| = 2™ then S is considered shattered by C. In other words, S is shattered
by C if C realizes all possible dichotomies of S.

Consider as an example a finite concept class C' = {c1, ..., ¢4} applied to three instance vectors
with the results:

‘ X1 X9 X3
|1 1 1
Co 0 1 1
C3 1 0 0
cy | O 0 0
Then,
He({x1}) = {(0), (1)} shattered
IIe({x2,x3}) = {(0,0),(1,1)} not shattered

With these definitions we are ready to describe the measure of concept class complexity.

Definition 3 (VC dimension) The VC dimension of C, noted as VCdim(C), is the cardinality
d of the largest set S shattered by C. If all sets S (arbitrarily large) can be shattered by C, then
VCdim(C) = .
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The VC dimension of a class of functions C'is the point d at which all samples S with cardinality
|S| > d are no longer shattered by C. As long as C shatters S it manifests its full "richness” in
the sense that one can obtain from S all possible results (dichotomies). Once that ceases to hold,
i.e.,, when |S| > d, it means that C has ”exhausted” its richness (complexity). An infinite VC
dimension means that C' maintains full richness for all sample sizes. Therefore, the VC dimension
is a combinatorial measure of a function class complexity.

Before we consider a number of examples of geometric concept classes and their VC dimension,
it is important clarify the lower and upper bounds (existential and universal quantifiers) in the
definition of VC dimension. The VC dimension is at least d if there exists some sample |S| = d
which is shattered by C' — this does not mean that all samples of size d are shattered by C.
Conversely, in order to show that the VC dimension is at most d, one must show that no sample of
size d + 1 is shattered. Naturally, proving an upper bound is more difficult than proving the lower
bound on the VC dimension. The following examples are shown in a "hand waiving” style and are
not meant to form rigorous proofs of the stated bounds — they are shown for illustrative purposes
only.

Intervals of the real line: The concept class C' is governed by two parameters aq,as in the
closed interval [0,1]. A concept from this class will tag an input instance 0 < z < 1 as positive if
a1 < 2 < as and negative otherwise. The VC dimension is at least 2: select a sample of 2 points
x1, o positioned in the open interval (0,1). We need to show that there are values of a1, &y which
realize all the possible four dichotomies (+,+), (—, —), (+, —), (—, +). This is clearly possible as one
can place the interval [a1, as] such the intersection with the interval [z1, x2] is null, (thus producing
(=,—)), or to fully include [x1,x3] (thus producing (+,+)) or to partially intersect [z1,x2] such
that x1 or z9 are excluded (thus producing the remaining two dichotomies). To show that the VC
dimension is at most 2, we need to show that any sample of three points x1,zs,x3 on the line
(0,1) cannot be shattered. It is sufficient to show that one of the dichotomies is not realizable:
the labeling (+, —,+) cannot be realizable by any interval [y, ap] — this is because if x1,x3 are
labeled positive then by definition the interval |1, ae] must fully include the interval [z, x3] and
since 1 < x3 < x3 then z9 must be labeled positive as well. Thus VCdim/(C) = 2.

Axes-aligned rectangles in the plane: We have seen this concept class in Lecture 2 — a point
in the plane is labeled positive if it lies in an axes-aligned rectangle. The concept class C is thus
governed by 4 parameters. The VC dimension is at least 4: consider a configuration of 3 input
points arranged in a cross pattern (recall that we need only to show some sample S that can be
shattered). We can place the rectangles (concepts of the class C') such that all 16 dichotomies can
be realized (for example, placing the rectangle to include the vertical pair of points and exclude
the horizontal pair of points would induce the labeling (4, —, +,—)). It is important to note that
in this case, not all configurations of 4 points can be shattered — but to prove a lower bound it is
sufficient to show the existence of a single shattered set of 4 points. To show that the VC dimension
is at most 4, we need to prove that any set of 5 points cannot be shattered. For any set of 5 points
there must be some point that is ”internal”, i.e., is neither the extreme left, right, top or bottom
point of the five. If we label this internal point as negative and the remaining 4 points as positive
then there is no axes-aligned rectangle (concept) which cold realize this labeling (because if the
external 4 points are labeled positive then they must be fully within the concept rectangle, but
then the internal point must also be included in the rectangle and thus labeled positive as well).

Separating hyperplanes: Consider first linear half spaces in the plane. The lower bound on the
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VC dimension is 3 since any three (non-collinear) points in R? can be shattered, i.e., all 8 possible
labelings of the three points can be realized by placing a separating line appropriately. By having
one of the points on one side of the line and the other two on the other side we can realize 3
dichotomies and by placing the line such that all three points are on the same side will realize the
4th. The remaining 4 dichotomies are realized by a sign flip of the four previous cases. To show
that the upper bound is also 3, we need to show that no set of 4 points can be shattered. We
consider two cases: (i) the four points form a convex region, i.e., lie on the convex hull defined by
the 4 points, (ii) three of the 4 points define the convex hull and the 4th point is internal. In the
first case, the labeling which is positive for one diagonal pair and negative to the other pair cannot
be realized by a separating line. In the second case, a labeling which is positive for the three hull
points and negative for the interior point cannot be realize. Thus, the VC dimension is 3 and in
general the VC dimension for separating hyperplanes in R™ is n + 1.

Union of a finite number of intervals on the line: This is an example of a concept class with
an infinite VC dimension. For any sample of points on the line, one can place a sufficient number
of intervals to realize any labeling.

The examples so far were simple enough that one might get the wrong impression that there is
a correlation between the number of parameters required to describe concepts of the class and the
VC dimension. As a counter example, consider the two parameter concept class:

C = {sign(sin(wz +0) : w}

which has an infinite VC dimension as one can show that for every set of m points on the line
one can realize all possible labelings by choosing a sufficiently large value of w (which serves as the
frequency of the sync function) and appropriate phase.

We conclude this section with the following claim:

Theorem 1 The VC dimension of a finite concept class |C| < oo is bounded from above:
VCdim(C) < logy |C].

Proof: if VCdim(C) = d then there exists at least 2¢ functions in C' because every function
induces a labeling and there are at least 27 labelings. Thus, from |C| > 2¢ follows that d < log, |C].

I

6.2 The Relation between VC dimension and PAC Learning

We saw that the VC dimension is a combinatorial measure of concept class complexity and we
would like to have it replace the cardinality term in the sample complexity bound. The first result
of interest is to show that if the VC dimension of the concept class is infinite then the class is not

PAC learnable.
Theorem 2 Concept class C with VCdim(C) = oo is not learnable in the formal sense.

Proof: Assume the contrary that C is PAC learnable. Let L be the learning algorithm and m
be the number of training examples required to learn the concept class with accuracy ¢ = 0.1 and
1-6=0.1.
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Since the VC dimension is infinite there exist a sample set S with 2m instances which is shattered
by C. We will define a probability distribution on the instance space X which is uniform on §
(with probability ﬁ) and zero everywhere else.

Because S is shattered, then any target concept is possible so we will choose our target concept
c in the following manner:

1
prob(c(x;) =0) = 3 Vx; € S

The learner L selects an i.i.d. sample of m instances S — which due to the structure of D means
that the S C S and outputs a consistent hypothesis h € C. The probability of error for each x; &€ S

1s:
1

prob(c(x;) # h(x;)) = 3

The reason for that is because S is shattered by C, i.e., we can select any target concept for any
labeling of S (the 2m examples) therefore we could select the labels of the m points not seen by
the learner arbitrarily. Regardless of h, the probability of mistake is 0.5. The expectation on the

error of h is: 1 L1 )
E M =m-0- — e
(err(h)]=m-0 o +m 5 om = 1

This is because we have 2m points to sample (according to D as all other points have zero proba-
bility) from which the error on half of them is zero (as h is consistent on the training set S) and
the error on the remaining half is 0.5. Thus, the average error is 0.25.

The result that Elerr(h)] = 0.25 is not possible for the accuracy and confidence values we
have set: with probability of at least 0.9 we have that err(h) < 0.1 and with probability 0.1 then
err(h) = 8 where 0.1 < 8 < 1. Taking the worst case of § =1 we come up with the average error:

Elerr(h)] <0.9-0.140.1-1=0.19 < 0.25.

We have therefore arrived to a contradiction that C'is PAC learnable. []
In the next lecture we will continue to prove the ”double sampling” theorem which derives the
sample size complexity as a function of the VC dimension.



