
67577 – Intro. to Machine Learning Fall semester, 2003/4

Lecture 5: Support Vector Machines and Kernel Functions II

Lecturer: Amnon Shashua Scribe: Amnon Shashua 1

5.1 Support Vector Machine

We return now to the primal problem (eqn. 4.3) representing the maximal margin separating
hyperplane with margin errors:

min
w,b,εi

1
2
w ·w + ν

l∑
i=1

εi

subject to

yi(w · xi − b) ≥ 1− εi i = 1, ..., l

εi ≥ 0

We will now derive the Lagrangian Dual of this problem. By doing so a new key property
will emerge facilitated by the fact that the criteria function θ(µ) (note there are no equality con-
straints thus there is no need for λ) involves only inner-products of the training instance vectors
xi. This property will form the key of mapping the original input space of dimension n to a higher
dimensional space thereby allowing for non-linear decision surfaces for separating the training data.

Note that with this particular problem the strong duality conditions are satisfied because the
criteria function and the inequality constraints form a convex set. The Lagrangian takes the
following form:

L(w, b, εi, µ) =
1
2
w ·w + ν

l∑
i=1

εi −
l∑

i=1

µi [yi(w · xi − b)− 1 + εi]−
l∑

i=1

µl+iεi

Recall that
θ(µ) = min

w,b,εi

L(w, b, εi, µ).

Since the minimum is obtained at the vanishing partial derivatives of the Lagrangian with respect
to w, b, the next step would be to evaluate those constraints and substitute them back into L() to
obtain θ(µ):

∂L

∂w
= w−

∑
i

µiyixi = 0 (5.1)

∂L

∂b
=

∑
i

µiyi = 0 (5.2)

∂L

∂εi
= ν − µi − µl+i = 0 (5.3)

1

5-1



Lecture 5: Support Vector Machines and Kernel Functions II 5-2

From the first constraint (5.1) we obtain w =
∑

i µiyixi, that is, w is described by a linear combina-
tion of a subset of the training instances. The reason that not all instances participate in the linear
superposition is due to the KKT conditions: µi = 0 when yi(w · xi − b) > 1, i.e., the instance xi is
classified correctly and is not a boundary point, and conversely, µi > 0 when yi(w ·xi− b) = 1− εi,
i.e., when xi is a boundary point or when xi is a margin error (εi > 0) — note that for a margin
error instance the value of εi would be the smallest possible required to reach an equality in the
constraint because the criteria function penalizes large values of εi. The boundary points (and the
margin errors) are called support vectors thus w is defined by the support vectors only. The third
constraint (5.3) is equivalent to the constraint:

0 ≤ µi ≤ ν i = 1, ..., l,

since µl+i ≥ 0. Substituting these results/constraints back into the Lagrangian L() we obtain the
dual problem:

max
µ1,...,µl

θ(µ) =
l∑

i=1

µi −
1
2

∑
i,j

µiµjyiyjxi · xj (5.4)

subject to

0 ≤ µi ≤ ν i = 1, ..., l
l∑

i=1

yiµi = 0

The criterion function θ(µ) can be written in a more compact manner as follows: Let M be a
l × l matrix whose entries are Mij = yiyjxi · xj then θ(µ) = µ · 1− 1

2µ>Mµ where 1 is the vector
of (1, ..., 1) and µ is the vector (µ1, ..., µl) and µ> is the transpose (row vector). Note that M is
positive definite, i.e., x>Mx > 0 for all vectors x 6= 0 — a property which will be important later.

The key feature of the dual problem is not so much that it is simpler than the primal (in fact
it isn’t since the primal has no equality constraints) or that it has a more “elegant” feel, the key
feature is that the problem is completely described by the inner products of the training instances
xi, i = 1, ..., l. This fact will be shown to be a crucial ingredient in the so called “kernel trick”
for the computation of inner-products in high dimensional spaces using simple functions defined on
pairs of training instances.

5.2 The Kernel Trick

We ended with the dual formulation of the SVM problem and noticed that the input data vectors xi

are represented by the Gram matrix M . In other words, only inner-products of the input vectors
play a role in the dual formulation — there is no explicit use of xi or any other function of xi

besides inner-products. This observation suggests the use of what is known as the ”kernel trick”
to replace the inner-products by non-linear functions.

The common principle of kernel methods is to construct nonlinear variants of linear algorithms
by substituting inner-products by nonlinear kernel functions. Under certain conditions this process
can be interpreted as mapping of the original measurement vectors (so called ”input space”) onto
some higher dimensional space (possibly infinitely high) commonly referred to as the ”feature
space”. Mathematically, the kernel approach is defined as follows: let x1, ...,xl be vectors in the
input space, say Rn, and consider a mapping φ(x) : Rn → F where F is an inner-product space.



Lecture 5: Support Vector Machines and Kernel Functions II 5-3

The kernel-trick is to calculate the inner-product in F using a kernel function k : Rn × Rn → R,
k(xi,xj) = φ(xi)>φ(xj), while avoiding explicit mappings (evaluation of) φ().

Common choices of kernel selection include the d’th order polynomial kernels k(xi,xj) =
(x>

i xj + θ)d and the Gaussian RBF kernels k(xi,xj) = exp(− 1
2σ2 ‖xi − xj‖2). If an algorithm

can be restated such that the input vectors appear in terms of inner-products only, one can substi-
tute the inner-products by such a kernel function. The resulting kernel algorithm can be interpreted
as running the original algorithm on the space F of mapped objects φ(x).

We know that M of the dual form is semi-positive definite because M can be written is M =
Q>Q where Q = [y1x1, ..., ylxl]. Therefore x>Mx = ‖Qx‖2 ≥ 0 for all choices of x. If the entries
of M are to be replaced with yiyjk(xi,xj) then the condition we must enforce on the function k()
is that it is a positive definite kernel function. A positive definite function is defined such that for
any set of vectors x1, ...,xq and for any values of q the matrix K whose entries are Kij = k(xi,xj)
is semi positive definite.

Consider for example the polynomial kernel k(x,x′) = (x>x′ + 1)d and consider the case where
n = d = 2:

k(x,x′) = (1 + x1x
′
1 + x2x

′
2)

2 = φ(x)>φ(x′),

where
φ(x) = (x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1)>

is mapping from R2 to R6 holding all the monomials up to and including the d’th order ones —
i.e., all terms of the form xp1

1 · · · xpn
n where pi ≥ 0 and

∑
pi ≤ d. Hyperplanes φ(w)>φ(x)− b = 0

in R6 correspond to conics

(w2
1)x

2
1 + (w2

2)x
2
2 + (2w1w2)x1x2 + (2w1)x1 + (2w2)x2 + (1− b) = 0

in R2. Assume we would like to find a separating conic function rather than a line in R2. The
discussion so far suggests we construct the Gram matrix M in the dual form with the d = 2
polynomial kernel. The extra effort we will need to invest is negligible — simply replace every
occurrence x>

i xj with (x>
i xj + 1)2.

We then proceed to solve for φ(w) and b using some QLP solver. The QLP solution of the dual
form will yield the solution for the Lagrange multipliers µ1, ..., µl. We saw from eqn. (5.1) that we
can express φ(w) as a function of the (mapped) examples:

φ(w) =
∑

i

µiyiφ(xi).

Rather than explicitly representing φ(w) — a task which may be prohibitly expensive since in
general the dimension of the feature space of a polynomial mapping is

(n+d
d

)
— we store all the

support vectors (those input vectors with corresponding µi > 0) and use them for the evaluation
of test examples:

f(x) = sign(φ(w)>φ(x)− b) = sign(
∑

i

µiyiφ(xi)>φ(x)− b) (5.5)

= sign(
∑

i

µiyik(xi,x)− b). (5.6)

We see that the kernel trick enabled us to look for a non-linear separating surface by making an
implicit mapping of the input space onto a higher dimensional feature space using the same dual
form of the SVM formulation — the only change required was in the way the Gram matrix was



Lecture 5: Support Vector Machines and Kernel Functions II 5-4

constructed. The price paid for this convenience is to carry all the support vectors at the time of
classification f(x).

A couple of notes may be worthwhile at this point. The constant b can be recovered from any
of the support vectors. Say, x+ is a positive support vector (but not a margin errors, i.e., ε = 0).
Then φ(w)>φ(x+)− b = 1 from which b can be recovered. The second note is that the number of
support vectors is typically around 10% of the number of training examples (empirically). Thus
the computational load during evaluation of f(x) may be relatively high. Approximations have
been proposed in the literature by looking for a reduced number of support vectors (not necessarily
aligned with the training set) — but this is beyond the scope of this course.

The kernel trick gained its popularity with the introduction of the SVM but since then has taken
a life of its own and has been applied to principal component analysis (PCA), ridge regression,
canonical correlation analysis (CCA), QR factorization and the list goes on. We will meet again
with the kernel trick in class 7.


