
67577 – Intro. to Machine Learning Fall semester, 2003/4

Lecture 4: Support Vector Machines and Kernel Functions I

Lecturer: Amnon Shashua Scribe: Amnon Shashua 1

Consider the 2-class hyperplane separation problem introduced in the context of the Perceptron
algorithm in the previous lecture. We are given a training set of instances xi ∈ Rn, i = 1, ..., l,
and class labels yi = ±1 (i.e., the training set is made up of “positive” and “negative” examples).
We wish to find a hyperplane direction w ∈ Rn and an offset scalar b such that w · xi − b > 0
for positive examples and w · xi − b < 0 for negative examples — which together means that the
margins yi(w · xi − b) > 0 are positive.

Assuming that such a hyperplane exists, clearly it is not unique. We therefore need to introduce
another constraint so that we could find the most “sensible” solution among all (infinitley many)
possible hyperplanes which separate the training data. Another issue is that the framework is very
limited in the sense that for most real-world classification problems it is somewhat unlikely that
there would exist a linear separating function to begin with. We therefore need to find a way to
extend the framework to include non-linear decision boundaries at a reasonable cost. These two
issues will be the focus of this lecture.

Regarding the first issue, since there is more than one separating hyperplane (assuming the
training data is linearly separable) then the question we need to ask ourselves is among all those
solutions which of them has the best “generalization” properties? In other words, our goal in
constructing a learning machine is not necessarily to do very well (or perfect) on the training
data, because the training data is merely a sample of the instance space, and not necessarily a
“representative” sample — it is simply a sample. Therefore, doing well on the sample (the training
data) does not necessarily guarantee (or even imply) that we will do well on the entire instance
space (i.e., on instances we haven’t seen — the test data). The goal of constructing a learning
machine is to maximize the performance on the test data (the instances we haven’t seen), which in
turn means that we wish to generalize “good” classification performance on the training set onto
the entire instance space.

The formal definition of “generalizing” and the resulting bounds we can hope to achieve will be
studied in details in class 6 so for now we will simply “hand waive” it by arguing that a decision
boundary which lies close to some of the training instances is less likely to generalize well because the
learning machine will be susceptible to small perturbations of those instance vectors. For example,
you have seen in the previous class that the number of mistakes made by the perceptron algorithm
is inversely proportional to the margin defined by the separating hyperplane, i.e., the minimal
distance from any instance to the separating hyperplane. Therefore, by means of introspection we
may conclude that the most sensible decision surface is one that is farthest away from the training
data. In other words, if we define the distance between the boundary of the two sets (positive
and negative) as the “margin induced by the hyperplane”, then we would like to find a separating
hyperplane which maximizes the margin between the positive and negative instances of the training
set.

Another issue which we would like to address is the learning strategy when the training set is
not linearly separable. In the previous lecture, in the context of Perceptron on-line learning, we

1

4-1

Lecture 4: Support Vector Machines and Kernel Functions I 4-2

discussed the error bound as a function of the number of margin errors and their magnitude given
an arbitrary hyperplane. The Perceptron algorithm is not guaranteed to minimize the error bound
over all hyperplanes, however the one we will discuss today does.

4.1 Large Margin Classifier as a Quadratic Linear Programming

We would first like to set up the linear separating hyperplane as an optimization problem which
is both consistent with the training data and maximizes the margin induce by the separating
hyperplane over all possible consistent hyperplanes.

Formally speaking, the distance between a point x and the hyperplane is defined by

| w · x − b |√
w ·w .

Since we are allowed to scale the parameters w, b at will (note that if w·x−b > 0 so is (λw)·x−(λb) >
0 for all λ > 0) we can set the distance between the boundary points to the hyperplane to be
1/
√

w · w by scaling w, b such the point(s) with smallest margin (closest to the hyperplane) will
be normalized: | w · x − b |= 1, therefore the margin is simply 2/

√
w · w (see Fig. 4.1). Note that

argmaxw2/
√

w ·w is equivalent to argmaxw2/(w·w) which in turn is equivalent to argminw
1

2
w·w.

Since all positive points and negative points should be farther away from the boundary points we
also have the separability constraints w ·x− b ≥ 1 when x is a positive instance and w ·x− b ≤ −1
when x is a negative instance. Both separability constraints can be combined: y(w · x − b) ≥ 1.
Taken together, we have defined the following optimization problem:

min
w,b

1

2
w ·w (4.1)

subject to

yi(w · xi − b) − 1 ≥ 0 i = 1, ..., l (4.2)

This type of optimization problem has a quadratic criteria function and linear inequalities and
is known in the literature as a Quadratic Linear Programming (QP) type of problem.

This particular QP, however, requires that the training data are linearly separable — a condition
which may be unrealistic. We can relax this condition by introducing the concept of a “soft margin”
in which the separability holds approximately with some error:

min
w,b,εi

1

2
w ·w + ν

l∑

i=1

εi (4.3)

subject to

yi(w · xi − b) ≥ 1 − εi i = 1, ..., l

εi ≥ 0

Where ν is some pre-defined weighting factor. The (non-negative) variables εi allow data points
to be miss-classified thereby creating an approximate separation. Specifically, if xi is a positive
instance (yi = 1) then the “soft” constraint becomes:

w · xi − b ≥ 1 − εi,

Lecture 4: Support Vector Machines and Kernel Functions I 4-3

),(bw

maximize the margin

||
2
w

0>iε

0>iµ
0=jµ

Figure 4.1: Separating hyperplane w, b with maximal margin. The boundary points are associated with
non-vanishing Lagrange multipliers µi > 0 and margin errors are associated with εi > 0 where the criteria
function encourages a small number of margin errors.

where if εi = 0 we are back to the original constraint where xi is either a boundary point or laying
further away in the half space assigned to positive instances. When εi > 0 the point xi can reside
inside the margin or even in the half space assigned to negative instances. Likewise, if xi is a
negative instance (yi = −1) then the soft constraint becomes:

w · xi − b ≤ −1 + εi.

The criterion function penalizes (the L1-norm) for non-vanishing εi thus the overall system will
seek a solution with few as possible “margin errors” (see Fig. 4.1). Note that the slack variables ε i

are the same as the residuals di defined in the previous lecture in the context of Perceptron. There
we defined D to hold the sum of squares of the residuals (an L2 norm), whereas here only the sum
of the residuals is being considered (and minimized) — i.e. an L1 norm. Typically, when possible,
an L1 norm is preferable as the L2 norm overly weighs high magnitude outliers which in some cases
can dominate the energy function.

So far we have described the problem formulation which when solved would provide a solution
with “sensible” generalization properties. The area of non-linear programming in general and QLP
in particular is rich with techniques and tools for solving these kind of problems starting from
classical techniques like “active set methods” to modern techniques of “interior point methods”
upto more specialized QLP solvers with names like “semi-definite programming” (SDP) and “second
order cone programming” (SOCP). We could have stopped here and refer you to one of the available
solvers (commercially or open-source), but the reason to continue further is due to the fact that by
“dualizing” (see next) the QLP one obtains another key property of the “large margin” approach
which introduces non-linear decision boundaries with very little cost. In the next section we will
take a brief tour on the basic principles associated with constrained optimization, the Karush-
Kuhn-Tucker (KKT) theorem and the dual form.

Lecture 4: Support Vector Machines and Kernel Functions I 4-4

4.2 Primer on Constrained Optimization

4.2.1 Equality Constraints and Lagrange Multipliers

Consider first the general optimization with equality constraints which gives rise to the notion of
Lagrange multipliers.

min
x

f(x) (4.4)

subject to

h(x) = 0

where f : Rn → R and h : Rn → Rk where h is a vector function (h1, ..., hk) each from Rn to
R. We want to derive a necessary and sufficient constraint for a point xo to be a local minimum
subject to the k equality constraints h(x) = 0. Assume that xo is a regular point, meaning that
the gradient vectors ∇hj(x) are linearly independent. Note that ∇h(xo) is a k × n matrix and the
null space of this matrix:

null(∇h(xo)) = {y : ∇h(xo)y = 0}
defines the tangent plane at the point xo. We have the following fundamental theorem:

∇f(xo) ⊥ null(∇h(xo))

in other words, all vectors y spanning the tangent plane at the point xo are also perpendicular to
the gradient of f at xo.

The sketch of the proof is as follows. Let x(t), −a ≤ t < a, be a smooth curve on the surface
h(x) = 0, i.e., h(x(t)) = 0. Let xo = x(0) and y = d

dt
x(0) the tangent to the curve at xo. From

the definition of tangency, the vector y lives in null(∇h(xo)), i.e., y · ∇hj(x(0)) = 0, j = 1, ..., k.
Since xo = x(0) is a local extremum of f(x), then

0 =
d

dt
f(x(t))|t=0 =

∑ ∂f

∂xi

dxi

dt
|t=0 = ∇f(xo) · y.

As a corollary of this basic theorem, the gradient vector ∇f(xo) ∈ span{∇h1(xo), ...,∇hk(xo)},
i.e.,

∇f(xo) +
k∑

i=1

λi∇hi(xo) = 0,

where the coefficients λi are called Lagrange Multipliers and the expression:

f(x) +
∑

i

λihi(x)

is called the Lagrangian of the optimization problem (4.4).

4.2.2 Inequality Constraints and KKT conditions

Consider next the general constrained optimization with inequality constraints (called “non-linear
programming”):

min
x

f(x) (4.5)

subject to

h(x) = 0

g(x) ≤ 0

Lecture 4: Support Vector Machines and Kernel Functions I 4-5

where g : Rn → Rs. We will assume that the optimal solution xo is a regular point which has the
following meaning: Let J be the set of indices j such that gj(xo) = 0, then xo is a regular point
if the gradient vectors ∇hi(xo),∇gj(xo), i = 1, ..., k and j ∈ J are linearly independent. A basic
result (we will not prove here) is the Karush-Kuhn-Tucker (KKT) theorem:

Let xo be a local minimum of the problem and suppose xo is a regular point. Then, there exist
λ1, ..., λk and µ1 ≥ 0, ..., µs ≥ 0 such that:

∇f(xo) +
k∑

i=1

λi∇hi(xo) +
s∑

j=1

µj∇gj(xo) = 0, (4.6)

s∑

j=1

µjgj(xo) = 0. (4.7)

Note that the condition
∑

µjgj(xo) = 0 is equivalent to the condition that µjgj(xo) = 0 (since
µ ≥ 0 and g(xo) ≤ 0 thus there sum cannot vanish unless each term vanishes) which in turn
implies: µj = 0 when gj(xo) < 0 and µj > 0 when gj(xo) = 0. The expression

L(x, λ, µ) = f(x) +
k∑

i=1

λihi(x) +
s∑

j=1

µjgj(x)

is the Lagrangian of the problem (4.5) and the associated condition µjgj(xo) = 0 is called the KKT
condition.

The remaining concepts we need are the “duality” and the “Lagrangian Dual” problem.

4.2.3 The Langrangian Dual Problem

The optimization problem (4.5) is called the “Primal” problem. The Lagrangian Dual problem is
defined as:

max
λ,µ

θ(λ, µ) (4.8)

subject to

µ ≥ 0 (4.9)

where
θ(λ, µ) = min

x
{f(x) +

∑

i

λihi(x) +
∑

j

µjgj(x)}.

Note that θ(λ, µ) may assume the value −∞ for some values of λ, µ (thus to be rigorous we should
have replaced “min” with “inf”). The first basic result is the weak duality theorem:

Let x be a feasible solution to the primal (i.e., h(x) = 0,g(x) ≤ 0) and let (λ, µ) be a feasible
solution to the dual problem (i.e., µ ≥ 0), then f(x) ≥ θ(λ, µ)

The proof is immediate:

θ(λ, µ) = min
y

{f(y) +
∑

i

λihi(y) +
∑

j

µjgj(y)}

≤ f(x) +
∑

i

λihi(x) +
∑

j

µjgj(x)

≤ f(x)

Lecture 4: Support Vector Machines and Kernel Functions I 4-6

),(** zy

),(zy

y

z

αµ =+ yz
G

nRx ∈
))(),((xfxg

)(µϑ

Figure 4.2: Geometric interpreatation of Duality (see text).

where the latter inequality follows from h(x) = 0 and
∑

j µjgj(x) ≤ 0 because µ ≥ 0 and g(x) ≤ 0.
As a corollary of this theorem we have:

min
x

{f(x) : h(x) = 0,g(x) ≤ 0} ≥ max
λ,µ

{θ(λ, µ) : µ ≥ 0}. (4.10)

The next basic result is the strong duality theorem which specifies the conditions for when the
inequality in (4.10) becomes equality:

Let f(),g() be convex functions and let h() be affine, i.e., h(x) = Ax − b where A is a k × n
matrix, then

min
x

{f(x) : h(x) = 0,g(x) ≤ 0} = max
λ,µ

{θ(λ, µ) : µ ≥ 0}.

The strong duality theorem allows one to solve for the primal problem by first dualizing it and
solving for the dual problem instead (we will see exactly how to do it when we return to solving
the primal problem (4.3)). When the (convexity) conditions above do not hold we obtain

min
x

{f(x) : h(x) = 0,g(x) ≤ 0} > max
λ,µ

{θ(λ, µ) : µ ≥ 0}

which means that the optimal solution to the dual problem provides only a lower bound to the
primal problem — this situation is called a duality gap.

We will end this section with a geometric interpretation of duality.

4.2.4 Geometric Interpretation of Duality

For clarity we will consider a primal problem with a single inequality constraint: min{f(x) : g(x) ≤
0} where g : Rn → R.

Consider the set G = {(y, z) : y = g(x), z = f(x)} in the (y, z) plane. The set G is the image
of Rn under the (g, f) map (see Fig. 4.2). The primal problem is to find a point in G that has a
y ≤ 0 with the smallest z value — this is the point (y∗, z∗) in the figure.

Lecture 4: Support Vector Machines and Kernel Functions I 4-7

),(** zy

y

z

G

*µ

optimal primal

optimal d u al

Figure 4.3: An example of duality gap arising from non-convexity (see text).

In this case θ(µ) = minx{f(x) + µg(x)} which is equivalent to minimize z + µy over points in
G. The equation z + µy = α represents a straight line with slope −µ and intercept (on z axis) α.
For a given value µ, to minimize z + µy over G we need to move the line z + µy = α parallel to
itself as far down as possible while it remains in contact with G — in other words G is above the
line and touches it. Then, the intercept with the z axis gives θ(µ). The dual problem is therefore
equivalent to finding the slope of the supporting hyperplane such that its intercept on the z axis is
maximal.

Consider the non-convex region G in Fig. 4.3 which illustrates a duality gap condition. The
optimal primal is the point (y∗, z∗) which is higher than the greatest intercept on the z axis achieved
by a line that supports G from below. This is an example of a duality gap caused by the non-
convexity of the functions f(), g() (thereby making the set G non-convex).

