67577 — Intro. to Machine Learning Fall semester, 2004/5

Lecture 14: EM-II: Soft Clustering, K-means, Gaussian Mixture

Lecturer: Amnon Shashua Scribe: Amnon Shashua

In previous lecture we saw that if x; is an observation vector (of random variables) and 6 is a
vector of unknown parameters, then the likelihood P(x; | #) can be represented as a marginal over
hidden variables:

k
P(xi | 0) =P(xi,yi =110)+ ...+ P(xi,yi =k | 0) =>_ P(xi | yi = 4,0)P(yi =j | 0).
=1

In the coin example, k = 2 and P(x; | y; = 1,0) = p™ (1 — p)3>~™ a Bernoulli distribution, and
P(y1 = 1| 8) = X is the probability of x; arising from the first factor (coin) in the expansion of
P(x; | 0). The result is that the likelihood is exapanded as a mizture of Bernoulli distributions. In
general, we can take any other distribution standing in for the factors in the expansion — say for
example a Gaussian distribution.

We saw that EM introduces a new set of variables p;;:

k
pij = Py = Jj | xi,0), > =1
=1

which is the probability that x; was generated by the j’th factor in the expansion. In the coin
example, we had p; standing for the probability that x; was generated by tossing coin 1 and 1 — p;
the probability that coin 2 generated the observation.

EM solves for both p;; and 6 by interleaving between the two sets. For data D = {x,...,x,}
i.i.d. we have that:

n k
00+ = argmaxy >3 ) log [P(xi | yi = 5.0)P(yi = j | 8)],
i=1j=1

(1)

where y;;” were fixed from the previous iteration using the estimate 6 = 6t).

b = Plyi = | x0,69) = P(x; | 3 = j,00)Plyi = j | 09,

where the equality is up to scale, i.e., the y;; are later scaled such that }; u;; = 1. We will consider
in the next section the case where the factors are Gaussian distributions, thus the likelihood is a
mixture of Gaussians.

14.1 Gaussian Mixture

Given x; € R? and that the factors P(x; | y; = 4,0) are Normally distributed with mean c; and
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where 6; = (cj,05). Let aj = P(y; = j | 8) = P(6;) be the prior of the j’th factor (note that
>oj @ = 1), then the EM step is:

n k k
0+ = argmax, Z Zugf) log [P(x; | 0;)c;],  subject to Z a; =1 (14.1)

i=1j=1 j=1

The parameters vector ¢ contains § = (oj,¢j,05), j = 1,..., k. The update formula for ;; is:
t
n =l P(x; | 00),

where the equality is up to scale, i.e., the y;; are later scaled such that 3 pj; = 1. The update
formula for «aj,c;,0; follow by taking partial derivatives of the Lagrangian of eqn. (14.1). The
Lagrangian L(6, \) is:

ZZuwloga]—kZZ,uwlongzlﬁ —1—)\204]—1
i=17=1 i=17=1

where A is the Lagrange multiplier due to the equality constraint. The partial derivative with
respect to «y; is:

oL 1
Ba] Z pij + A =0.
Since this holds for all j = 1,..., k we can recover the value of A by summing the constraint above
over j , i.e
Zzuz]‘f‘a] ZZMZ]+)\ZO[J’
from which we obtain A\ = —n and as a result:

1 n
= ﬁ;”i]’-

In other words, the updated prior P(6;) is the average of P(y; = j | x;,0) over the observations.
Taking partial derivatives with respect to c¢; and o; we obtain the update rules:

¢c; = Z ZI’LZ] Xi,

ILI’Z_] i=1
o5 = a5, MWZMJHX C]H

In other words, the observations x; are weighted by p;; before a Gaussian is fitted (k times, one
for each factor).

14.2 EM and K-means

In previous lecture and now with the derivation of the Gaussian mixture model, we see that the
wij = P(y; = j | x4,0) play the role of a "probabilistic factor assignment”. What the EM scheme
does is that it turns the ML problem into a probabilistic clustering problem of assigning the
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indices {1,...,n} into k clusters. At each EM iteration, the probabilistic assignments p;; are re-
estimated (given the current estimate #*)) in order to provide the most updated estimation as to
the probability of x; to arise from each of the & factors.

This assignment can be considered as a ”soft” clustering. A ”hard” decision can be made by
associating x; with cluster j if p;; > pir, 7 # j. If a new observation x is introduced after the
EM has converged and outputed the parameters ¢;, the cluster assignment of x can be made by
computing p; = P(y = j | x,0) using the Bayes rule.

We could turn this around; say we are interested in clustering {x, ..., X, } points in R? where
we assume that the clusters are Normally distributed (a reasonable assumption in many practical
settings). Then the EM algorithm is exactly the clustering method that would solve for the cluster
assignments by recovering the underlying Normal distributions.

In this regard, the EM algorithm can be considered as an extension of a "hard” clustering
method known as ”K-means” where the assumption is that the clusters are defined by their mean
vectors only. In other words, the goal of clustering is to find those k mean vectors cq,...,c; and
provide the cluster assignment of each point in the set. The K-means algorithm is also based
an interleaving approach where the cluster assignments are established given the centers and the
centers are computed given the assignments. The optimization criteria is as follows:

k
. 2
min c Z Z llxi — ;|

Y1y--3Yn,C1,5e.ry - .
J=1lyi=j
Assume that cq, ..., cg are given from the previous iteration, then
- i ) 112
yi = argmin;||x; — c;|7,

and next assume that y1,..,y, (cluster assignments) are given, then for any set S C {1,....n} we

have that
ij = argming Z llx; — cHz.
jes jes

L
Bl

In other words, given the estimated centers in the current round, the new assignments are computed
by the closest center to each point x;, and then given the updated assignments the new centers are
estimated by taking the mean of each cluster.

We see that K-means makes a "hard” assignment in each iteration whereas EM makes a prob-
abilistic assignment. The drawback of a hard assignment is that a small shift of a data point can
flip it to a different cluster. Moreover, the EM allows for a more complex cluster ”shapes” (such
as Gaussians) than K-means which relies only on the means.



