
67577 – Intro. to Machine Learning Fall semester, 2004/5

Lecture 13: EM-I: Algorithm, Mixture of Bernoulli Distributions

Lecturer: Amnon Shashua Scribe: Amnon Shashua 1

We saw previously that a conditional independence statement P (X1, .., Xn | H) introduces a
significant complexity reduction as the n-way array P (X1, ..., Xn | H = hi) is described as an
outer-product of n vectors P (Xj | H = hi), j = 1, ..., n. We saw also that a set of such statements
can form a graph and if the graph is simple enough (such as a tree) then a significant complexity
reduction is valid as well (via the message-passing algorithm).

There are situation, however, where it is known that a set of variables are conditionally in-
dependent but we have no observations to that effect, i.e., we observe P (X1, ..., Xn) only. The
decoupliing variable H is not observed — which is often referred to hidden or latent. What we
have instead is a marginal probability (a projection of the n + 1-way array onto an n-way array by
contraction with a vector of ”1”s):

P (X1, ..., Xn) =
∑

H=hi

P (X1, ..., Xn | H = hi)P (H = hi).

The marginalization couples the variables. The Expectation-Maximization (EM) algorithm, intro-
duced by Dempster, Laird and Rubin in 1977, is an iterative scheme for decoupling the variables
or de-obscuring the structure of the n-way array by ”completing” the data, i.e., by re-introducing
the hidden variable. To make this clear we will start with an example of a ”mixture of Bernoulli
distributions” (next lecture we will look at mixture of Gaussians).

Assume we have two coins. The first coin has a probability of heads (”0”) equal to p and the
second coin has a probability of heads equal to q. At each trial we choose to toss coin 1 with
probability λ and coin 2 with probability 1− λ. Once a coin has been chosen it is tossed 3 times,
producing an observation x ∈ {0, 1}3 a boolean vector. We are given a set of such observations
D = {x1, ...,xk} where each observation xi is a triplet of coin tosses (the same coin). We wish to
determine the parameters θ = (p, q, λ) by using the MAP principle:

θ∗ = argmaxθP (θ | D).

Assuming that the priors P (θ) are uniformly distributed (i.e., we have no prior information), then
the MAP policy is equal to the Maximum Likelihood:

θ∗ = argmaxθP (D | θ).

Let yi ∈ {1, 2} be a random variable associated with the observation xi such that yi = 1 if xi

was generated by coin 1 and yi = 2 if xi was generated by coin 2. If we knew the values of yi

then our task would be simply to estimate two separate Bernoulli distributions by separating the
triplets generated from coin 1 from those generated by coin 2). Since yi is not known, we have the
marginal:

P (xi | θ) = P (xi, yi = 1 | θ) + P (xi, yi = 2 | θ)
= P (xi | yi = 1, θ)P (yi = 1 | θ) + P (xi | yi = 2, θ)P (yi = 2 | θ)
= λpni(1− p)(3−ni) + (1− λ)qni(1− q)(3−ni), (13.1)

1

13-1

Lecture 13: EM-I: Algorithm, Mixture of Bernoulli Distributions 13-2

where 0 ≤ ni ≤ 3 is the number of heads (”0”) in the triplet of tosses. In other words, the likelihood
P (xi | θ) of the triplet of tosses xi is a linear combination (”mixture”) of two Bernoulli distributions.
From a perspective of a joint distribution array, we have a 6-way array where three dimensions
x = (x1, x2, x3) ∈ {0, 1}3 correspond to the three tosses and three dimensions correspond to the
parameters p, q, λ. The likelihood P (x | θ) over all (eight) possible values of x is a 2× 2× 2 array.
From eqn. (13.1) we have that:

P (x | θ) = λ

(
p

1− p

)⊗3

+ (1− λ)

(
q

1− q

)⊗3

.

In other words, the ”obscurity” introduced by the hidden variable yi translates to the fact that the
3-way observation ”slice” of the 6-way array is of rank=2 (instead of rank=1), i.e., it is a sum of
two 3-fold outer-products. So we now have two possible strategies to perform the ML inference: (i)
search for the ”optimal” parameters θ, or (ii) solve for the ”optimal” parameters.

What is meant by search? when we are given the set of observations D what we are actually
given is the 2 × 2 × 2 slice P (x | θ∗). To see why this is so, consider the 8 possible values of x.
Simply count the frequency of each of those 8 possible entries in the data set D. For example, if
k = 100 and we received the toss (0, 1, 0) 12 times (i.e., the vector (0, 1, 0) appeared 12 times in
the set of vectors D) then the entry corresponding to (0, 1, 0) in the 2× 2× 2 array represented by
P (x | θ∗) would be 0.12, and so forth. So a search means that we wish to locate the 3-way slice
we are given as input in the 6-way array (which we can pre-compute). Once we locate it then we
have found the values of the 3 missing dimensions, i.e., the values of p∗, q∗, λ∗. Of course a search
is not such a great idea because the complexity is exponential with the number of parameters (and
their cardinality). For example, if the cardinality of p, q, λ is n, then a search would require 8n3

operations.
What is meant by solve? what have just seen is that the rank of the 2×2×2 array represented by

the input slice P (x | θ∗) is 2 (and moreover it is super-symmetric and the entries are non-negative).
This is a constraint because generally a 2 × 2 × 2 array is bounded by above by rank=4. Since
the low rank serves as a constraint there is a possibility that we would be able to factor the input
array into a sum of two super-symmetric non-negative rank=1 3-way arrays. Clearly if we are able
to do so then we have found the values of p, q, λ (simply marginalize each of the rank=1 arrays and
get the vectors (p, 1 − p) and (q, 1 − q) up to scale, then λ is recovered so that their combination
would be equal to the input array). If we cannot factor uniquely, then the probabilistic problem as
stated does not have a unique solution; or if the factorization problem is ”hard” in the theoretical
computer science sense (which it is indeed), then this means that the solution to the probabilistic
problem is also hard and all we can hope for is an approximation.2

Now that we have a better picture of what exactly is meant by the hidden variable obscuring
the structure of the likelihood function, it is time to introduce the EM algorithm. The EM scheme
is an iterative process which ultimately tries to perform the factorization by interleaving two sets of
variables: (i) the parameters θ, and (ii) and the probabilistic association between the observations
xi and and from which factor they came from.

13.1 The EM Algorithm

The EM algorithm is somewhat similar to a ”soft” clustering approach where two sets of variables
are being optimized. The first set of variables are the parameters θ and the other set of variables

2The role of tensor factorizations in probabilistic inference is beyond the scope of this class — for more details you
can ask Tamir Hazan who is working on the interplay between algebra and statistics as part of his doctoral studies.

Lecture 13: EM-I: Algorithm, Mixture of Bernoulli Distributions 13-3

are associations between the observations xi and the probability they are arising from each of the
factors (in our running example, the probability that a particular observation xi came from coin 1
or from coin 2, i.e., P (yi | xi, θ)).

We wish to maximize P (D | θ) over θ, which is equivalent to maximizing the log-likelihood:

θ∗ = argmaxθ log P (D | θ) = log

∑
y

P (D,y | θ)

 ,

where y represents the hidden variables. We will denote l(θ) = log P (D | θ). Let q(y | D, θ) be
some (arbitrary) distribution of the hidden variables y conditioned on the parameters θ and the
input sample D, i.e.,

∑
y q(y | D, θ) = 1. We define a lower bound on l(θ) as follows:

l(θ) = log

∑
y

P (D,y | θ)


= log

∑
y

q(y | D, θ)
P (D,y | θ)
q(y | D, θ)


≥

∑
y

q(y | D, θ) log
P (D,y | θ)
q(y | D, θ)

= Q(q, θ).

The inequality comes from Jensen’s inequality log
∑

j αjaj ≥
∑

j αj log aj when
∑

j αj = 1. What
we have obtained is an ”auxiliary” function Q(q, θ) satisfying

l(θ) ≥ Q(q, θ),

for all distributions q(y | D, θ). The strategy of the EM algorithm is to maximize the lower bound
Q(q, θ) with the hope that if we ascend on the lower bound function we will also ascend with respect
to l(θ). We will see that this is indeed the case and the strategy is therefore valid.

The maximization of Q(q, θ) proceeds by interleaving the variables q and θ as we separately
ascend on each set of variables. At the (t + 1) iteration we fix the current value of θ to be θ(t) of
the t’th iteration and maximize Q(q, θ(t)) over q, and then maximize Q(q(t+1), θ) over θ:

q(t+1) = argmaxqQ(q, θ(t))

θ(t+1) = argmaxθQ(q(t+1), θ).

The optimal q of maxq Q(q, θ(t)) can be described in closed form:

Claim 1 (Jordan-Bishop) The optimal q(y | D, θ(t)) at each step is P (y | D, θ(t)).

Proof: We will show that Q(P (y |D, θ(t)), θ(t)) = l(θ(t)) which proves the claim since l(θ) ≥ Q(q, θ)
for all q, θ, thus the best q-distribution we can hope to find is one that makes the lower-bound meet
l(θ) at θ = θ(t).

Q(P (y | D, θ(t)), θ(t)) =
∑
y

P (y | D, θ(t)) log
P (D,y | θ(t))
P (y | D, θ(t))

=
∑
y

P (y | D, θ(t)) log
P (y | D, θ(t))P (D | θ(t))

P (y | D, θ(t))

Lecture 13: EM-I: Algorithm, Mixture of Bernoulli Distributions 13-4

= log P (D | θ(t))
∑
y

P (y | D, θ(t))

= l(θ(t))

The proof provides also the validity for the approach of ascending along the lower bound Q(q, θ)
because at the point θ(t) the two functions coincide, i.e., the lower bound function at θ = θ(t) is
equal to l(θ(t)) therefore if we continue and ascend along Q(·) we are guaranteed to ascend along
l(θ) as well3. The second step of maximizing over θ then becomes:

θ(t+1) = argmaxθQ(q(t+1), θ) = argmaxθ

∑
y

P (y | D, θ(t)) log P (D,y | θ).

This defines the EM algorithm. Often the ”Expectation” step is described as taking the expectation
of:

Ey∼P (y | D,θ(t)) [log P (D,y | θ)] ,

followed by a Maximization step of finding θ that maximizes the expectation — hence the term
EM for this algorithm. The algorithm always ascends thus is guaranteed to stop at a local maxima
of the likelihood function — a global maxima cannot be guaranteed (and a clue to this effect we
have seen from the rank analogy: finding the rank of a tensor is NP-hard).

13.2 Back to the Coins Example

We will apply the EM scheme to our running example of mixture of Bernoulli distributions. As-
suming that the set of observations D is i.i.d. we have:

P (D | θ) =
k∏

i=1

P (xi | θ), P (D,y | θ) =
k∏

i=1

P (xi, yi | θ).

We wish to compute
Q(θ, θ(t)) =

∑
y

P (y | D, θ(t)) log P (D,y | θ),

and then maximize Q() with respect to p, q, λ.

Q(θ, θ′) =
∑
y

P (y | D, θ′)
k∑

i=1

log P (xi | yi, θ)P (yi | θ)

=
k∑

i=1

[
P (yi = 1 | xi, θ

′) log P (xi | yi = 1, θ)P (yi = 1 | θ)
]

+
k∑

i=1

[
P (yi = 2 | xi, θ

′) log P (xi | yi = 2, θ)P (yi = 2 | θ)
]

=
∑

i

[
µi log(λpni(1− p)(3−ni)) + (1− µi) log((1− λ)qni(1− q)(3−ni))

]
3this manner of deriving EM was adapted from Jordan and Bishop’s book notes, 2001.

Lecture 13: EM-I: Algorithm, Mixture of Bernoulli Distributions 13-5

where θ′ stands for θ(t) and µi = P (yi = 1 | xi, θ
′). The values of µi are known since θ′ = (λo, po, qo)

are given from the previous iteration. The Bayes formula is used to compute µi:

µi = P (yi = 1 | xi, θ
′) =

P (xi | yi = 1, θ′)P (yi = 1 | θ′)
P (xi | θ′)

=
λop

ni
o (1− po)(3−ni)

λop
ni
o (1− po)(3−ni) + (1− λo)qni

o (1− qo)(3−ni)

We wish to compute: maxp,q,λ Q(θ, θ′). The partial derivative with respect to λ is:

∂Q

∂λ
=
∑

i

µi
1
λ
−
∑

i

(1− µi)
1

1− λ
= 0,

from which we obtain the update formula of λ given µi:

λ =
1
k

k∑
i=1

µi.

The partial derivative with respect to p is:

∂Q

∂p
=
∑

i

µini

p
−
∑

i

µi(3− ni)
1− p

= 0,

from which we obtain the update formula:

p =
1∑
i µi

∑
i

ni

3
µi.

Likewise the update rule for q is:

q =
1∑

i(1− µi)

∑
i

ni

3
(1− µi).

To conclude, we start with some initial ”guess” of the values of p, q, λ, compute the values of µi

and update iteratively the values of p, q, λ where at the end of each iteration the new values of µi

are computed.

13.3 EM as a ”soft” Clustering Scheme

What we have seen so far is that the EM scheme introduces another set of variables, the µi in our
running example, and performs an interleaving optimization over the two sets of variables the θ
and the µi. We will observe more closely now the role of µi in achieving the factorization in our
running example of coin tosses.

Recall from our discussion above that what we are given is P (x | θ∗) which is a 2× 2× 2 array
which we will denote by G. It will be convenient to represent each triplet of tosses xi as a 2× 2× 2
array Ai with the value ”1” at the entry corresponding to the value of xi (there are 8 possible
values to xi) and ”0” in the remaining 7 entries. Therefore,

G =
1
k

k∑
i=1

Ai.

Lecture 13: EM-I: Algorithm, Mixture of Bernoulli Distributions 13-6

Let I1 ⊆ {1, ..., k} be the subset of indices of tosses arising from coin 1 and let I2 ⊆ {1, ..., k} be the
subset of indices arising from coin 2. We have that I1

⋂
I2 = ∅ and I1

⋃
I2 = {1, ..., k}. Let k1 = |I1|

and k2 = |I2| be the cardinality of each subset. Then, our desire to factorize G is expressed as
follows:

G =
1
k

k∑
i=1

Ai =
1
k

∑
i∈I1

Ai +
1
k

∑
j∈I2

Aj

=
k1

k

1
k1

∑
i∈I1

Ai +
k2

k

1
k2

∑
j∈I2

Aj

= λ
1
k1

∑
i∈I1

Ai + (1− λ)
1
k2

∑
j∈I2

Aj

= λG1 + (1− λ)G2

The factorization is possible if we know from which coin each observation Ai came from (knowing
the value of the hidden variables yi). The 3-way array G1 represents P (x | yi = 1, θ∗) and the
3-way array G2 represents P (x | yi = 2, θ∗). Our factorization is done if we know the sets I1 and
I2. Thus, a possible way to look at this is that we wish to divide the set of indices {1, ..., k} into
two subsets I1, I2.

Consider next some arbitrary values µi, i = 1, ..., k. Then,

G =
1
k

k∑
i=1

µiAi +
1
k

k∑
i=1

(1− µi)Ai,

and this holds for all µi. This is the analogue of l(θ) ≥ Q(q, θ) where the inequality was because of
the logarithm — we do not actually need to introduce the logarithm to get a picture of what the
EM is about to do. The point is that there exists a setting of the values of µi such that:

1
k

k∑
i=1

µiAi = λG1,
1
k

k∑
i=1

(1− µi)Ai = (1− λ)G2.

In other words, there exists µi such that
∑

i µiAi is rank=1 and
∑

i(1−µi)Ai is also rank=1 and the
scaled sum of the two arrays equals to G. The value of µi therefore represents a ”soft” membership,
a probability, that Ai came from I1 or from I2. Thus µi represents P (yi = 1 | xi, θ

∗). The EM
algorithm iteratively solves for the values of µi thus effectively clustering the observations to the
two sources (the coins) that generated them.

