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In the previous lecture we noted that without reducing the complexity of representing the
joint probability distribution array, and in turn the complexity of making inference from the array
(taking marginals, maximizing over variables — MAP), there is not much use to a multivariate
probability-based approach. To restate, there are three families of simplifying constraints used in
the literature:

• statistical independence constraints,

• parametric form of the class likelihood P (xi | hj) where the inference becomes a density
estimation problem,

• structural assumptions — latent (hidden) variables, graphical models.

Today we will continue with the pursuit of statistical independence constraints and then address
the density estimation problem and the Bayes optimal discriminant function for normal densities
(which would be equivalent to the LDA solution we encountered in Class 10).

12.1 Multiple Conditional Independence Statements — Tree Mod-
els and Belief Propagation

So far we considered a single statement of conditional independence of the type P (X | Y, Z) =
P (X | Z), i.e., X⊥Y | Z. We saw that such as statement translates to a factorization result:
P (X, Y | Z) = P (X | Z)P (Y | Z). Consider now multiple such statements over a set of random
variables V = {X1, ..., Xn} where each variable is of cardinality k (i.e., has k possible discrete
values). Instead of considering the conditional independent statements directly, we will (for now)
consider their implications, i.e., the factorization result as follows. Let Si ⊆ V be a subset of the
variables associated with Xi, then:

P (X1, ..., Xn) =
n∏

i=1

P (Xi | Si).

Recall that this is always possible even without any constraints since in general:

P (X1, ..., Xn) = P (X1 | X2, ..., Xn)P (X2 | X3, ..., Xn) · · · P (Xn−1 | Xn)P (Xn).

We obtain, therefore, a complexity reduction when the cardinality of the subsets Si are relatively
small. The complexity reduction is in the number of parameters (in general kn) required to represent
the the joint probability distribution and in the computational complexity of operations (inference
problems) we would like to perform on the distribution array. We will not discuss the space

1

12-1



Lecture 12: Bayes II: Graphical Models, Density Estimation 12-2

complexity (extension of the rank-1 constraints we saw in the single statement scenario) and instead
focus here on the computational complexity issues.

As mentioned previously, there are two types of inference operations we would like to perform on
the distribution array: (i) compute marginals, say P (X5) or in general P (XA) =

∑
XB

P (XA, XB)
where (A,B) is a partitionaing of V , i.e., V = A ∪ B and A ∩ B = ∅; and (ii) compute MAP
estimates: maxXA

P (XA | XB). As we shall note later the two operations (sum and max) are
interchangeable thus for now we will consider the operation of taking marginals.

Consider X1, ..., X5 factorized as follows:

P (X1, ..., X5) = P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X2)P (X5 | X4). (12.1)

Say we wish to compute the marginal P (X5):

P (X5) =
∑

X1,...,X4

P (X1, ..., X4, X5),

which in general would require k4 operations. Due to the factorization structure we can reduce this
to 4k2 by factorizing the summations as follows. Let m12(X2) be an intermediate sum:

m12(X2) =
∑
X1

P (X1)P (X2 | X1).

We have eliminated the variable X1 and m12(X2) is a function of X2 (a vector with k entries) only.
We will use the notation mij(Xj) to denote summation over Xi leaving a function over Xj . Note
that the operation requires k2 steps because for every value of X2 we sum over all values of X1.
We are left with:

P (X5) =
∑

X2,X3,X4

m12(X2)P (X3 | X2)P (X4 | X2)P (X5 | X4).

Let
m32(X2) =

∑
X3

P (X3 | X2),

which leaves us with:

P (X5) =
∑

X2,X4

m12(X2)m32(X2)P (X4 | X2)P (X5 | X4).

Now we will eliminate X2:

m24(X4) =
∑
X2

m12(X2)m32(X2)P (X4 | X2),

and finally P (X5) is evaluated:

P (X5) =
∑
X4

m24(X4)P (X5 | X4). (12.2)

Taken together, we spent 4 summation loops each taking k2 operations. We could have done the
same for MAP computation:

X∗
5 = max

X1,...,X4

P (X1)P (X2 | X1)P (X3 | X2)P (X4 | X2)P (X5 | X4),
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Figure 12.1: Directed graph representation of eqn. (12.1)

by replacing each ”sum” with a ”max” throughout the process because ”max” commutes with
products just as ”sum” does.

To appreciate the general feel of what was done here, we can associate a directed graph with
the variables represented by the vertices of the graph, and the subsets Si are the ”parents” of the
vertex Xi, i.e., there is a directed edge from each vertex of Si to Xi. The graph associated with
our example is displayed in Fig. 12.1 — note that the undirected underlying graph forms a tree (a
connected graph with n − 1 edges, or equivalently a connected graph with no loops). If we limit
our discussion to trees then the key operation of summing a product has the form:

mij(Xj) =
∑
Xi

P (Xj | Xi)
∏

l∈N(i),l 6=j

mli(Xi),

where N(i) are the neighbors (in the undirected graph) of Xi in the graph. For example, the
computation of m24(X4) contains the product of m12(X2)m32(X2) because X1, X3 are neighbors of
X2 in the graph. The marginal P (Xi) is the result:

P (Xi) ∼=
∏

l∈N(i)

mli(Xi),

where equality is up to scale. For example, P (X5) = m45(X5) defined in eqn. (12.2) because X4

is the only neighbor of X5. It is customary to view mij as ”messages” which vertex Xi ”sends” to
Xj . A vertex (node) sends a message to a neighboring node once it received messages from all of
its other neighbors. So for example, m24 was sent to X4 after m12 and m32 were evaluated. The
marginal probability (up to scale) of a node is given by the product of all the incoming messages.

This algorithm is called the sum product algorithm or belief propagation — due primarily to
Pearl (1988) who studied most extensively this type of structural factorization back in the 80s. The
complexity of the algorithm is O(|E|k2) where |E| is the number of edges in the graph. For every
(i, j) ∈ E both mij and mji are computed.

The extension to general graphs is much harder and would not be discussed here. It is worthwhile
to note that it would have just the same with undirected graph representations. Our example can
be represented up to scale by:

P (X1, ..., X5) ∼= P (X1, X2)P (X2, X3)P (X2, X4)P (X4, X5),
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Figure 12.2: Directed graph representation of eqn. (12.3)

where the subsets are cliques (fully connected subsets of nodes) in the undirected graph. We
associate with each clique a scaled probability distribution over the nodes in the clique. Any directed
graph can be transformed to the undirected graph representation by adding edges connecting the
parents Si of node Xi and then undirecting all edges of the graph — this is called the moral graph
in which all the arguments P (Xi | Si) are contained in a clique. The sum product algorithm as
presented above is valid to undirected graphs forming a tree.

We will finish this section with the description of the conditional independent statements in-
duced by the directed graph. If Si are the parents of Xi, then let Ni be the non-descendants of Xi

in the graph. Then:
Xi⊥Ni | Si.

For example, consider the graph displayed in Fig. 12.2. The factorization structure is:

P (X1, ..., X5) = P (X1)P (X2)P (X3 | X1, X2)P (X4 | X3)P (X5 | X1). (12.3)

The general decomposition, ignoring the graph, is:

P (X1, ..., X5) = P (X1)P (X2 | X1)P (X3 | X1, X2)P (X4 | X1, X2, X3)P (X5 | X1, ..., X4).

The factorization structure is due to the following conditional independent statements:

X1⊥X2

X4⊥{X1, X2, X5} | X3

X5⊥{X2, X3, X4} | X1

12.2 Parametric Distributions: Density Estimation

So far we considered constraints induced by conditional independent statements among the random
variables as a means to reduce the space and time complexity of the multivariate distribution array.
Another approach would be to assume some form of parametric form governing the entries of the
array — the most popular assumption is Gaussian distribution P (X1, ..., Xn) ∼ N(µ,E) with mean
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vector µ and covariance matrix E. The parameters of the density function are denoted by θ = (µ,E)
and for every vector x ∈ Rn we have:

P (x | θ) =
1

(2π)n/2|E|1/2
exp−

1
2
(x−µ)>E−1(x−µ) .

Assume we are given an i.i.d sample of k points S = {x1, ...,xk}, xi ∈ Rn, and we would like to
find the Bayes optimal θ:

θ∗ = argmaxθP (S | θ),

by maximizing the likelihood (here we are assuming that the the priors P (θ) are equal, thus the
maximum likelihood and the MAP would produce the same result). Because the sample was drawn
i.i.d. we can assume that:

P (S | θ) =
k∏

i=1

P (xi | θ).

Let L(θ) = log P (S | θ) =
∑

i log P (xi | θ) and since Log is monotonously increasing we have
that θ∗ = argmaxθL(θ). The parameter estimation would be recovered by taking derivatives with
respect to θ, i.e., ∇θL = 0. We have:

L(θ) = −1
2

log |E| −
k∑

i=1

n

2
log(2π)−

∑
i

1
2
(xi − µ)>E−1(xi − µ). (12.4)

We will start with a simple scenario where E = σ2I, i.e., all the covariances are zero and all the
variances are equal to σ2. Thus, E−1 = σ−2I and |E| = σ2n. After substitution (and removal of
items which do not depend on θ) we have:

L(θ) = −nk log σ − 1
2

∑
i

‖xi − µ‖2

σ2
.

The partial derivative with respect to µ:

∂L

∂µ
= σ−2

∑
i

(µ− xi) = 0

from which we obtain:

µ =
1
k

k∑
i=1

xi.

The partial derivative with respect to σ is:

∂L

∂σ
=

nk

σ
− σ−3

∑
i

‖xi − µ‖2 = 0,

from which we obtain:

σ2 =
1
kn

k∑
i=1

‖xi − µ‖2.

Note that the reason for dividing by n is due to the fact that σ2
1 = ... = σ2

n = σ2, so that:

1
k

k∑
i=1

‖xi − µ‖2 =
n∑

j=1

σ2
j = nσ2.
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In the general case, E is a full rank symmetric matrix, then the derivative of eqn. (12.4) with
respect to µ is:

∂L

∂µ
= E−1

∑
i

(µ− xi) = 0,

and since E−1 is full rank we obtain µ = (1/k)
∑

i xi. For the derivative with respect to E we note
two auxiliary items:

∂|E|
∂E

= |E|E−T ,
∂

∂E
trace(AE−1) = −(E−1AE−1)>.

Using the fact that x>y = trace(xy>) we can transform z>E−1z to trace(zz>E−1) for any vector
z. Given that E−1 is symmetric, then:

∂

∂E
trace(zz>E−1) = −E−1zz>E−1.

Substituting z = x− µ we obtain:

∂L

∂E
= −kE−1 + E−1

(∑
i

(xi − µ)(xi − µ)>
)

E−1 = 0,

from which we obtain:

E =
1
k

k∑
i=1

(xi − µ)(xi − µ)>.

12.3 Bayes Classifier for 2-class Normal Distributions

For the last topic in this lecture consider again the 2-class inference problem. We have encountered
this problem over and over in this course using Perceptron, SVM and LDA. In the Bayes framework,
if H = {h1, h2} denotes the ”class member” variable with two possible outcomes, then the MAP
decision policy calls for making the decision based on data x:

h∗ = argmaxh1,h2
{P (h1 | x), P (h2 | x)} ,

or in other words the class h1 would be chosen if P (h1 | x) > P (h2 | x). The decision surface (as
a function of x) is therefore described by:

P (h1 | x)− P (h2 | x) = 0.

We saw that in SVM the decision surface (a hyperplane or a non-linear hypersurface using kernel
functions) is determined by a selected subset of the training vectors (the so called ”support vectors”
laying at the boundary between the two classes) whereas in LDA the decision surface (hyperplane)
is determined by the means and covariances of the two sets in a way that satisfies certain properties
of the projection of the data points onto the normal vector to the hyperplane.

The questions we ask here is what would the Bayes optimal decision surface be like if we assume
that the two classes are normally distributed with different means and the same covariance matrix?
What we will see is that under the condition of equal priors P (h1) = P (h2) the decision surface is
a hyperplane — and not only that, it is the same hyperplane produced by LDA.
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Claim 1 If P (h1) = P (h2) and P (x | h1) ∼ N(µ1, E) and P (x | h1) ∼ N(µ2, E), the the Bayes
optimal decision surface is a hyperplane w>(x−µ) = 0 where µ = (µ1+µ2)/2 and w = E−1(µ1−µ2).
In other words, the decision surface is described by:

x>E−1(µ1 − µ2)−
1
2
(µ1 + µ2)E−1(µ1 − µ2) = 0. (12.5)

Proof: The decision surface is described by P (h1 | x)− P (h2 | x) = 0 which is equivalent to the
statement that the ratio of the posteriors is 1, or equivalently that the log of the ratio is zero, and
using Bayes formula we obtain:

0 = log
P (x | h1)P (h1)
P (x | h2)P (h2)

= log
P (x | h1)
P (x | h2)

.

In other words, the decision surface is described by

log P (x | h1)− log P (x | h2) = −1
2
(x− µ1)>E−1(x− µ1) +

1
2
(x− µ2)>E−1(x− µ2) = 0.

After expanding the two terms we obtain eqn. (12.5).
The conclusion is that since LDA assumes that the data is represented by the class means and

sums over the class covariance matrices, it is not surprising that LDA is ”optimal” when the two
classes are sampled from Normal distributions. The ”optimality” is in fact Bayes optimal.


