67577 — Intro. to Machine Learning Fall semester, 2004/5

Lecture 10: Algebraic Representations 1I: LDA, CCA

Lecturer: Ammnon Shashua Scribe: Amnon Shashua

In the previous lecture we introduced algebraic considerations for dimensionality reduction
which preserve variance. The dimensionality reduction, called PCA, represents a data point x € R"
in a new g-dimensional coordinate system y = U'(x — p) where U is an orthonormal n x g
matrix whose columns consist of the leading ¢ eigenvectors of the (scaled) sample covariance matrix
Si(x—p)(x; — )" of the training data points X1, ..., X,, with mean y = (1/m) Y, x;. We saw that
variance preserving dimensionality reduction is equivalent to (i) de-correlating the training sample
data, and (ii) seeking the g-dimensional subspace of R"™ which is the closest (in least-squares sense)
possible to the original training sample.

In this lecture we extend the variance preserving approach for data representation for labeled
data sets. We will focus on 2-class sets and look for a separating hyperplane:

f(x)=w'x+b,

such that x belongs to the first class if f(x) > 0 and x belongs to the second class if f(x) < 0.
In the statistical literature this type of function is called a linear discriminant function. The
decision boundary is given by the set of points satisfying f(x) = 0 which is a hyperplane. Fisher’s
(1936) Linear Discriminant Analysis (LDA) is a variance preserving approach for finding a linear
discriminant function.

We will then introduce another popular statistical technique called Canonical Correlation Anal-
ysis (CCA) for learning the mapping between input and output vectors using the notion ”angle”
between subspaces.

What is common in the three techniques PCA, LDA and CCA is the use of spectral matrix anal-
ysis — i.e., what can you do with eigenvalues and eigenvectors of matrices representing subspaces
of the data? These techniques produce optimal results for normally distributed data and are very
easy to implement. There is a large variety of uses of spectral analysis in statistical and learning
literature including spectral clustering, Multi Dimensional Scaling (MDS) and data modeling in
general.

10.1 Fisher’s LDA: Basic Idea

To appreciate the general idea behind Fisher’s LDA consider Fig. 10.1. Let the centers of classes
one and two be denoted by w1 and ps respectively. A linear discriminant function is a projection
onto a 1D subspace such that the classes would be separated the most in the 1D subspace. The
obvious first step in this kind of analysis is to make sure that the projected centers fi1, fio would
be separated as much as possible. We can easily see that the direction of the 1D subspace should
be proportional to p; — po as follows:
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Figure 10.1: Linear discriminant analysis based on class centers alone is not sufficient. Seeking a projection
which maximizes the distance between the projected centers will prefer the horizontal axis over the vertical,
yet the two classes overlap on the horizontal axis. The projected distance along the vertical axis is smaller
yet the classes are better separated. The conclusion is that the sample variance of the two classes must be
taken into consideration as well.

The right-hand term is maximized when w &~ p; — uo. As illustrated in Fig. 10.1, this type of
consideration is not sufficient to capture separability in the projected subspace because the spread
(variance) of the data points around their centers also play an important role. For example, the
horizontal axis in the figure separates the centers better than the vertical axis but on the other
hand does a worse job in separating the classes themselves because of the way the data points are
spread around their centers. The argument in favor of separating the centers would work if the

data points were living in a hyper-sphere around the centers, but will not be sufficient otherwise.
The basic idea behind Fisher’s LDA is to consider the sample covariance matrix of the individual
classes as well as their centers, in the following way. The optimal 1D projection would that which
maximizes the variance of the projected centers while minimizes the variance of the projected data
points of each class separately. Mathematically, this idea can be implemented by maximizes the

following ratio:

max M

W s+ S5

)

where s? is the scaled variance of the projected points of the first class:
2 s A2
51 = Z (Xi_:ul) >
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and likewise,

X;€C2

where X = %Xi + b.

We will now formalize this approach and derive its solution. We will begin with a general
description of a multiclass problem where the sample data points belong to ¢ different classes, and
later focus on the case of ¢ = 2.
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10.2 Fisher’s LDA: General Derivation

Let the sample data points S be members of ¢ classes C1,...,C; where the number of points
belonging to class C; is denoted by /; and the total number of the training set is [ =}, l;. Let p;
denote the center of class C; and p denote the center of the complete training set S:

1
i = I Z X
J bfr,€C;
1
=7 in
X; €S

Let Aj be the matrix associated with class C; whose columns consists of the mean shifted data
points:
Aj = [Xl = Mgy ey Xpy — ,uj] X; € C]’.

Then, %AJA;— is the covariance matrix (see Lecture 9) associated with class C;. Let S, (where
J

"w” stands for ”within”) be the sum of the class covariance matrices:
74 N
Sy = Z l—jAjAj .
7

From the discussion in the previous section, it is WWTSUJW which we wish to minimize. To see
why this is so, note

T 2
> 2 WP

Let B be the matrix holding the class centers:

B = [,U'1 T My g — M]?

and let S = %BBT (where ”b” stands for "between” ). From the discussion above it is WWTSI,W =
(i — f1)? which we wish to mazimize. Taken together, we wish to maximize the ratio (called
”Rayleigh’s quotient”):
+
w ' Spw
max J(wW) = —=5—.
W (w) w ! S,w

The necessary condition for optimality is:

oJ  Syw(w'S,w) — S,w(w'S,w)

-2 =0
ow (wlS,w)? ’
From which we obtain the generalized eigensystem:
Syw = J(wW)Sy,w. (10.1)

That is, w is the leading eigenvector of S5} (assuming S, is invertible). The general case of
finding ¢ such axes involves finding the leading generalized eigenvectors of (Sy, Sy, ) — the derivation
is out of scope of this lecture. Note that since S, 1S, is not symmetric there may be no real-value
solution, which is a complication will not pursue further in this course. Instead we will focus now
on the 2-class (¢ = 2) setting below.
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10.3 Fisher’s LDA: 2-class

The general derivation is simplified when there are only two classes. The covariance matrix BB
becomes a rank-1 matrix:

BB = (1 — ) (pr — 1) "+ (2 — p)(p2 — ) " = (1 — p2) (1 — p2) "

As a result, BBw is a vector in direction p; — po. Therefore, the solution for w from eqn. 10.1 is:

w2 S, (i — po).

The decision boundary w' (x — ) = 0 becomes:

1

To— Ta—

xS, = p2) = 5+ p2) 'Sy (i — o) = 0. (10.2)
This decision boundary will surface again in the course when we consider Bayseian inference. It
will be shown that this decision boundary is the Maximum Likelihood solution in the case where
the two classes are normally distributed with means p1, o and with the same covariance matrix

Sw-

10.4 LDA versus SVM

Both LDA and SVM search for a so called ”optimal” linear discriminant function, what is the
difference? The heart of the matter lies in the definition of what constitutes a sufficient compact
representation of the data. In LDA the assumption is that each class can be represented by its
mean vector and its spread (i.e., covariance matrix). This is true for normally distributed data —
but not true in general. This means that we should expect that LDA will produce the optimal
discriminant linear function when each of the classes are normally distributed.

With SVM, on the other hand, there is no assumption on how the data is distributed. Instead,
the emerging result is that the data is represented by the subset of data points which lie on the
boundary between the two classes (the so called support vectors). Rather than making a parametric
assumption on how the data can be captured (i.e., mean and covariance) the theory shows that
the data can be captured by a special subset of points. The tools, as a result, are naturally more
complex (quadratic linear programming versus spectral matrix analysis) — but the advantage is
that optimality is guaranteed without making assumptions on the distribution of the data (i.e.,
distribution free). It can be shown that SVM and LDA would produce the same result if the class
data is normally distributed.

10.5 Canonical Correlation Analysis

CCA is a technique for learning a mapping f(x) =y where x € R¥ and y € R® using the notion of
subspace similarity (an extension of the inner product between two vectors) from a training set of
(xi,¥;), i = 1,...,n. Such a mapping, where y can be any point in RF as opposed to a discrete set
of labels, is often referred to as a "regression” (as opposed to ”classification”).

Like in PCA and LDA, the approach would be to look for projection axes such that the pro-
jection of the input and output vectors on those axes satisfy certain requirements — and like PCA
and LDA the tools we would be using is matrix spectral analysis.
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It will be convenient to stack our vectors as rows of an input matrix A and output matrix B. Let
A be an n x k matrix whose rows are x{ , ...,x,) and B is the n x s matrix whose rows are y{ , ..., y, .
Consider vectors u € R¥ and v € R® and project the input and output data onto them producing
Au = (x{ u,...,x,u) and Bv. The requirement we would like to place on the projection axes is
that Au ~ Bv, or in other words that (Au)' (Bv) is maximal. The requirement therefore is that
the projection of the input points onto the u axis is similar to the projection of the output points
onto the v axis. If we extend this notion to multiple axes uy,...,u, (not necessarily orthogonal)
and vy, ..., vy where ¢ < min(k, s) our requirement becomes that the new coordinates of the input
points projected onto the subspace spanned by the u vectors are similar to the new coordinates
of the output points projected onto the subspace spanned by the v vectors. In other words, we
wish to find two ¢-dimensional subspaces one of RF and the other of R® such that the two sets of
projected points are as aligned as possible.

CCA goes a step further and makes the assumption that the input/output relationship is solely
determined by the relation (angles) between the column spaces of A, B. In other words, the
particular columns of A are not really important, what is important is the space U4 spanned by
the columns. Since g = Au is a point in U4 (a linear combination of the columns of A) and
h = Bv is a point in Ug, then g'h is the cosine angle, cos(¢) between the two axes provided that
we normalize the vectors g and h. If we continue this line of reasoning recursively, we obtain a set
of angles 0 < 6, < ... <6, < (7/2), called "principal angles”, between the two subspaces uniquely
defined as:

cos(0;) = grréz%}; Irlréf?;; g'h (10.3)

subject to:
glg=h"h=1, h'h;=0,g'g, =0, i=1,...,j—1

As a result, we obtain the following optimization function over axes u,v:

maxu' A'Bv st. [[Au|?=1, ||Bv|?=1

To solve this problem we first perform a "QR” factorization of A and B. A "QR” factorization of
a matrix A is a Grahm-Schmidt process resulting in an orthonormal set of vectors arranged as the
columns of a matrix Q4 whose column space is equal to the column space of A, and a matrix R4
which contains the coefficients of the linear combination of the columns of Q) 4 such that A = Q4R 4.
Since orthoganilzation is not unique, the Grahm-Schmidt process perfroms the orthogonalization
such that R4 is an upper-diagonal matrix. Likewise let B = QpRp. Because the column spaces of
A and Q4 are the same, then for every u there exists a t such that Au = Q4t. Our optimization
problem now becomes:

max@' QiQpY st AP =1, [[v]*=1.

)

The solution of this problem is when @ and ¥ are the leading singular vectors of Q}Qp. The
singular value decomposition (SVD) of any matrix E is a decomposition E = UDV " where the
columns of U are the leading eigenvectors of EET, the rows of V| are the leading eigenvectors of
ETE and D is a diagonal matrix whose entries are the corresponding square eigenvalues (note that
the eigenvalues of EET and E'E are the same). The SVD decomposition has the property that
if we keep only the first ¢ leading eigenvectors then UDV T is the closest (in least squares sense)
rank ¢ matrix to F.
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Therefore, let UDVT be the SVD of QXQ B using the first ¢ eigenvectors. Then, our sought
after axes U = [uy,...,u,] is simply R;GU and likewise and the axes V = [vy,...,v,] is equal to
R;V. The axes are called ”canonical vectors”, and the vectors g; = Au; (mutually orthogonal)
are called ”variates”. The concept of principal angles is due to Jordan in 1875, where Hotelling in
1936 is the first to introduce the recursive definition above.

Given a new vector x € R* the resulting vector y can be found by solving the linear system
UTx =V Ty (since our assumption is that in the new basis the coordinates of x and y are similar).

To conclude, the relationship between A and B is captured by creating similar variates, i.e.,
creating subspaces of dimension ¢ such that the projections of the input vectors and the output
vectors have similar coordinates. The process for obtaining the two g-dimensional subspaces is by
performing a QR factorization of A and B followed by an SVD. Here again the spectral analysis of
the input and output data matrices plays a pivoting role in the input/output association.



