
67577 – Intro. to Machine Learning Fall semester, 2004/5

Lecture 1: Introduction: Learning Models I

Lecturer: Amnon Shashua Scribe: Amnon Shashua 1

The course will focus on learning from observations. We will look into the theory and algorithms
of constructing inference engines, that when given a large enough sequence of training ”examples”,
compute a function that matches as close as possible the process generating the data. That is, we
hope that the classification of subsequent examples is close to the best performance an inference
engine exposed to so much training examples can provide.

Noteworthy examples include spam filters, natural speaking language recognition, handwriting
recognition systems (Graffiti, printed, cursive), biometric identification systems and visual pattern
recognition (find faces, people, animals, familiar objects, and make visual interpretations in general
from image input).

The training data for a specific learning problem can be given all in advance. For example, in
a face detection task one could be given a database of face images covering people under different
illumination conditions, pose, hair-style and facial expressions and the learner’s task is to generalize
— meaning to be able to capture the specific regularities and features that make up a face image
and later find faces in novel images. The training data can consist solely of ”positive” instances —
such as in the face detection example — or consist of positive and ”negative” instances (such as
pictures of non-faces in the example above). In the latter case we would say that the training data
is ”labeled”. Generally, the number of labels can be larger than two but in this course will focus
on the 2-class (positive/negative) label domain only. When the label consists of a continuous (say,
real number) domain, the learning problem is referred to as ”regression” instead of classification.
We will focus on classification problems only in this course.

The raining data, on the other hand, may come in an incremental fashion where the learner is
expected to update its model (the target classification function) ”on the fly”. Notable examples
for such settings are missile tracking, portfolio allocation of financial assets, and age pre-fetching
in computers with virtual memory. This type of learning setting is called ”on-line learning”, and
to be more concrete here is an illustrative example2.

Suppose we would like to teach a robot to examine apples and decide whether the apple is of
good quality and thus should be sent to a retailer or it’s of industrial grade and should be sent to
a juice factory. The robot is able to make various tests: it can check the shade of green of each
apple; it can weigh the apple; it can squeeze it a little and check how mushy an apple is; and it
can measure the circumstance of each apple. Each apple is therefore characterized by the following
vector,

(green− level, weight,mushy − level, circumstance) ∈ R4 .

Based on each measurement the robot should decide whether an apple is market quality or industrial
quality. The robot has to start classifying apple from the very first apple it sees. However, whenever
it labels an apple wrongly it gets a feedback from a human operator indicating that it made an
error. Our goal is therefore to a build a “learning” program for the robot so it will make “good”
predictions as fast as possible while making as few mistakes as possible. Put another way, the

1

2This example was taken from Yoram Singer’s course notes, IML’02

1-1

Lecture 1: Introduction: Learning Models I 1-2

learning algorithm should gain experience from its prediction mistakes so as to achieve better
predictions for apples that are yet to be seen.

In this course we will consider both labeled and unlabeled classification problems and both
batch and on-line settings. We will begin with formal definitions of ”learning models” including
the consistency and mistake bound models (this lecture) and the more advanced ”formal learning
model” also known as the Probably Approximate Correct (PAC) model in the next lecture. The
principles of the PAC model will resurface several times throughout the course when we discuss
formal results on generalization (lectures 6,7).

1.1 Notations

We will describe in this section the definitions and notations we will be using in this and subsequent
lectures (more notations would be introduced when appropriate).

• The instance space (also called domain), denoted X, is a space from which the observations
(measurements) are drawn. Examples:

X = {0, 1}n, X = Rn, X = Σ? .

• Input instance, x ∈ X, is a single observation/measurement. Examples:

x = (0, 1, 1, 1, 0, 0), x = (0.5,−2.3, 0, 1, 7.2), x = ”go ahead make my day” .

We denote the individual components of x by xi thus x = (x1, x2, . . . , xn).

• The set of labels, denoted Y , is the set of possible outcomes that can be associated with a
measurement. The label of an instance x is denoted y. Examples:

Y = {−1,+1} (y = 1), Y = R (y = 7), Y = {α, β, γ} (y = β) .

• An example is an instance-label pair (x, y). If |Y | = 2 we typically use {0, 1} or {−1,+1} as
the set of labels. We say that an example (x, y) is a positive example if y = 1 and otherwise
we call it a negative example.

• A training set Z consists of m instance-label pairs:

Z = ((x1, y1), ..., (xm, ym)) = (z1, ..., zm).

In some cases we will refer to the instance training set S = (x1, ...,xm) which consists only
of the input observations without the lables.

So far we just defined a general framework. We now introduce the notion of a concept class
with which we will facilitate learning. A concept (or hypotheses) class C is a set (not necessarily
finite) of functions of the form,

C = {h | h : X → Y } .

Each h ∈ C is called a concept or hypothesis and is also often referred to using other terms such as
a mapping, a predictor, and a classifier. For example, if X = {0, 1}n and Y = {0, 1} then C might
be C = {h | ∃i : h(x) = xi}. Other examples:

Lecture 1: Introduction: Learning Models I 1-3

• Decision Trees: when the instance vectors are binary x ∈ {0, 1}n and Y = {True, False} then
any binary function can be described by a binary tree. Thus, the concept class C consists of
decision trees (|C| < ∞).

• Conjunction learning: A conjunction is a special case of a boolean formula: a literal is a
variable or its negation and a term is a conjunction of literals (i.e., (x1x̄2x̄3)). A target
function is is a term which consists of a subset of the literals. In this case |X| = 2n and
|C| = 3n.

• Threshold formula (separating hyperplanes): X = Rn, a concept h(x) is specified by a vecotr
w ∈ Rn and a scalar b such that h(x) = 1 if w>x ≥ b and h(x) = −1 otherwise.

In most cases we will assume the existence of a target concept function ct(x) ∈ C so that the
training set Z consists of pairs (xi, ct(xi)), i = 1, ...,m. We will define later what we mean when
the target concept is not included in C.

We need to define next what are the goals of the learner in a formal manner. In the PAC
model (which will be introduced in the next lecture) the definition is statistical, but today we will
introduce a simpler definition for online learning known as the mistake-bound model.

1.2 The Mistake-bound Model

We say that a learning algorithm L is consistent if given a training set Z, the algorithm L generates
in polynomial time (over the input length) a hypothesis h ∈ C which satisfies h(xi) = yi, i = 1, ...,m
if such a hypothesis exists. If such a hypothesis does not exist then L terminates and notifies that
such a hypothesis does not exist.

In the mistake-bound model, the goal of the consistent learner is to bound the number of
mistakes made during the learning process, i.e., make the smallest number of mistakes over the
worst training set Z. Formally, let ŷi be the prediction the learner L makes on the input example
xi. If L makes a mistake then ŷi 6= yi. Then, the (largest) number of errors of L with respect to a
sample Z = (x1, y1), . . . (xm, ym) is,

errorZ(L) = max
ct∈C

|{ŷi 6= ct(xi) : (xi, ct(xi)) ∈ Z}| .

Note that we replace yi with ct(xi) since we assumed that there exists a concept ct ∈ C that
generates the labels for instances. However, since we do not know ct we use a worst case definition
by taking the maximum over any h ∈ C. The mistake bound of L, denoted error(L), is defined as
the largest number of errors L that can be obtained on any training sample, that is,

error(L) = max
Z

errorZ(L) .

Definition 1 (MB model) Algorithm L learns a concept class C under the mistake-bound model
if for every training sample Z which is consistent with some ct ∈ C the total number of mistakes
done by L is bounded by a polynomial in the size of the input vector x and the size (number of bits
required for a description) of the simplest and concept in C which is consistent with Z.

To illustrate the use of the MB model, consider the conjunction learning problem mentioned
above. Here is an algorithm:

Lecture 1: Introduction: Learning Models I 1-4

1. Start with the hypothesis h0 = x1x̄1 . . . xnx̄n. Note that this hypothesis is consistent with all
negative examples because it will always return false on any input. Note that this hypothesis is
not an admissible concept (i.e., does not belong to C) because we cannot have in a conjunction
a variable and its negation. So, we artificially add this special case concept to C so that now
|C| = 3n + 1.

2. Wait until you get a positive example xi. Remove the literals which contradict the positive
example. In other words, if the j’th coordinate of xi is ’1’ then remove x̄j from the current
hypothesis, otherwise remove xj . Continue doing so for all positive examples.

3. If the hypothesis is not consistent with a negative example then there is no consistent solution
with the training input. Otherwise terminate when all the examples are processed.

Consider the following example: let n = 4 and ct = x1x̄2x4 and consider the two positive
examples x1 = (1, 0, 0, 1) and x2 = (1, 0, 1, 1). Then,

h0 = x1x̄1x2x̄2x3x̄3x4x̄4, h1 = x1x̄2x̄3x4, h2 = ct.

First we need to convince ourselves that this algorithm will produce a consistent hypothesis if
one exists. For that we prove that the invariant of this algorithm is that the subset of literals of the
target concept ct are always contained in the literals of hypothesis hk after L observes k examples
from Z. We can show this (informally) by induction as follows:

• by construction h0 contains all the literals so in particular ct is contained in h0.

• Let hk be the hypothesis after the k’th example has been proceesed by L. By construction hk

is consistent with the k examples processed so far (because removing literals would not make
previous positive examples inconsistent with the current hypothesis). Assume (the induction
assumption) that ct is contained in hk and we shall prove that hk+1 is consistent with the
k + 1 examples processed and contains ct.

• if xk+1 is negative, then hk+1 = hk so then hk+1 is consistent with the k + 1 examples seen
so far and contains ct (because of the induction hypothesis that hk contains ct).

• if xk+1 is positive, then the appropriate literals from hk are removed so that hk+1 is consistent
with xk+1. Since removing literals does not affect the consistency over the previous positive
examples, then hk+1 is consistent with all previously seen positive examples. Since we assume
that Z is consistent with some hypothesis ct, then it is not possible that a negative example
will be classified as positive by hk+1. Since we removed only those literals which are not
contained in ct, then hk+1 continues to contain ct.

The number of mistakes made by this algorithm is bounded by n + 1. The first mistake will
reduce the number of literals from 2n to n, then each additional mistake will cause the removal of
at least one literal. Therefore it is not possible to make more than n + 1 mistakes.

What happens if there is no consistent hypothesis (i.e., the training set Z is is not consistent
with any conjunction)? Consider a pair of negative and positive contradictory examples from Z. If
the negative example is seen first then the algorithm will not necessarily detect the contradiction
(since our hypothesis starts by accepting all negative examples). Therefore, if we wish to handle
the case of inconsistent training sets then the algorithm should run through Z a number of times
— if the number of mistakes exceeds the upper bound then Z is inconsistent.

Lecture 1: Introduction: Learning Models I 1-5

What about the lower bound? is it possible to introduce a more efficient online algorithm?
one that will have a lower upper bound on the number of mistakes? We will show that n is the
lower bound on the number of mistakes over the worst training sample Z and over all possible
learning algorithms L. In other words, the algorithm we presented above is optimal under the
mistake-bound model.

We will construct the following training sample S: the i’th example xi contains ’0’ in the i’th
coordinate and ’1’ everywhere else. Given a learning algorithm L, the labels we will associate with
S will depend on the predictions L makes on S (recall we want to create the worst training sample
Z for L). The target concept ct will also be determined based on the predictions of L on S (again,
our goal is to create the worst conditions for L). This will be done as follows: if L predicts that
xi is positive, then the literal xi will be included in ct and the label yi would be ’-1’. If L predicts
that xi is negative, then ct will not include the literal xi and the label yi = 1. So we have now a
target concept ct and a training sample Z on which L will makes n mistakes (will make a mistake
on each example seen). In other words, in order that L makes a mistake on each example, we need
to make the labels yi to be the opposite of the prediction L makes on xi. What would be the target
concept consistent with such a training sample? since each example xi has only one coordinate of
’0’ at the position i, then any labeling will be consistent with some target concept and specifically
the one where we include the literal xi in the target concept if yi = −1. As a result, ct will be
consistent with all the negative examples, and because the remaining coordinates are ’1’ then it is
consistent with the positive examples as well.

For illustration, consider the case of n = 3. The x1 = (0, 1, 1),x2 = (1, 0, 1) and x3 = (1, 1, 0).
Let L predict ’+’, ’-’ and ’+’ on S. Then the labels would be y1 = −1, y2 = 1 and y3 = −1. The
target concept would be ct = x1x3.

The problem with the mistake-bound model is that in real life one does not see the worst
training sample. Typically, the training sample Z is drawn from some distribution (unknown, but
very likely to be fixed). The number of mistakes made on Z matters less than the number of
mistakes made on examples not seen by the learning algorithm (test examples). So, the MB model
bounds the number of mistakes but not when those mistakes are made. The When issue introduces
the statistical component to the learning model which is lacking in the MB model. Furthermore,
in addition to a measure of accuracy of the learner (say, number of mistakes on test examples),
we would like to obtain a measure of confidence on the accuracy measure. These notions will be
introduced in the PAC learning model discussed in the next lecture.

