Digital Communication in the Modern World

Data Link Layer:
Multi Access Protocols

http://www.cs.huji.ac.il/~com1
com1@cs.huji.ac.il

Some of the slides have been borrowed from:
Computer Networking: A Top Down Approach Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July 2004.
Intro to the Data Link Layer

Travel analogy

- University sends you to a conference in India
 - taxi: Jerusalem to Ben-Gurion
 - plane: Ben-Gurion to Mumbai
 - plane: Mumbai to Chennai
 - rickshaw: Chennai to conference center

- student = datagram
- university = sending node (application layer)
- travel agent = routing algorithm (network layer)
- transportation mode = data link layer protocol, i.e. running an airline is different than a rickshaw
- travel segment = communication link (physical layer)
Link Layer

- Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-Layer Addressing
- Ethernet
- Hubs and switches
- PPP
Link Layer

Some terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a single link
Link layer

- In the Link layer there are different link types and they have different protocols

- Frame transferred by different link protocols over different links (decided by the network layer):
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link

- Each link protocol provides different services
 - e.g., may or may not provide rdt over link; flow control; etc.

- Link types are grouped into:
 - point-to-point (e.g. between routers, host to ISP, etc.)
 - Broadcast (LAN, wireless)
Link Layer Services

- **Framing, link access:**
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - “MAC” addresses used in frame headers to identify source, dest
 - different from IP address!

- **Reliable delivery between adjacent nodes**
 - similar service as in the transport layer
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-to-end reliability?
Link Layer Services (more)

- **Flow Control:**
 - pacing between adjacent sending and receiving nodes

- **Error Detection:** (e.g. parity check, CRC)
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame

- **Error Correction:** (e.g. two Dimensional Bit Parity)
 - receiver identifies *and corrects* bit error(s) without resorting to retransmission

- **Half-duplex and full-duplex**
 - with half duplex, nodes at both ends of link can transmit, but not at same time
Adaptors (aka NICs)

- Link layer implemented in "adaptor"
 - Ethernet card, PCMCI card, 802.11 card

- Sending side:
 - Encapsulates datagram in a frame
 - Adds error checking bits, rdt, flow control, etc.

- Receiving side:
 - Looks for errors, rdt, flow control, etc
 - Extracts datagram, passes to rcving node
Multiple Access Links and Protocols

Two types of “links“:

- **point-to-point <= Single access**
 - PPP for dial-up access (between host and ISP)
 - point-to-point link between Ethernet switch and host

- **broadcast (shared wire or medium) <= Multiple Access**
 - traditional Ethernet
 - 802.11 wireless LAN
Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time
- “Cocktail Party effect” (“popolitika behavior”)

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination
Ideal Multiple Access Protocol

Broadcast channel of bandwidth R bps

1. When one node wants to transmit, it can send at rate R bps.
2. When M nodes want to transmit, each can send at average rate R/M bps
3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks or slots
4. Simple
MAC Protocols: a taxonomy

Three broad classes:

- **Channel Partitioning**
 - divide channel into smaller “pieces” (time slots, frequency, code)
 - allocate piece to node for exclusive use

- **Random Access**
 - channel not divided, allow collisions
 - try to maximize probability that “everything will be ok”

- “Taking turns”
 - Nodes take turns, but nodes with more to send can take longer turns
Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

![Diagram of TDMA access]
Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access
- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle
Code Division Multiple Access (CDMA)

- used in several wireless broadcast channels standards (cellular, satellite, etc)
- unique “code” assigned to each user; i.e., code set partitioning
- all users share same frequency, but each user has own “chipping” sequence (i.e., code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to “coexist” and transmit simultaneously with minimal interference (if codes are “orthogonal”)
Code Division Multiple Access (CDMA)

- Code vector $\mathbf{C} = (c_1, c_2, ..., c_m, ..., c_M)$; $c_i \in \{1, -1\}$
- Let d_i denote bit i and c_m code bit m,
- Let $Z_i := d_i \cdot c_m$
- Then:

$$d_i = \frac{1}{M} \sum_{m=1}^{M} Z_{i,m} \cdot c_m$$
CDMA Encode/Decode

sender

data bits

d_1 = -1

d_0 = 1

code

1 1 1 1
-1 -1 -1
1 1 1 1
-1 -1 -1

slot 1

channel output

Z_{i,m} = d_i \cdot c_m

channel output

1 1 1 1 1 1
-1 -1 -1

slot 0

d_1 = -1

receiver

received input

code

D_i = \sum_{m=1}^{M} Z_{i,m} \cdot c_m

M

1 1 1 1 1 1 1
-1 -1 -1

slot 1

channel output

slot 0

channel output

d_0 = 1

sender

data bits

d_1 = -1

d_0 = 1

code

1 1 1 1
-1 -1 -1
1 1 1 1
-1 -1 -1

slot 1

channel output

Z_{i,m} = d_i \cdot c_m

channel output

1 1 1 1 1 1
-1 -1 -1

slot 0

d_1 = -1

receiver

received input

code

D_i = \sum_{m=1}^{M} Z_{i,m} \cdot c_m

M

1 1 1 1 1 1 1
-1 -1 -1

slot 1

channel output

slot 0

channel output

d_0 = 1
CDMA: two-sender interference

senders

channel, $z_{i,m}^*$

receiver 1

\[d_i^1 = \sum_{m=1}^{M} z_{i,m}^* c_m^1 \]

\[d_i = \sum_{m=1}^{M} z_{i,m}^* c_m \]

\[d_i^1 = 1 \]

\[d_i = -1 \]
Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no \textit{a priori} coordination among nodes
- two or more transmitting nodes \rightarrow “collision”,
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA
Slotted ALOHA

Assumptions
- all frames same size
- time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation
- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with prob. p until success
Slotted ALOHA

Pros
- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons
- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization
Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send.

- Suppose N nodes with many frames to send, each transmits in slot with probability \(p \).
- prob that node "#1" has success in a slot = \(p(1-p)^{N-1} \).
- prob that any node has a success = \(Np(1-p)^{N-1} \).

- For max efficiency with N nodes, find \(p^* \) that maximizes \(Np(1-p)^{N-1} \).
- For many nodes, take limit of \(Np^*(1-p^*)^{N-1} \) as N goes to infinity, gives \(1/e = 0.37 \).

At best: channel used for useful transmissions 37% of time!
Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1, t_0+1]$
Pure Aloha efficiency

\[P(\text{success by given node}) = P(\text{node transmits}) \cdot \]

\[P(\text{no other node transmits in } [t_0-1,t_0]) \cdot \]

\[P(\text{no other node transmits in } [t_0,t_0+1]) \]

\[= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1} \]

\[= p \cdot (1-p)^{2(N-1)} \]

... choosing optimum \(p \) and then letting \(n \to \infty \) ...

\[= 1/(2e) = .18 \]

Even worse!
CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:
- If channel sensed idle: transmit entire frame
- If channel sensed busy, defer transmission
- Human analogy: don’t interrupt others!
CSMA collisions

Collisions *can still occur:* propagation delay means two nodes may not hear each other’s transmission.

Collision: entire packet transmission time wasted.

Note: role of distance & propagation delay in determining collision probability.
CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage

Collision detection:
- easy in wired LANs: measure signal strengths, compare transmitted, received signals
- difficult in wireless LANs: receiver shut off while transmitting

Human analogy: the polite conversationalist
CSMA/CD collision detection
“Taking Turns” MAC protocols

channel partitioning MAC protocols:
- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols
- efficient at low load: single node can fully utilize channel
- high load: collision overhead

“taking turns” protocols
look for best of both worlds!
“Taking Turns” MAC protocols

Polling:
- master node “invites” slave nodes to transmit in turn
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Token passing:
- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)
Summary of MAC protocols

- What do you do with a shared media?
 - Channel Partitioning, by time, frequency or code
 - Time Division, Frequency Division
 - Random partitioning (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
 - Taking Turns
 - polling from a central site, token passing