
6.3 select Function
This function allows the process to instruct the kernel to wait for any one of multiple events to
occur and to wake up the process only when one or more of these events occurs or when a
specified amount of time has passed.

As an example, we can call select and tell the kernel to return only when:

Any of the descriptors in the set {1, 4, 5} are ready for reading

Any of the descriptors in the set {2, 7} are ready for writing

Any of the descriptors in the set {1, 4} have an exception condition pending

10.2 seconds have elapsed

That is, we tell the kernel what descriptors we are interested in (for reading, writing, or an
exception condition) and how long to wait. The descriptors in which we are interested are not
restricted to sockets; any descriptor can be tested using select.

Berkeley-derived implementations have always allowed I/O multiplexing with any
descriptor. SVR3 originally limited I/O multiplexing to descriptors that were STREAMS
devices (Chapter 31), but this limitation was removed with SVR4.

We start our description of this function with its final argument, which tells the kernel how long to
wait for one of the specified descriptors to become ready. A timeval structure specifies the
number of seconds and microseconds.

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
};

There are three possibilities:

1. Wait forever— Return only when one of the specified descriptors is ready for I/O. For this, we
specify the timeout argument as a null pointer.

2. Wait up to a fixed amount of time— Return when one of the specified descriptors is ready for
I/O, but do not wait beyond the number of seconds and microseconds specified in the
timeval structure pointed to by the timeout argument.

3. Do not wait at all— Return immediately after checking the descriptors. This is called polling.

#include <sys/select.h>

#include <sys/time.h>

int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset, const
struct timeval *timeout);

Returns: positive count of ready descriptors, 0 on timeout, –1 on error

Page 1 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...

To specify this, the timeout argument must point to a timeval structure and the timer value
(the number of seconds and microseconds specified by the structure) must be 0.

The wait in the first two scenarios is normally interrupted if the process catches a signal and
returns from the signal handler.

Berkeley-derived kernels never automatically restart select (p. 527 of TCPv2), while
SVR4 will if the SA_RESTART flag is specified when the signal handler is installed. This
means that for portability, we must be prepared for select to return an error of EINTR
if we are catching signals.

Although the timeval structure lets us specify a resolution in microseconds, the actual resolution
supported by the kernel is often more coarse. For example, many Unix kernels round the timeout
value up to a multiple of 10 ms. There is also a scheduling latency involved, meaning it takes some
time after the timer expires before the kernel schedules this process to run.

On some systems, select will fail with EINVAL if the tv_sec field in the timeout is over
100 million seconds. Of course, that's a very large timeout (over three years) and likely
not very useful, but the point is that the timeval structure can represent values that
are not supported by select.

The const qualifier on the timeout argument means it is not modified by select on return. For
example, if we specify a time limit of 10 seconds, and select returns before the timer expires with
one or more of the descriptors ready or with an error of EINTR, the timeval structure is not
updated with the number of seconds remaining when the function returns. If we wish to know this
value, we must obtain the system time before calling select, and then again when it returns, and
subtract the two (any robust program will take into account that the system time may be adjusted
by either the administrator or by a daemon like ntpd occasionally).

Some Linux versions modify the timeval structure. Therefore, for portability, assume
the timeval structure is undefined upon return, and initialize it before each call to
select. POSIX specifies the const qualifier.

The three middle arguments, readset, writeset, and exceptset, specify the descriptors that we want
the kernel to test for reading, writing, and exception conditions. There are only two exception
conditions currently supported:

1. The arrival of out-of-band data for a socket. We will describe this in more detail in Chapter
24.

2. The presence of control status information to be read from the master side of a pseudo-
terminal that has been put into packet mode. We do not talk about pseudo-terminals in this
book.

A design problem is how to specify one or more descriptor values for each of these three
arguments. select uses descriptor sets, typically an array of integers, with each bit in each integer
corresponding to a descriptor. For example, using 32-bit integers, the first element of the array
corresponds to descriptors 0 through 31, the second element of the array corresponds to
descriptors 32 through 63, and so on. All the implementation details are irrelevant to the
application and are hidden in the fd_set datatype and the following four macros:

void FD_ZERO(fd_set *fdset); /* clear all bits in fdset */

Page 2 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...

We allocate a descriptor set of the fd_set datatype, we set and test the bits in the set using these
macros, and we can also assign it to another descriptor set across an equals sign (=) in C.

What we are describing, an array of integers using one bit per descriptor, is just one
possible way to implement select. Nevertheless, it is common to refer to the individual
descriptors within a descriptor set as bits, as in "turn on the bit for the listening
descriptor in the read set."

We will see in Section 6.10 that the poll function uses a completely different
representation: a variable-length array of structures with one structure per descriptor.

For example, to define a variable of type fd_set and then turn on the bits for descriptors 1, 4, and
5, we write

fd_set rset;

FD_ZERO(&rset); /* initialize the set: all bits off */
FD_SET(1, &rset); /* turn on bit for fd 1 */
FD_SET(4, &rset); /* turn on bit for fd 4 */
FD_SET(5, &rset); /* turn on bit for fd 5 */

It is important to initialize the set, since unpredictable results can occur if the set is allocated as an
automatic variable and not initialized.

Any of the middle three arguments to select, readset, writeset, or exceptset, can be specified as a
null pointer if we are not interested in that condition. Indeed, if all three pointers are null, then we
have a higher precision timer than the normal Unix sleep function (which sleeps for multiples of a
second). The poll function provides similar functionality. Figures C.9 and C.10 of APUE show a
sleep_us function implemented using both select and poll that sleeps for multiples of a
microsecond.

The maxfdp1 argument specifies the number of descriptors to be tested. Its value is the maximum
descriptor to be tested plus one (hence our name of maxfdp1). The descriptors 0, 1, 2, up through
and including maxfdp1–1 are tested.

The constant FD_SETSIZE, defined by including <sys/select.h>, is the number of descriptors in
the fd_set datatype. Its value is often 1024, but few programs use that many descriptors. The
maxfdp1 argument forces us to calculate the largest descriptor that we are interested in and then
tell the kernel this value. For example, given the previous code that turns on the indicators for
descriptors 1, 4, and 5, the maxfdp1 value is 6. The reason it is 6 and not 5 is that we are
specifying the number of descriptors, not the largest value, and descriptors start at 0.

The reason this argument exists, along with the burden of calculating its value, is
purely for efficiency. Although each fd_set has room for many descriptors, typically
1,024, this is much more than the number used by a typical process. The kernel gains
efficiency by not copying unneeded portions of the descriptor set between the process
and the kernel, and by not testing bits that are always 0 (Section 16.13 of TCPv2).

void FD_SET(int fd, fd_set *fdset); /* turn on the bit for fd in fdset */

void FD_CLR(int fd, fd_set *fdset); /* turn off the bit for fd in fdset */

int FD_ISSET(int fd, fd_set *fdset); /* is the bit for fd on in fdset ? */

Page 3 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...

select modifies the descriptor sets pointed to by the readset, writeset, and exceptset pointers.
These three arguments are value-result arguments. When we call the function, we specify the
values of the descriptors that we are interested in, and on return, the result indicates which
descriptors are ready. We use the FD_ISSET macro on return to test a specific descriptor in an
fd_set structure. Any descriptor that is not ready on return will have its corresponding bit cleared
in the descriptor set. To handle this, we turn on all the bits in which we are interested in all the
descriptor sets each time we call select.

The two most common programming errors when using select are to forget to add
one to the largest descriptor number and to forget that the descriptor sets are value-
result arguments. The second error results in select being called with a bit set to 0 in
the descriptor set, when we think that bit is 1.

The return value from this function indicates the total number of bits that are ready across all the
descriptor sets. If the timer value expires before any of the descriptors are ready, a value of 0 is
returned. A return value of –1 indicates an error (which can happen, for example, if the function is
interrupted by a caught signal).

Early releases of SVR4 had a bug in their implementation of select: If the same bit
was on in multiple sets, say a descriptor was ready for both reading and writing, it was
counted only once. Current releases fix this bug.

Under What Conditions Is a Descriptor Ready?

We have been talking about waiting for a descriptor to become ready for I/O (reading or writing) or
to have an exception condition pending on it (out-of-band data). While readability and writability
are obvious for descriptors such as regular files, we must be more specific about the conditions
that cause select to return "ready" for sockets (Figure 16.52 of TCPv2).

1. A socket is ready for reading if any of the following four conditions is true:

a. The number of bytes of data in the socket receive buffer is greater than or equal to the
current size of the low-water mark for the socket receive buffer. A read operation on
the socket will not block and will return a value greater than 0 (i.e., the data that is
ready to be read). We can set this low-water mark using the SO_RCVLOWAT socket
option. It defaults to 1 for TCP and UDP sockets.

b. The read half of the connection is closed (i.e., a TCP connection that has received a
FIN). A read operation on the socket will not block and will return 0 (i.e., EOF).

c. The socket is a listening socket and the number of completed connections is nonzero.
An accept on the listening socket will normally not block, although we will describe a
timing condition in Section 16.6 under which the accept can block.

d. A socket error is pending. A read operation on the socket will not block and will return
an error (–1) with errno set to the specific error condition. These pending errors can
also be fetched and cleared by calling getsockopt and specifying the SO_ERROR socket
option.

2. A socket is ready for writing if any of the following four conditions is true:

a. The number of bytes of available space in the socket send buffer is greater than or

Page 4 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...

equal to the current size of the low-water mark for the socket send buffer and either:
(i) the socket is connected, or (ii) the socket does not require a connection (e.g., UDP).
This means that if we set the socket to nonblocking (Chapter 16), a write operation will
not block and will return a positive value (e.g., the number of bytes accepted by the
transport layer). We can set this low-water mark using the SO_SNDLOWAT socket option.
This low-water mark normally defaults to 2048 for TCP and UDP sockets.

b. The write half of the connection is closed. A write operation on the socket will generate
SIGPIPE (Section 5.12).

c. A socket using a non-blocking connect has completed the connection, or the connect
has failed.

d. A socket error is pending. A write operation on the socket will not block and will return
an error (–1) with errno set to the specific error condition. These pending errors can
also be fetched and cleared by calling getsockopt with the SO_ERROR socket option.

3. A socket has an exception condition pending if there is out-of-band data for the socket or the
socket is still at the out-of-band mark. (We will describe out-of-band data in Chapter 24.)

Our definitions of "readable" and "writable" are taken directly from the kernel's
soreadable and sowriteable macros on pp. 530–531 of TCPv2. Similarly, our
definition of the "exception condition" for a socket is from the soo_select
function on these same pages.

Notice that when an error occurs on a socket, it is marked as both readable and writable by
select.

The purpose of the receive and send low-water marks is to give the application control over how
much data must be available for reading or how much space must be available for writing before
select returns a readable or writable status. For example, if we know that our application has
nothing productive to do unless at least 64 bytes of data are present, we can set the receive low-
water mark to 64 to prevent select from waking us up if less than 64 bytes are ready for reading.

As long as the send low-water mark for a UDP socket is less than the send buffer size (which
should always be the default relationship), the UDP socket is always writable, since a connection is
not required.

Figure 6.7 summarizes the conditions just described that cause a socket to be ready for select.

Figure 6.7. Summary of conditions that cause a socket to be ready for
select.

Page 5 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...

Maximum Number of Descriptors for select

We said earlier that most applications do not use lots of descriptors. It is rare, for example, to find
an application that uses hundreds of descriptors. But, such applications do exist, and they often
use select to multiplex the descriptors. When select was originally designed, the OS normally
had an upper limit on the maximum number of descriptors per process (the 4.2BSD limit was 31),
and select just used this same limit. But, current versions of Unix allow for a virtually unlimited
number of descriptors per process (often limited only by the amount of memory and any
administrative limits), so the question is: How does this affect select?

Many implementations have declarations similar to the following, which are taken from the 4.4BSD
<sys/types.h> header:

/*
 * Select uses bitmasks of file descriptors in longs. These macros
 * manipulate such bit fields (the filesystem macros use chars).
 * FD_SETSIZE may be defined by the user, but the default here should
 * be enough for most uses.
 */
#ifndef FD_SETSIZE
#define FD_SETSIZE 256
#endif

This makes us think that we can just #define FD_SETSIZE to some larger value before including
this header to increase the size of the descriptor sets used by select. Unfortunately, this normally
does not work.

To see what is wrong, notice that Figure 16.53 of TCPv2 declares three descriptor sets
within the kernel and also uses the kernel's definition of FD_SETSIZE as the upper limit.
The only way to increase the size of the descriptor sets is to increase the value of
FD_SETSIZE and then recompile the kernel. Changing the value without recompiling the
kernel is inadequate.

Some vendors are changing their implementation of select to allow the process to define
FD_SETSIZE to a larger value than the default. BSD/OS has changed the kernel implementation to
allow larger descriptor sets, and it also provides four new FD_xxx macros to dynamically allocate
and manipulate these larger sets. From a portability standpoint, however, beware of using large
descriptor sets.

Page 6 of 6

1/2/2005mk:@MSITStore:E:\PhD\Books\UNIX%20Network%20Programming%20Volume%201,%...

