Reminder

- Last class we discussed dynamic programming algorithms for:
 - global alignment
 - local alignment
- All of these assumed a pre-specified scoring rule (substitution matrix):
 \[\sigma : (\Sigma \cup \{-\}) \times (\Sigma \cup \{-\}) \rightarrow \mathbb{R} \]

 that determines the quality of perfect matches, substitutions and indels, independently of neighboring positions.

A Probabilistic Model

- But how do we derive a “good” substitution matrix?
- It should “encourage” pairs, that are probable to change in close sequences, and “punish” others.
- Let’s examine a general probabilistic approach, guided by evolutionary intuitions.
- Assume that we consider only two options:
 - \(M \): the sequences are evolutionary related
 - \(R \): the sequences are unrelated

Unrelated Sequences

- Our model of 2 unrelated sequences \(s, t \) is simple:
 - For each position \(i \), both \(s[i], t[i] \) are sampled independently from some “background” distribution \(q(\cdot) \) over the alphabet \(\Sigma \).
 - Let \(q(a) \) be the probability of seeing letter \(a \) in any position.
- Then the likelihood of \(s, t \) (probability of seeing \(s, t \), given they are unrelated) is:
 \[P(s[1..n], t[1..n] \mid R) = \prod_{i=1}^{n} q(s[i]) \prod_{j=1}^{n} q(t[j]) \]

Related Sequences

- Now let’s assume that each pair of aligned positions \(s[i], t[i] \) evolved from a common ancestor \(\Rightarrow s[i], t[i] \) are dependent!
 - We assume \(s[i], t[i] \) are sampled from some distribution \(p(\cdot, \cdot) \) of letters pairs.
 - Let \(p(a, b) \) be a probability that some ancestral letter evolved into this particular pair of letters.
- Then the likelihood of \(s, t \), given they are related is:
 \[P(s[1..n], t[1..n] \mid M) = \prod_{i=1}^{n} p(s[i], t[i]) \]

Decision Problem

- Given two sequences \(s[1..n] \) and \(t[1..n] \) decide whether they were sampled from \(M \) or from \(R \).
- This is an instance of a decision problem that is quite frequent in statistics: hypothesis testing.
- We want to construct a procedure \(\text{Decide}(s, t) = D(s, t) \) that returns either \(M \) or \(R \).
- Intuitively, we want to compare the likelihoods of the data in both models…
Types of Error

- Our procedure can make two types of errors:
 I. \(s \) and \(t \) are sampled from \(R \) but \(D(s, t) = M \)
 II. \(s \) and \(t \) are sampled from \(M \) but \(D(s, t) = R \)

- Define the following error probabilities:
 \[\alpha(D) = \Pr(D(s, t) = M \mid R) \]
 \[\beta(D) = \Pr(D(s, t) = R \mid M) \]

- We want to find a procedure \(D(s, t) \) that minimizes both types of errors

Neyman-Pearson Lemma

- Suppose that \(D^* \) is such that for some \(k \)
 \[D^*(s, t) = \begin{cases}
 M & \frac{P(s, t \mid M)}{P(s, t \mid R)} > k \\
 R & \frac{P(s, t \mid M)}{P(s, t \mid R)} < k
 \end{cases} \]

- If any other \(D \) is such that \(\alpha(D) \leq \alpha(D^*) \), then \(\beta(D) \geq \beta(D^*) \) \(\rightarrow \) \(D^* \) is optimal

- \(k \) might refer to the weights we wish to give to both types of errors, and on relative abundance of \(M \) comparing to \(R \)

Likelihood Ratio for Alignment

- The likelihood ratio is a quantitative measure of two sequences being derived from a common origin, compared to random.

- Let's see, that it is a natural score for their alignment!

- Plugging in the model, we have that:
 \[\frac{P(s, t \mid M)}{P(s, t \mid R)} = \prod_i \frac{p(s[i], t[i])}{q(s[i])q(t[i])} = \prod_i \frac{p(s[i], t[i])}{q(s[i])q(t[i])} \]

Likelihood Ratio for Alignment

- Taking logarithm of both sides, we get
 \[\log \frac{P(s, t \mid M)}{P(s, t \mid R)} = \log \prod_i \frac{p(s[i], t[i])}{q(s[i])q(t[i])} = \sum_i \log \frac{p(s[i], t[i])}{q(s[i])q(t[i])} \]

- We can see that the (log-)likelihood score decomposes to sum of single position scores, each dependent only on the two aligned letters!

Probabilistic Interpretation of Scoring Rule

- Therefore, if we take our substitution matrix be:
 \[\sigma(a, b) = \log \frac{p(a, b)}{q(a)q(b)} \]

- then the score of an alignment is the log-ratio between the two models likelihoods, which is nice.

 - Score > 0 \(\Rightarrow \) \(M \) is more “probable” (k=1)
 - Score < 0 \(\Rightarrow \) \(R \) is more “probable”

Modeling Assumptions

- It is important to note that this interpretation depends on our modeling assumption of the two hypotheses!!

- For example, if we assume that the letter in each position depends on the letter in the preceding position, then the likelihood ratio will have a different form.
Constructing Scoring Rules

The formula
\[\sigma(a, b) = \log \frac{p(a, b)}{q(a)q(b)} \]

suggests how to construct a scoring rule:
- Estimate \(p(\cdot, \cdot) \) and \(q(\cdot) \) from the data
- Compute \(\sigma(a, b) \) based on \(p(\cdot, \cdot) \) and \(q(\cdot) \)

Estimating Probabilities

- Suppose we are given a long string \(s[1..n] \) of letters from \(\Sigma \)
- We want to estimate the distribution \(q(\cdot) \) that "generated" the sequence
- How should we go about this?
- We build on the theory of parameter estimation in statistics

Statistical Parameter Fitting

- Consider instances \(x[1], x[2], \ldots, x[M] \) such that
 - The set of values that \(x \) can take is known
 - Each is sampled from the same (unknown) distribution of a known family (multinomial, Gaussian, Poisson, etc.)
 - Each is sampled independently of the rest
- The task is to find a parameters set \(\Theta \) defining the most likely distribution \(P(x|\Theta) \), from which the instances could be sampled.
- The parameters \(\Theta \) depend on the given family of probability distributions.

Example: Binomial Experiment

- When tossed, it can land in one of two positions: Head or Tail
- We denote by \(\theta \) the (unknown) probability \(P(H) \).
- Estimation task:
 - Given a sequence of toss samples \(x[1], x[2], \ldots, x[M] \) we want to estimate the probabilities \(P(H) = \theta \) and \(P(T) = 1 - \theta \)

Why Learning is Possible?

- Suppose we perform \(M \) independent flips of the thumbtack
- The number of head we see is a binomial distribution
 \[P(\# Heads = k) = \binom{M}{k} \theta^k (1-\theta)^{M-k} \]
- and thus \(E[\# Heads] = M\theta \)

This suggests, that we can estimate \(\theta \) by
\[\frac{\# Heads}{M} \]

Expected Behavior (\(\theta = 0.5 \))

- From most large datasets, we get a good approximation to \(\theta \)
- How do we derive such estimators in a principled way?
The Likelihood Function

- How good is a particular θ?
 It depends on how likely it is to generate the observed data

 $$L(\theta : D) = P(D | \theta) = \prod_{m} P(x[m] | \theta)$$

- The likelihood for the sequence H,T, T, H, H is

 $$L(\theta : D) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$$

Maximum Likelihood Estimation

- MLE Principle:
 Learn parameters that maximize the likelihood function

 - This is one of the most commonly used estimators in statistics
 - Intuitively appealing

Computing the Likelihood Functions

- To compute the likelihood in the thumbtack example we only require N_H and N_T (the number of heads and the number of tails)

 $$L(\theta : D) = \theta^{N_H} \cdot (1 - \theta)^{N_T}$$

- N_H and N_T are sufficient statistics for the binomial distribution

Example: MLE in Binomial Data

- Applying the MLE principle we get (after differentiating)

 $$\hat{\theta} = \frac{N_H}{N_H + N_T}$$

 (Which coincides with what we would expect)

 Example:

 $(N_H, N_T) = (3, 2)$

 MLE estimate is $3/5 = 0.6$

Sufficient Statistics

- A sufficient statistic is a function of the data that summarizes the relevant information for the likelihood

- Formally, $s(D)$ is a sufficient statistics if for any two datasets D and D'

 - $s(D) = s(D')$

 $$\Rightarrow L(\theta | D) = L(\theta | D')$$

From Binomial to Multinomial

- Suppose X can have the values $1, 2, ..., K$

- We want to learn the parameters $\theta_1, \theta_2, ..., \theta_K$

Sufficient statistics:

- $N_1, N_2, ..., N_K$ - the number of times each outcome is observed

Likelihood function:

$$L(\theta : D) = \prod_{k} \theta_k^{N_k}$$

MLE (differentiation with Lagrange multipliers):

$$\hat{\theta}_k = \frac{N_k}{\sum_i N_i}$$
At last: Estimating $q(\cdot)$

- Suppose we are given a long string $s[1..n]$ of letters from Σ
 - s can be the concatenation of all sequences in our database
- We want to estimate the distribution $q(\cdot)$

Likelihood function:

$$L(q : s) = \prod_{i=1}^{n} q(s[i]) = \prod_{a} q(a)^{N_a}.$$

MLE parameters:

$$q(a) = \frac{N_a}{n}$$

Estimating $p(\cdot, \cdot)$

Intuition:
- Find pair of presumably related aligned sequences $s[1..n], t[1..n]$
- Estimate probability of pairs in the sequence:

$$p(a, b) = \frac{N_{a,b}}{n}$$

- Again, s and t can be the concatenation of many aligned pairs from the database

Problems:
- How do we find pairs of presumably related aligned sequences?
- Can we ensure that the two sequences are indeed based on a common ancestor?
- How far back should this ancestor be?
 - earlier divergence \Rightarrow low sequence similarity
 - later divergence \Rightarrow high sequence similarity
- The substitution score of each 2 letters should depend on the evolutionary distance of the compared sequences!

Let Evolution In

- Again, we need to make some assumptions:
 - Each position changes independently of the rest
 - The probability of mutations is the same in each positions
 - Evolution does not “remember”

Model of Evolution

- How do we model such a process?
- The process (for each position independently) is called a Markov Chain
- A chain is defined by the transition probability $P(X_{t+\Delta} = b | X_t = a)$ - the probability that the next state is b given that the current state is a
- We often describe these probabilities by a matrix:

$$T[\Delta]_{ab} = P(X_{t+\Delta} = b | X_t = a)$$

Two-Step Changes

- Based on $T[\Delta]$, we can compute the probabilities of changes over two time periods

$$P(X_{t+2\Delta} = b | X_t = a) = \sum_c T_{ac} T_{cb}$$

- Thus $T[2\Delta] = T[\Delta] T[\Delta]$
- By induction: $T[k\Delta] = T[\Delta]^k$
Longer Term Changes

Idea:
- Estimate $T[\Delta]$ from some closely related sequences set S
- Use $T[\Delta]$ to compute $T[k\Delta]$
- Derive substitution probability after time $k\Delta$:

 $$p(a, b \mid k\Delta) = p(b \mid a, k\Delta)q(a) = T[k\Delta]_{ab}q(a)$$

 $T[k\Delta]_{ab}$ is the probability of a substitution from a to b after $k\Delta$.

 Note, that the score depends on evolutionary distance, as requested.

Estimating PAM1

- Collect counts N_{ab} of aligned pairs (a, b) in similar sequences in S

 - Sources include phylogenetic trees and closely related sequences (at least 85% positions have exact match)

 - Normalize counts to get transition matrix $T[\Delta]$, such that average number of changes is 1%

 - that is, $\sum_a p(a, a \mid \Delta) = 0.99$

 - this is called 1 point accepted mutation (PAM1) – an evolutionary time unit!

Using PAM

- The matrix PAM-k is defined to be the score based on T^k

 - Historically researchers use PAM250

 - Longer than 100!

 - Original PAM matrices were based on small number of proteins

 - Later versions of PAM use more examples

 - Used to be the most popular scoring rule

Problems with PAM

- PAM extrapolates statistics collected from closely related sequences onto distant ones.

 - But "short-time" substitutions behave differently than "long-time" substitutions:

 - short-time substitutions are dominated by a single nucleotide changes that led to different translation (like L->I)

 - long-time substitutions do not exhibit such behavior, are much more random.

 - Therefore, statistics would be different for different stages in evolution.

BLOSUM (blocks substitution) matrix

- Source: aligned ungapped regions of protein families

 - These are assumed to have a common ancestor

 - Procedure:

 - Group together all sequences in a family with more than e.g. 62% identical residues

 - Count number of substitutions within the same family but across different groups

 - Estimate frequencies of each pair of letters

 - The resulting matrix is called BLOSUM62