
Assignment 4

CSci 3110: Introduction to Algorithms
Sample Solutions

Question 1 Denote the points by p1, p2, . . . , pn, ordered by increasing x-coordinates. We
start with a few observations about the structure of bitonic tours and paths, which will help
us to derive a dynamic programming algorithm for computing a shortest bitonic tour.

Observation 1 Points pn−1 and pn are neighbours in any bitonic tour that visits points
p1, p2, . . . , pn.

Proof. Assume that pn−1 is not a neighbour of pn. Then let pi and pj be the two neighbours
of pn. The tour visits points pi, pj, pn−1, pn in the order pi, pn, pj, pn−1. However, both pi and
pj have smaller x-coordinates than pn−1 and pn. Hence, the tour cannot be bitonic.

Observation 1 implies that edge (pn−1, pn) is present in any bitonic tour that visits all
points. Hence, to find a shortest such tour, it suffices to concentrate on minimizing the
length of the bitonic path from pn−1 to pn that is obtained by removing edge (pn−1, pn) from
the tour. We make the following observation about the structure of this path: Let pk be
the neighbour of pn on this path. If we remove pn, we obtain a bitonic path P ′ from pk to
pn−1. If we remove pn−1 from P ′, we obtain a bitonic path that visits points p1, p2, . . . , pn−2

and has pn−2 as one of its endpoints. So let us concentrate on bitonic paths between any
two points pi and pj, i < j, that visit all points p1, p2, . . . , pj. We call such a path a normal
bitonic path. Observe that the path from pn−1 to pn that we want to compute is normal.
Next we prove that shortest normal bitonic paths have an optimal substructure.

Observation 2 Given a normal bitonic path P with endpoints pi and pj, i < j, let pk be the
neighbour of pj on this path. Then the path P ′ obtained by removing pj from P is a normal
bitonic path with endpoints pi and pk. In particular, pj−1 ∈ {pi, pk}. If P is a shortest
normal bitonic path with endpoints pi and pj, then P ′ is a shortest normal bitonic path with
endpoints pi and pk.

Proof. Clearly, if we remove an endpoint from a bitonic path, the resulting path is still
bitonic. Hence, P ′ is a bitonic path with endpoints pi and pk. Moreover, it has to visit all
points p1, p2, . . . , pj−1 because P visits all points p1, p2, . . . , pj, and pj is the only point we
have removed from P to obtain P ′. Now assume that pj−1 6∈ {pi, pk}. Then P visits points
pi, pk, pj−1, pj in the order pi, pj−1, pk, pj. Since pi and pk have x-coordinates less than those
of pj−1 and pj, P cannot be bitonic, a contradiction.

Now let us prove that P ′ is shortest if P is shortest. Assume that there exists a shorter
normal bitonic path P ′′ from pi to pk. Then we would obtain a shorter bitonic path P ′′′ from

pi to pj by appending edge (pk, pj) to P ′′. Indeed, since x(pj) > x(pk), P ′′′ is bitonic; it is
normal, as it visits all points p1, p2, . . . , pj and has pj as an endpoint; and it is shorter than
P because `(P) = `(P ′) + dist(pk, pj) > `(P ′′) + dist(pk, pj) = `(P ′′′).

From Observation 2, we obtain another simple observation that allows us to derive a
formula for computing the length of a shortest normal bitonic path from pn−1 to pn.

Observation 3 Consider the neighbour pk of pj in a normal bitonic path P with endpoints
pi and pj, i < j. If i = j − 1, we have 1 ≤ k < i. If i < j − 1, we have k = j − 1.

Proof. In the first case, pk has to be a point in {p1, p2, . . . , pj} \ {pi, pj}. This leaves us
with exactly the listed choices. In the second case, we obtain from Observation 2 that one
of the endpoints of the subpath of P obtained by removing pj from P must be pj−1. Since
pi 6= pj−1, we have pk = pj−1.

Making the observation that there exists only one normal bitonic path from p1 to p2,
namely the one consisting of edge (p1, p2), we obtain the following formula for computing
the length `(i, j) of a shortest normal bitonic path with endpoints pi and pj, i < j:

`(i, j) =


dist(pi, pj) if i = 1 and j = 2

`(i, j − 1) + dist(pj−1, pj) if i < j − 1

min1≤k<i(`(k, i) + dist(pk, pj)) if j > 2 and i = j − 1

.

Before we present our algorithm to compute a shortest bitonic travelling-salesman tour,
we make the following observations about the necessary information to construct such a tour,
once we have computed all values `(i, j), 1 ≤ i < j ≤ n. We can obtain a shortest normal
bitonic path from pi to pj by choosing the correct neighbour pk in such a path, recursively
finding a shortest normal bitonic path from pi to pk, and finally appending edge (pk, pj).
How do we find this “correct” neighbour? If i < j−1, there is only one choice: pk = pj−1, by
Observation 3. If i = j−1, pk is the point that minimizes the expression `(k, i)+dist(pk, pj)
because this is the value we have assigned to `(i, j). So, in order to construct a shortest
bitonic travelling-salesman tour, we only have to record, for every pair (i, j), which is the
neighbour pk of pj in a shortest normal bitonic path from pi to pj. We store this information
in an array N ; that is, N [i, j] stores the index k of this neighbour pk.

One other observation is in order: We have to make sure that, whenever we compute
a value `(i, j), the values `(i′, j′) this computation relies on have already been computed.
Now, according to our formula above, the computation of `(i, j) relies on values `(k, j − 1).
Hence, if we fill in the table column by column—assuming that we use i to index the rows
and j to index the columns—everything is in order. What remains to be done is to list the
algorithm:

Bitonic-TSP(p)
1 n← |p|
2 . Compute `(i, j) and N(i, j), for all 1 ≤ i < j < n.
3 for j = 2..n
4 do for i = 1..j − 1
5 do if i = 1 and j = 2
6 then `[i, j]← dist(p[i], p[j])
7 N [i, j]← i
8 else if j > i + 1
9 then `[i, j]← `[i, j − 1] + dist(p[j − 1], p[j])

10 N [i, j]← j − 1
11 else `[i, j]← +∞
12 for k = 1..i− 1
13 do q ← `[k, i] + dist(p[k], p[j])
14 if q < `[i, j]
15 then `[i, j]← q
16 N [i, j]← k
17 . Construct the tour. Stacks S[1] and S[2] will be used to construct the two x-monotone

parts of the tour.
18 Let S be an array of two initially empty stacks S[1] and S[2].
19 k ← 1
20 i = n− 1
21 j = n
22 while j > 1
23 do Push(S[k], j)
24 j ← N [i, j]
25 if j < i
26 then swap i↔ j
27 k ← 3− k
28 Push(S[1], 1)
29 while S[2] is not empty
30 do Push(S[1],Pop(S[2]))
31 for i = 1..n
32 do T [i]← Pop(S[1])
33 return T

The final question to be answered concerns the running time of the algorithm. It is easy
to see that Lines 17–33 take linear time. Indeed, the loop in Lines 31–32 is executed n times
and performs constant work per iteration. The loop in Lines 29–30 is executed |S[2]| times,
and each iteration takes constant time; hence, it suffices to prove that |S[2]| ≤ n after the
execution of Lines 17–28. To prove this, it suffices to show that the loop in Lines 22–27 is
executed at most n− 1 times because every iteration pushes only one entry onto stack S[1]

or S[2]. The loop in Lines 22–27 takes constant time per iteration. It is executed until j = 1.
However, initially j = n, and the computation performed inside the loop guarantees that j
decreases by one in each iteration. Hence, the loop is executed at most n− 1 times.

To analyze the running time of Lines 1–16, we first observe that this part of the algorithm
consists of two nested loops; the code in Lines 5–16 is executed Θ(n2) times because i runs
from 2 to n and in every iteration of the outer loop, j runs from 1 to i − 1. Now, we
perform constant work inside the loop unless i = j − 1. In the latter case, we execute the
loop in Lines 12–16 i − 1 = O(n) times. Since there are only n − 1 pairs (i, j) such that
1 ≤ i = j − 1 < n − 1, we spend linear time in only n − 1 iterations of the two outer
loops and constant time in all other iterations. Hence, the running time of Lines 1–16 is
O(n2 · 1 + n · n) = O(n2).

Question 2 (20 marks)

a. In order to use a greedy algorithm to solve this problem, we have to prove that the
problem has optimal substructure and the greedy-choice property. The former is easy
to prove: Let n be an amount for which we want to give change. Assume that optimal
change for n cents includes a coin of denomination d. Then we obtain optimal change for
n cents by giving optimal change for n−d cents and then adding this d-cent coin. Indeed,
if we could use less coins to give change for n − d cents, we could also use less coins to
give change for n cents by adding a d-cent coin to the set of coins we give as change for
n− d cents.

The greedy-choice property is harder to prove. First, what is an obvious greedy choice to
make? Well, if we want to give change for n cents, a greedy way to try to minimize the
number of coins we use is to start with a coin of largest denomination d such that d ≤ n.
We include this coin in the change and recursively give optimal change for n − d cents.
Let us prove that this works with denominations d0 = 1, d1 = 5, d2 = 10, d3 = 25.

We prove by induction on i and n that optimal change using denominations d0, . . . , di

always includes bn/dic coins of denomination di. This then immediately implies that
optimal change does indeed always include at least one coin of the highest denomination
di ≤ n, which is the greedy choice property we want to prove.

So consider the case i = 0. Then the only choice we have is to give n = bn/d0c pennies.

If i = 1 and n < 5, we can only give pennies, which matches the claim that we give
0 = bn/d1c nickels. If n ≥ 5, there has to be at least one nickel. Otherwise, we could
give better change by replacing 5 pennies with a nickel. By the optimal substructure
property, we obtain optimal change for n cents by adding optimal change for n− 5 cents
to the nickel. By the induction hypothesis, optimal change for n − 5 cents includes
b(n− 5)/d1c = bn/d1c− 1 nickels. Hence, the optimal change for n cents includes bn/d1c
nickels.

If i = 2 and n < 10, we can only give pennies and nickels, which matches the claim that
we give 0 = bn/d2c dimes. If n ≥ 10, there has to be at least one dime. Otherwise,

the optimal change would have to include at least 2 nickels, which we could replace with
a dime to get better change. By the optimal substructure property, we obtain optimal
change for n cents by adding optimal change for n−10 cents to the dime. By the induction
hypothesis, optimal change for n − 10 cents includes b(n − 10)/d2c = bn/d2c − 1 dimes.
Hence, the optimal change for n cents includes bn/d2c dimes.

If i = 3 and n < 25, we can only give pennies, nickels, and dimes, which matches the
claim that we give 0 = bn/d3c quarters. If n ≥ 25, there has to be at least one quarter.
Otherwise, there would have to be two dimes and a nickel if n < 30 or three dimes if
n ≥ 30. In the former case, we could obtain better change by replacing the two dimes
and the nickel with a quarter. In the latter case, we could replace the three dimes with
a quarter and a nickel. By the optimal substructure property, we obtain optimal change
for n cents by adding optimal change for n − 25 cents to the quarter. By the induction
hypothesis, optimal change for n− 25 cents includes b(n− 25)/d3c = bn/d3c− 1 quarters.
Hence, the optimal change for n cents includes bn/d3c quarters.

From this discussion, we conclude that the following algorithm gives optimal change. The
arguments are:

• n: the amount we want to change

• k: the number of denominations− 1 (since indexing starts at 0)

• d: an array of denominations sorted from the lowest to the highest

The algorithm returns an array C of size k such that C[i], 0 ≤ i ≤ k, is the number of
coins of denomination d[i] that have to be included in optimal change for n cents.

Greedy-Change(n, k, d)
1 . Initially, we have not given any change yet.
2 for i = 0..d
3 do C[i]← 0
4 . Now give change.
5 i← k
6 while n > 0
7 do if n ≥ d[i]
8 then n← n− d[i]
9 C[i]← C[i] + 1

10 else i← i− 1
11 return C

The running time of the algorithm is O(k + n). To see this, observe that the for-loop
in Lines 2–3 is executed k times; the while-loop in Lines 6–10 is executed until n = 0.
However, in every iteration either i decreases by one or n decreases by di ≥ 1. Hence,
the while-loop is executed O(k +n) times. Since every iteration takes constant time, this
establishes the claimed time bound.

b. To give optimal change using denominations d0, d1, . . . , dk such that di = ci, for some
integer c > 1, we use the algorithm from Question a. Our proof of the optimal sub-
structure property in Question a does not rely on any particular properties of the coin
denominations. Hence, it remains valid. What we have to verify is that, for denomina-
tions d0, d1, . . . , dk, the greedy strategy of choosing a largest denomination di ≤ n and
then giving optimal change for the amount n− di gives optimal change. Again, we prove
by induction on i and n that optimal change for n cents using denominations d0, d1, . . . , di

includes bn/dic coins of denomination di.

The base case (i = 0) is to give n = bn/d0c coins of denomination d0 = 1. So assume
that i > 0. If n < di, then we can only use coins d0, d1, . . . , di−1 to give change for
n cents. Hence, our claim holds that we give 0 = bn/dic coins of denomination di. If
n ≥ di, we observe that optimal change has to include at least one coin of denomination
di. Otherwise, the induction hypothesis implies that optimal change includes bn/di−1b≥
di/di−1 = c coins of denomination di−1; c of them can be replaced with a single coin
of denomination di. Since optimal change contains at least one coin of denomination
di if n ≥ di, we conclude from the optimal substructure property that we can obtain
optimal change for n cents by adding this coin of denomination di to optimal change
for n − di cents. By the induction hypothesis, optimal change for n − di cents includes
b(n − di)/dic = bn/dic − 1 coins of denomination di. Hence, optimal change for n cents
includes bn/dic coins of denomination di, as claimed.

c. Here’s an example: d0 = 1, d1 = 7, and d2 = 10. For 14 cents, our algorithm would
produce 5 coins 10 + 1 + 1 + 1 + 1. Optimal change is 7 + 7.

d. We have shown in the answer to Question a that the problem has optimal substructure.
This proof was independent of the coin denominations. Hence, we can use a dynamic
programming algorithm based on the following equation, where N(i) denotes the number
of coins in an optimal solution for i cents:

N(i) =

0 if i = 0

min{1 + N(i− dj) : 1 ≤ j ≤ k and dj ≤ i} if i > 0

The algorithm is the following:

Optimal-Change(n, k, d)
1 N [0]← 0
2 for i = 1..n
3 do N [i]← +∞
4 for j = k, k − 1, . . . , 0
5 do if d[j] ≤ i
6 then q ← N [i− d[j]] + 1
7 if q < N [i]
8 then N [i]← q
9 . G[i] is the largest coin denomination used in optimal

change for i cents.
10 G[i]← d[j]
11 for i = 0..k
12 do C[i]← 0
13 while n > 0
14 do C[G[n]]← C[G[n]] + 1
15 n← n−G[n]
16 return C

The correctness of this algorithm follows from our above discussion. The running time
is O(kn): To see this, we have to count how often every loop is executed because, inside
each loop, we perform only constant work. The loop in Lines 2–10 is executed n time;
the loop in Lines 4–10 is executed k +1 times per iteration of the outer loop; hence, Lines
1–10 take O(kn) time. The loop in Lines 11–12 is executed k+1 times. The loop in Lines
13–15 is executed at most n times because it is executed until n = 0 and n decreases by
at least one in every iteration of the loop. Hence, Lines 11–16 take O(n + k) time, and
the total running time is indeed O(kn).

