Assignment 4

CSci 3110: Introduction to Algorithms

Sample Solutions

Question 1 Denote the points by $p_{1}, p_{2}, \ldots, p_{n}$, ordered by increasing x-coordinates. We start with a few observations about the structure of bitonic tours and paths, which will help us to derive a dynamic programming algorithm for computing a shortest bitonic tour.

Observation 1 Points p_{n-1} and p_{n} are neighbours in any bitonic tour that visits points $p_{1}, p_{2}, \ldots, p_{n}$.

Proof. Assume that p_{n-1} is not a neighbour of p_{n}. Then let p_{i} and p_{j} be the two neighbours of p_{n}. The tour visits points $p_{i}, p_{j}, p_{n-1}, p_{n}$ in the order $p_{i}, p_{n}, p_{j}, p_{n-1}$. However, both p_{i} and p_{j} have smaller x-coordinates than p_{n-1} and p_{n}. Hence, the tour cannot be bitonic.

Observation 1 implies that edge $\left(p_{n-1}, p_{n}\right)$ is present in any bitonic tour that visits all points. Hence, to find a shortest such tour, it suffices to concentrate on minimizing the length of the bitonic path from p_{n-1} to p_{n} that is obtained by removing edge $\left(p_{n-1}, p_{n}\right)$ from the tour. We make the following observation about the structure of this path: Let p_{k} be the neighbour of p_{n} on this path. If we remove p_{n}, we obtain a bitonic path P^{\prime} from p_{k} to p_{n-1}. If we remove p_{n-1} from P^{\prime}, we obtain a bitonic path that visits points $p_{1}, p_{2}, \ldots, p_{n-2}$ and has p_{n-2} as one of its endpoints. So let us concentrate on bitonic paths between any two points p_{i} and $p_{j}, i<j$, that visit all points $p_{1}, p_{2}, \ldots, p_{j}$. We call such a path a normal bitonic path. Observe that the path from p_{n-1} to p_{n} that we want to compute is normal. Next we prove that shortest normal bitonic paths have an optimal substructure.

Observation 2 Given a normal bitonic path P with endpoints p_{i} and $p_{j}, i<j$, let p_{k} be the neighbour of p_{j} on this path. Then the path P^{\prime} obtained by removing p_{j} from P is a normal bitonic path with endpoints p_{i} and p_{k}. In particular, $p_{j-1} \in\left\{p_{i}, p_{k}\right\}$. If P is a shortest normal bitonic path with endpoints p_{i} and p_{j}, then P^{\prime} is a shortest normal bitonic path with endpoints p_{i} and p_{k}.

Proof. Clearly, if we remove an endpoint from a bitonic path, the resulting path is still bitonic. Hence, P^{\prime} is a bitonic path with endpoints p_{i} and p_{k}. Moreover, it has to visit all points $p_{1}, p_{2}, \ldots, p_{j-1}$ because P visits all points $p_{1}, p_{2}, \ldots, p_{j}$, and p_{j} is the only point we have removed from P to obtain P^{\prime}. Now assume that $p_{j-1} \notin\left\{p_{i}, p_{k}\right\}$. Then P visits points $p_{i}, p_{k}, p_{j-1}, p_{j}$ in the order $p_{i}, p_{j-1}, p_{k}, p_{j}$. Since p_{i} and p_{k} have x-coordinates less than those of p_{j-1} and p_{j}, P cannot be bitonic, a contradiction.

Now let us prove that P^{\prime} is shortest if P is shortest. Assume that there exists a shorter normal bitonic path $P^{\prime \prime}$ from p_{i} to p_{k}. Then we would obtain a shorter bitonic path $P^{\prime \prime \prime}$ from
p_{i} to p_{j} by appending edge $\left(p_{k}, p_{j}\right)$ to $P^{\prime \prime}$. Indeed, since $x\left(p_{j}\right)>x\left(p_{k}\right), P^{\prime \prime \prime}$ is bitonic; it is normal, as it visits all points $p_{1}, p_{2}, \ldots, p_{j}$ and has p_{j} as an endpoint; and it is shorter than P because $\ell(P)=\ell\left(P^{\prime}\right)+\operatorname{dist}\left(p_{k}, p_{j}\right)>\ell\left(P^{\prime \prime}\right)+\operatorname{dist}\left(p_{k}, p_{j}\right)=\ell\left(P^{\prime \prime \prime}\right)$.

From Observation 2, we obtain another simple observation that allows us to derive a formula for computing the length of a shortest normal bitonic path from p_{n-1} to p_{n}.

Observation 3 Consider the neighbour p_{k} of p_{j} in a normal bitonic path P with endpoints p_{i} and $p_{j}, i<j$. If $i=j-1$, we have $1 \leq k<i$. If $i<j-1$, we have $k=j-1$.

Proof. In the first case, p_{k} has to be a point in $\left\{p_{1}, p_{2}, \ldots, p_{j}\right\} \backslash\left\{p_{i}, p_{j}\right\}$. This leaves us with exactly the listed choices. In the second case, we obtain from Observation 2 that one of the endpoints of the subpath of P obtained by removing p_{j} from P must be p_{j-1}. Since $p_{i} \neq p_{j-1}$, we have $p_{k}=p_{j-1}$.

Making the observation that there exists only one normal bitonic path from p_{1} to p_{2}, namely the one consisting of edge (p_{1}, p_{2}), we obtain the following formula for computing the length $\ell(i, j)$ of a shortest normal bitonic path with endpoints p_{i} and $p_{j}, i<j$:

$$
\ell(i, j)=\left\{\begin{array}{ll}
\operatorname{dist}\left(p_{i}, p_{j}\right) & \text { if } i=1 \text { and } j=2 \\
\ell(i, j-1)+\operatorname{dist}\left(p_{j-1}, p_{j}\right) & \text { if } i<j-1 \\
\min _{1 \leq k<i}\left(\ell(k, i)+\operatorname{dist}\left(p_{k}, p_{j}\right)\right) & \text { if } j>2 \text { and } i=j-1
\end{array} .\right.
$$

Before we present our algorithm to compute a shortest bitonic travelling-salesman tour, we make the following observations about the necessary information to construct such a tour, once we have computed all values $\ell(i, j), 1 \leq i<j \leq n$. We can obtain a shortest normal bitonic path from p_{i} to p_{j} by choosing the correct neighbour p_{k} in such a path, recursively finding a shortest normal bitonic path from p_{i} to p_{k}, and finally appending edge $\left(p_{k}, p_{j}\right)$. How do we find this "correct" neighbour? If $i<j-1$, there is only one choice: $p_{k}=p_{j-1}$, by Observation 3. If $i=j-1, p_{k}$ is the point that minimizes the expression $\ell(k, i)+\operatorname{dist}\left(p_{k}, p_{j}\right)$ because this is the value we have assigned to $\ell(i, j)$. So, in order to construct a shortest bitonic travelling-salesman tour, we only have to record, for every pair (i, j), which is the neighbour p_{k} of p_{j} in a shortest normal bitonic path from p_{i} to p_{j}. We store this information in an array N; that is, $N[i, j]$ stores the index k of this neighbour p_{k}.

One other observation is in order: We have to make sure that, whenever we compute a value $\ell(i, j)$, the values $\ell\left(i^{\prime}, j^{\prime}\right)$ this computation relies on have already been computed. Now, according to our formula above, the computation of $\ell(i, j)$ relies on values $\ell(k, j-1)$. Hence, if we fill in the table column by column-assuming that we use i to index the rows and j to index the columns - everything is in order. What remains to be done is to list the algorithm:

Bitonic-TSP (p)

$$
\begin{aligned}
& 1 n \leftarrow|p| \\
& 2 \triangleright \text { Compute } \ell(i, j) \text { and } N(i, j) \text {, for all } 1 \leq i<j<n \text {. } \\
& 3 \text { for } j=2 . . n \\
& \text { do for } i=1 . . j-1 \\
& \text { do if } i=1 \text { and } j=2 \\
& \text { then } \ell[i, j] \leftarrow \operatorname{dist}(p[i], p[j]) \\
& N[i, j] \leftarrow i \\
& \text { else if } j>i+1 \\
& \text { then } \ell[i, j] \leftarrow \ell[i, j-1]+\operatorname{dist}(p[j-1], p[j]) \\
& N[i, j] \leftarrow j-1 \\
& \text { else } \ell[i, j] \leftarrow+\infty \\
& \text { for } k=1 . . i-1 \\
& \text { do } q \leftarrow \ell[k, i]+\operatorname{dist}(p[k], p[j]) \\
& \text { if } q<\ell[i, j] \\
& \text { then } \ell[i, j] \leftarrow q \\
& N[i, j] \leftarrow k
\end{aligned}
$$

$17 \triangleright$ Construct the tour. Stacks $S[1]$ and $S[2]$ will be used to construct the two x-monotone parts of the tour.
18 Let S be an array of two initially empty stacks $S[1]$ and $S[2]$.
$9 k \leftarrow 1$
$20 i=n-1$
$21 j=n$
22 while $j>1$
23 do $\operatorname{Push}(S[k], j)$
$24 \quad j \leftarrow N[i, j]$
25 if $j<i$
$26 \quad$ then swap $i \leftrightarrow j$
27

$$
k \leftarrow 3-k
$$

$\operatorname{Push}(S[1], 1)$
while $S[2]$ is not empty
do $\operatorname{Push}(S[1], \operatorname{Pop}(S[2]))$
for $i=1 . . n$
do $T[i] \leftarrow \operatorname{Pop}(S[1])$
return T
The final question to be answered concerns the running time of the algorithm. It is easy to see that Lines 17-33 take linear time. Indeed, the loop in Lines 31-32 is executed n times and performs constant work per iteration. The loop in Lines $29-30$ is executed $|S[2]|$ times, and each iteration takes constant time; hence, it suffices to prove that $|S[2]| \leq n$ after the execution of Lines $17-28$. To prove this, it suffices to show that the loop in Lines $22-27$ is executed at most $n-1$ times because every iteration pushes only one entry onto stack $S[1]$
or $S[2]$. The loop in Lines $22-27$ takes constant time per iteration. It is executed until $j=1$. However, initially $j=n$, and the computation performed inside the loop guarantees that j decreases by one in each iteration. Hence, the loop is executed at most $n-1$ times.

To analyze the running time of Lines $1-16$, we first observe that this part of the algorithm consists of two nested loops; the code in Lines 5-16 is executed $\Theta\left(n^{2}\right)$ times because i runs from 2 to n and in every iteration of the outer loop, j runs from 1 to $i-1$. Now, we perform constant work inside the loop unless $i=j-1$. In the latter case, we execute the loop in Lines $12-16 i-1=\mathcal{O}(n)$ times. Since there are only $n-1$ pairs (i, j) such that $1 \leq i=j-1<n-1$, we spend linear time in only $n-1$ iterations of the two outer loops and constant time in all other iterations. Hence, the running time of Lines $1-16$ is $\mathcal{O}\left(n^{2} \cdot 1+n \cdot n\right)=\mathcal{O}\left(n^{2}\right)$.

Question 2 (20 marks)

a. In order to use a greedy algorithm to solve this problem, we have to prove that the problem has optimal substructure and the greedy-choice property. The former is easy to prove: Let n be an amount for which we want to give change. Assume that optimal change for n cents includes a coin of denomination d. Then we obtain optimal change for n cents by giving optimal change for $n-d$ cents and then adding this d-cent coin. Indeed, if we could use less coins to give change for $n-d$ cents, we could also use less coins to give change for n cents by adding a d-cent coin to the set of coins we give as change for $n-d$ cents.

The greedy-choice property is harder to prove. First, what is an obvious greedy choice to make? Well, if we want to give change for n cents, a greedy way to try to minimize the number of coins we use is to start with a coin of largest denomination d such that $d \leq n$. We include this coin in the change and recursively give optimal change for $n-d$ cents. Let us prove that this works with denominations $d_{0}=1, d_{1}=5, d_{2}=10, d_{3}=25$.
We prove by induction on i and n that optimal change using denominations d_{0}, \ldots, d_{i} always includes $\left\lfloor n / d_{i}\right\rfloor$ coins of denomination d_{i}. This then immediately implies that optimal change does indeed always include at least one coin of the highest denomination $d_{i} \leq n$, which is the greedy choice property we want to prove.
So consider the case $i=0$. Then the only choice we have is to give $n=\left\lfloor n / d_{0}\right\rfloor$ pennies.
If $i=1$ and $n<5$, we can only give pennies, which matches the claim that we give $0=\left\lfloor n / d_{1}\right\rfloor$ nickels. If $n \geq 5$, there has to be at least one nickel. Otherwise, we could give better change by replacing 5 pennies with a nickel. By the optimal substructure property, we obtain optimal change for n cents by adding optimal change for $n-5$ cents to the nickel. By the induction hypothesis, optimal change for $n-5$ cents includes $\left\lfloor(n-5) / d_{1}\right\rfloor=\left\lfloor n / d_{1}\right\rfloor-1$ nickels. Hence, the optimal change for n cents includes $\left\lfloor n / d_{1}\right\rfloor$ nickels.
If $i=2$ and $n<10$, we can only give pennies and nickels, which matches the claim that we give $0=\left\lfloor n / d_{2}\right\rfloor$ dimes. If $n \geq 10$, there has to be at least one dime. Otherwise,
the optimal change would have to include at least 2 nickels, which we could replace with a dime to get better change. By the optimal substructure property, we obtain optimal change for n cents by adding optimal change for $n-10$ cents to the dime. By the induction hypothesis, optimal change for $n-10$ cents includes $\left\lfloor(n-10) / d_{2}\right\rfloor=\left\lfloor n / d_{2}\right\rfloor-1$ dimes. Hence, the optimal change for n cents includes $\left\lfloor n / d_{2}\right\rfloor$ dimes.
If $i=3$ and $n<25$, we can only give pennies, nickels, and dimes, which matches the claim that we give $0=\left\lfloor n / d_{3}\right\rfloor$ quarters. If $n \geq 25$, there has to be at least one quarter. Otherwise, there would have to be two dimes and a nickel if $n<30$ or three dimes if $n \geq 30$. In the former case, we could obtain better change by replacing the two dimes and the nickel with a quarter. In the latter case, we could replace the three dimes with a quarter and a nickel. By the optimal substructure property, we obtain optimal change for n cents by adding optimal change for $n-25$ cents to the quarter. By the induction hypothesis, optimal change for $n-25$ cents includes $\left\lfloor(n-25) / d_{3}\right\rfloor=\left\lfloor n / d_{3}\right\rfloor-1$ quarters. Hence, the optimal change for n cents includes $\left\lfloor n / d_{3}\right\rfloor$ quarters.
From this discussion, we conclude that the following algorithm gives optimal change. The arguments are:

- n : the amount we want to change
- k : the number of denominations -1 (since indexing starts at 0$)$
- d : an array of denominations sorted from the lowest to the highest

The algorithm returns an array C of size k such that $C[i], 0 \leq i \leq k$, is the number of coins of denomination $d[i]$ that have to be included in optimal change for n cents.

```
Greedy-Change \((n, k, d)\)
    \(\triangleright\) Initially, we have not given any change yet.
    for \(i=0 . . d\)
        do \(C[i] \leftarrow 0\)
    \(\triangleright\) Now give change.
    \(i \leftarrow k\)
    while \(n>0\)
        do if \(n \geq d[i]\)
            then \(n \leftarrow n-d[i]\)
                        \(C[i] \leftarrow C[i]+1\)
            else \(i \leftarrow i-1\)
    return \(C\)
```

The running time of the algorithm is $\mathcal{O}(k+n)$. To see this, observe that the for-loop in Lines $2-3$ is executed k times; the while-loop in Lines $6-10$ is executed until $n=0$. However, in every iteration either i decreases by one or n decreases by $d_{i} \geq 1$. Hence, the while-loop is executed $\mathcal{O}(k+n)$ times. Since every iteration takes constant time, this establishes the claimed time bound.
b. To give optimal change using denominations $d_{0}, d_{1}, \ldots, d_{k}$ such that $d_{i}=c^{i}$, for some integer $c>1$, we use the algorithm from Question a. Our proof of the optimal substructure property in Question a does not rely on any particular properties of the coin denominations. Hence, it remains valid. What we have to verify is that, for denominations $d_{0}, d_{1}, \ldots, d_{k}$, the greedy strategy of choosing a largest denomination $d_{i} \leq n$ and then giving optimal change for the amount $n-d_{i}$ gives optimal change. Again, we prove by induction on i and n that optimal change for n cents using denominations $d_{0}, d_{1}, \ldots, d_{i}$ includes $\left\lfloor n / d_{i}\right\rfloor$ coins of denomination d_{i}.
The base case $(i=0)$ is to give $n=\left\lfloor n / d_{0}\right\rfloor$ coins of denomination $d_{0}=1$. So assume that $i>0$. If $n<d_{i}$, then we can only use coins $d_{0}, d_{1}, \ldots, d_{i-1}$ to give change for n cents. Hence, our claim holds that we give $0=\left\lfloor n / d_{i}\right\rfloor$ coins of denomination d_{i}. If $n \geq d_{i}$, we observe that optimal change has to include at least one coin of denomination d_{i}. Otherwise, the induction hypothesis implies that optimal change includes $\left\lfloor n / d_{i-1}\lfloor\geq\right.$ $d_{i} / d_{i-1}=c$ coins of denomination $d_{i-1} ; c$ of them can be replaced with a single coin of denomination d_{i}. Since optimal change contains at least one coin of denomination d_{i} if $n \geq d_{i}$, we conclude from the optimal substructure property that we can obtain optimal change for n cents by adding this coin of denomination d_{i} to optimal change for $n-d_{i}$ cents. By the induction hypothesis, optimal change for $n-d_{i}$ cents includes $\left\lfloor\left(n-d_{i}\right) / d_{i}\right\rfloor=\left\lfloor n / d_{i}\right\rfloor-1$ coins of denomination d_{i}. Hence, optimal change for n cents includes $\left\lfloor n / d_{i}\right\rfloor$ coins of denomination d_{i}, as claimed.
c. Here's an example: $d_{0}=1, d_{1}=7$, and $d_{2}=10$. For 14 cents, our algorithm would produce 5 coins $10+1+1+1+1$. Optimal change is $7+7$.
d. We have shown in the answer to Question a that the problem has optimal substructure. This proof was independent of the coin denominations. Hence, we can use a dynamic programming algorithm based on the following equation, where $N(i)$ denotes the number of coins in an optimal solution for i cents:

$$
N(i)= \begin{cases}0 & \text { if } i=0 \\ \min \left\{1+N\left(i-d_{j}\right): 1 \leq j \leq k \text { and } d_{j} \leq i\right\} & \text { if } i>0\end{cases}
$$

The algorithm is the following:

```
Optimal-Change \((n, k, d)\)
    \(1 N[0] \leftarrow 0\)
    for \(i=1\).. \(n\)
    do \(N[i] \leftarrow+\infty\)
            for \(j=k, k-1, \ldots, 0\)
                        do if \(d[j] \leq i\)
                            then \(q \leftarrow N[i-d[j]]+1\)
                                    if \(q<N[i]\)
                                    then \(N[i] \leftarrow q\)
                                    \(\triangleright G[i]\) is the largest coin denomination used in optimal
                                    change for \(i\) cents.
                                    \(G[i] \leftarrow d[j]\)
    for \(i=0 . . k\)
    do \(C[i] \leftarrow 0\)
    while \(n>0\)
        do \(C[G[n]] \leftarrow C[G[n]]+1\)
        \(n \leftarrow n-G[n]\)
    return \(C\)
```

The correctness of this algorithm follows from our above discussion. The running time is $\mathcal{O}(k n)$: To see this, we have to count how often every loop is executed because, inside each loop, we perform only constant work. The loop in Lines $2-10$ is executed n time; the loop in Lines $4-10$ is executed $k+1$ times per iteration of the outer loop; hence, Lines $1-10$ take $\mathcal{O}(k n)$ time. The loop in Lines $11-12$ is executed $k+1$ times. The loop in Lines $13-15$ is executed at most n times because it is executed until $n=0$ and n decreases by at least one in every iteration of the loop. Hence, Lines 11-16 take $\mathcal{O}(n+k)$ time, and the total running time is indeed $\mathcal{O}(k n)$.

