Assignment 4
CSci 3110: Introduction to Algorithms

Sample Solutions

Question 1 Denote the points by pi,ps,...,pn, ordered by increasing z-coordinates. We
start with a few observations about the structure of bitonic tours and paths, which will help
us to derive a dynamic programming algorithm for computing a shortest bitonic tour.

Observation 1 Points p, ; and p, are neighbours in any bitonic tour that visits points
P1,P2,---Dn-

Proof. Assume that p,_; is not a neighbour of p,. Then let p; and p; be the two neighbours
of p,,. The tour visits points p;, p;, pn—1, pn in the order p;, pn, pj, Pn—1. However, both p;, and
p; have smaller z-coordinates than p,_; and p,. Hence, the tour cannot be bitonic. O

Observation 1 implies that edge (p,_1,p,) is present in any bitonic tour that visits all
points. Hence, to find a shortest such tour, it suffices to concentrate on minimizing the
length of the bitonic path from p,_; to p, that is obtained by removing edge (p,_1,p,) from
the tour. We make the following observation about the structure of this path: Let py be
the neighbour of p, on this path. If we remove p,,, we obtain a bitonic path P’ from p;, to
Prn_1. If we remove p,_; from P’, we obtain a bitonic path that visits points p1, pa, ..., Pn_2
and has p,_» as one of its endpoints. So let us concentrate on bitonic paths between any
two points p; and p;, ¢ < j, that visit all points pi, ps,...,p;. We call such a path a normal
bitonic path. Observe that the path from p,_; to p, that we want to compute is normal.
Next we prove that shortest normal bitonic paths have an optimal substructure.

Observation 2 Given a normal bitonic path P with endpoints p; and p;, i < j, let p; be the
neighbour of p; on this path. Then the path P’ obtained by removing p; from P is a normal
bitonic path with endpoints p; and py. In particular, p;_; € {p;,pr}. If P is a shortest
normal bitonic path with endpoints p; and p;, then P’ is a shortest normal bitonic path with
endpoints p; and py.

Proof. Clearly, if we remove an endpoint from a bitonic path, the resulting path is still
bitonic. Hence, P’ is a bitonic path with endpoints p; and pg. Moreover, it has to visit all
points pq,pa,...,pj—1 because P visits all points pi,ps,...,p;, and p; is the only point we
have removed from P to obtain P’. Now assume that p;_1 & {p;, px}. Then P visits points
Dis Pk, Pj—1,p; in the order p;, p;_1, px, pj. Since p; and p; have x-coordinates less than those
of pj_; and p;, P cannot be bitonic, a contradiction.

Now let us prove that P’ is shortest if P is shortest. Assume that there exists a shorter
normal bitonic path P” from p; to p,. Then we would obtain a shorter bitonic path P” from

pi to p; by appending edge (px,p;) to P”. Indeed, since z(p;) > x(py), P" is bitonic; it is
normal, as it visits all points pi,ps,...,p; and has p; as an endpoint; and it is shorter than
P because ((P) = ((P") + dist(pg, pj) > ((P") + dist(px, pj) = L(P"). O

From Observation 2, we obtain another simple observation that allows us to derive a
formula for computing the length of a shortest normal bitonic path from p,,_1 to p,.

Observation 3 Consider the neighbour pj of p; in a normal bitonic path P with endpoints
piand p;, 1 <j. lfi=j—1, wehave 1 <k <. Ift <j—1, we have k =7 — 1.

Proof. In the first case, p; has to be a point in {p1,ps,...,p;} \ {pi,p;}. This leaves us
with exactly the listed choices. In the second case, we obtain from Observation 2 that one
of the endpoints of the subpath of P obtained by removing p; from P must be p;_;. Since

pi # pj-1, we have py = p;_1. U

Making the observation that there exists only one normal bitonic path from p; to po,
namely the one consisting of edge (p1,p2), we obtain the following formula for computing
the length (7, j) of a shortest normal bitonic path with endpoints p; and p;, i < j:

dist(pi, pj) ifi=1andj=2
(i, 5) = {€(i,5 — 1) + dist(pj—1, ;) ifi<j—1
ming <j<;(0(k,7) + dist(pg,p;)) ifj>2andi=j—1

Before we present our algorithm to compute a shortest bitonic travelling-salesman tour,
we make the following observations about the necessary information to construct such a tour,
once we have computed all values £(i,7), 1 <i < 7 < n. We can obtain a shortest normal
bitonic path from p; to p; by choosing the correct neighbour p; in such a path, recursively
finding a shortest normal bitonic path from p; to py, and finally appending edge (p,p;)-
How do we find this “correct” neighbour? If i < j—1, there is only one choice: p, = p;_1, by
Observation 3. If i = j — 1, py, is the point that minimizes the expression ¢(k, 1) + dist(px, p;)
because this is the value we have assigned to £(i,7). So, in order to construct a shortest
bitonic travelling-salesman tour, we only have to record, for every pair (7,), which is the
neighbour pj, of p; in a shortest normal bitonic path from p; to p;. We store this information
in an array N; that is, N[i, j] stores the index k of this neighbour py.

One other observation is in order: We have to make sure that, whenever we compute
a value £(i,7), the values £(i’, ') this computation relies on have already been computed.
Now, according to our formula above, the computation of £(7, j) relies on values ¢(k,j — 1).
Hence, if we fill in the table column by column—assuming that we use ¢ to index the rows
and j to index the columns—everything is in order. What remains to be done is to list the
algorithm:

Bitonic-TSP(p)

1 n < |p|

2 > Compute £(4,j) and N(i,j), for all 1 <i < j < n.

3 for j=2.n

4 dofori=1.7—1

) doif i=1and j=2

6 then ([, j] < dist(p[i], p[j])

7 Nli,j] i

8 else if j >1+1

9 then ([i, j] — ([i,j — 1] + dist(p[j — 1], p[j])
10 Nli,jl —j—1
11 else /([i,j] — 400
12 for k=1...-1
13 do q « [k, i] + dist(p[k], p[j])
14 if ¢ < {[i,]
15 then (i, j] < q
16 Nli,j] <k

17 > Construct the tour. Stacks S[1] and S[2] will be used to construct the two z-monotone
parts of the tour.
18 Let S be an array of two initially empty stacks S[1] and S[2].

19 k£« 1
200 =n—1
21 17=n

22 while 7 > 1
23 do PusH(S[k], j)

24 j < NJi,j]

25 if j <1

26 then swap i < J
27 k—3—k

28 PusH(S][1],1)

29 while S[2] is not empty

30 do PusH(S[1],Popr(S[2]))
31 fori=1.n

32 do T[i] « Popr(S[1])

33 return T’

The final question to be answered concerns the running time of the algorithm. It is easy
to see that Lines 17-33 take linear time. Indeed, the loop in Lines 31-32 is executed n times
and performs constant work per iteration. The loop in Lines 29-30 is executed |S[2]| times,
and each iteration takes constant time; hence, it suffices to prove that |S[2]| < n after the
execution of Lines 17-28. To prove this, it suffices to show that the loop in Lines 22-27 is
executed at most n — 1 times because every iteration pushes only one entry onto stack S[1]

or S[2]. The loop in Lines 2227 takes constant time per iteration. It is executed until j = 1.
However, initially 7 = n, and the computation performed inside the loop guarantees that j
decreases by one in each iteration. Hence, the loop is executed at most n — 1 times.

To analyze the running time of Lines 1-16, we first observe that this part of the algorithm
consists of two nested loops; the code in Lines 5-16 is executed O(n?) times because i runs
from 2 to n and in every iteration of the outer loop, j runs from 1 to ¢« — 1. Now, we
perform constant work inside the loop unless i@ = j — 1. In the latter case, we execute the
loop in Lines 12-16 i — 1 = O(n) times. Since there are only n — 1 pairs (7, j) such that
1 <i=j5—1<n-—1, we spend linear time in only n — 1 iterations of the two outer
loops and constant time in all other iterations. Hence, the running time of Lines 1-16 is
O(n*-1+mn-n)=0(n?.

Question 2 (20 marks)

a. In order to use a greedy algorithm to solve this problem, we have to prove that the
problem has optimal substructure and the greedy-choice property. The former is easy
to prove: Let n be an amount for which we want to give change. Assume that optimal
change for n cents includes a coin of denomination d. Then we obtain optimal change for
n cents by giving optimal change for n —d cents and then adding this d-cent coin. Indeed,
if we could use less coins to give change for n — d cents, we could also use less coins to
give change for n cents by adding a d-cent coin to the set of coins we give as change for
n — d cents.

The greedy-choice property is harder to prove. First, what is an obvious greedy choice to
make? Well, if we want to give change for n cents, a greedy way to try to minimize the
number of coins we use is to start with a coin of largest denomination d such that d < n.
We include this coin in the change and recursively give optimal change for n — d cents.
Let us prove that this works with denominations dy = 1,d; = 5, dy = 10, d3 = 25.

We prove by induction on ¢ and n that optimal change using denominations dp,...,d;
always includes |n/d;| coins of denomination d;. This then immediately implies that
optimal change does indeed always include at least one coin of the highest denomination
d; < n, which is the greedy choice property we want to prove.

So consider the case ¢ = 0. Then the only choice we have is to give n = |n/dy| pennies.

If i =1 and n < 5, we can only give pennies, which matches the claim that we give
0 = |n/dy] nickels. If n > 5, there has to be at least one nickel. Otherwise, we could
give better change by replacing 5 pennies with a nickel. By the optimal substructure
property, we obtain optimal change for n cents by adding optimal change for n — 5 cents
to the nickel. By the induction hypothesis, optimal change for n — 5 cents includes
|(n—>5)/di| = |n/d;| — 1 nickels. Hence, the optimal change for n cents includes |n/d |
nickels.

If i = 2 and n < 10, we can only give pennies and nickels, which matches the claim that
we give 0 = |n/dy| dimes. If n > 10, there has to be at least one dime. Otherwise,

the optimal change would have to include at least 2 nickels, which we could replace with
a dime to get better change. By the optimal substructure property, we obtain optimal
change for n cents by adding optimal change for n—10 cents to the dime. By the induction
hypothesis, optimal change for n — 10 cents includes |(n — 10)/dy] = |n/dy] — 1 dimes.
Hence, the optimal change for n cents includes |n/dy]| dimes.

If + = 3 and n < 25, we can only give pennies, nickels, and dimes, which matches the
claim that we give 0 = |n/ds] quarters. If n > 25, there has to be at least one quarter.
Otherwise, there would have to be two dimes and a nickel if n < 30 or three dimes if
n > 30. In the former case, we could obtain better change by replacing the two dimes
and the nickel with a quarter. In the latter case, we could replace the three dimes with
a quarter and a nickel. By the optimal substructure property, we obtain optimal change
for n cents by adding optimal change for n — 25 cents to the quarter. By the induction
hypothesis, optimal change for n — 25 cents includes |(n —25)/ds| = |n/ds] — 1 quarters.
Hence, the optimal change for n cents includes |n/ds]| quarters.

From this discussion, we conclude that the following algorithm gives optimal change. The
arguments are:

e n: the amount we want to change
e k: the number of denominations — 1 (since indexing starts at 0)

e d: an array of denominations sorted from the lowest to the highest

The algorithm returns an array C' of size k such that C[i], 0 < i < k, is the number of
coins of denomination d[i] that have to be included in optimal change for n cents.

Greedy-Change(n, k, d)
1 > Initially, we have not given any change yet.
for i =0..d
do C[i] <0
> Now give change.
1k
while n > 0
do if n > d[i]
then n « n — d|i
Cli] < C[i] + 1
else 1 «—i—1
return C

—_
— O © 00O Uk Wi

—_

The running time of the algorithm is O(k + n). To see this, observe that the for-loop
in Lines 2-3 is executed k times; the while-loop in Lines 6-10 is executed until n = 0.
However, in every iteration either ¢ decreases by one or n decreases by d; > 1. Hence,
the while-loop is executed O(k +n) times. Since every iteration takes constant time, this
establishes the claimed time bound.

b. To give optimal change using denominations dy,ds, ..., d; such that d; = ¢, for some
integer ¢ > 1, we use the algorithm from Question a. Our proof of the optimal sub-
structure property in Question a does not rely on any particular properties of the coin
denominations. Hence, it remains valid. What we have to verify is that, for denomina-
tions dg,dy, ..., dg, the greedy strategy of choosing a largest denomination d; < n and
then giving optimal change for the amount n — d; gives optimal change. Again, we prove
by induction on ¢ and n that optimal change for n cents using denominations dy, dy, ..., d;
includes |n/d;] coins of denomination d;.

The base case (i = 0) is to give n = |n/dy] coins of denomination dy = 1. So assume
that ¢ > 0. If n < d;, then we can only use coins dy,d;,...,d;_; to give change for
n cents. Hence, our claim holds that we give 0 = |n/d;| coins of denomination d;. If
n > d;, we observe that optimal change has to include at least one coin of denomination
d;. Otherwise, the induction hypothesis implies that optimal change includes |n/d;_|>
d;/d;_1 = ¢ coins of denomination d;_;; ¢ of them can be replaced with a single coin
of denomination d;. Since optimal change contains at least one coin of denomination
d; if n > d;, we conclude from the optimal substructure property that we can obtain
optimal change for n cents by adding this coin of denomination d; to optimal change
for n — d; cents. By the induction hypothesis, optimal change for n — d; cents includes
|(n —d;)/d;| = |n/d;] — 1 coins of denomination d;. Hence, optimal change for n cents
includes |[n/d;] coins of denomination d;, as claimed.

c. Here’s an example: dy = 1, d; = 7, and dy = 10. For 14 cents, our algorithm would
produce 5 coins 10 +1+ 1+ 1 4 1. Optimal change is 7+ 7.

d. We have shown in the answer to Question a that the problem has optimal substructure.
This proof was independent of the coin denominations. Hence, we can use a dynamic
programming algorithm based on the following equation, where N (i) denotes the number
of coins in an optimal solution for i cents:

N(i) - 0 if i =0
C | min{l + N(i—d;):1<j<kandd; <i} ifi>0

The algorithm is the following:

Optimal-Change(n, k, d)
1 N[0] <0
2 fori=1..n

3 do NJi] «— 40

4 for y=k,k—1,...,0

5 do if d[j] <i

6 then g — N[i —d[j]] + 1

7 if ¢ < NJi]

8 then N[i] < ¢

9 > Gi] is the largest coin denomination used in optimal

change for ¢ cents.

10 Gli] —d[j]
11 for i = 0..k

12 do C[i] <0

13 while n > 0

14 do C[G[n]] < C[G[n]] +1
15 n «—n— Gn|

16 return C'

The correctness of this algorithm follows from our above discussion. The running time
is O(kn): To see this, we have to count how often every loop is executed because, inside
each loop, we perform only constant work. The loop in Lines 2-10 is executed n time;
the loop in Lines 4-10 is executed k+ 1 times per iteration of the outer loop; hence, Lines
1-10 take O(kn) time. The loop in Lines 11-12 is executed k+1 times. The loop in Lines
13-15 is executed at most n times because it is executed until n = 0 and n decreases by
at least one in every iteration of the loop. Hence, Lines 11-16 take O(n + k) time, and
the total running time is indeed O(kn).

