
Adapted from COD2e by Hennessy & Patterson Slide 1

 Computer Architecture

Pipelining and Instruction Level
Parallelism–An Introduction

 Chapter 6 - Pipelining Basics Slide 2

Outline of This Lecture

Introduction to the Concept of Pipelined Processor
– Pipelined Datapath and Pipelined Control

– Pipeline Example: Instructions Interaction

Pipeline Hazards
– Forwarding

– Stalls

Introduction to Instruction Level Parallelism
– Superscalar, VLIW
– Out-of-order execution
– Branch Prediction

– Future

 Chapter 6 - Pipelining Basics Slide 3

The Five Stages of Load

IF: Instruction Fetch
– Fetch the instruction from the Instruction Memory

RF/ID: Registers Fetch and Instruction Decode
EX: Calculate the memory address
MEM: Read the data from the Data Memory
WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF RF/ID EX MEM WBLoad

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 4

Key Ideas Behind Pipelining

Analogy–Grading the mid term exams:
– 6 problems, six people grading the exam

– Each person grades ONE problem
– Pass exam to next person as soon as one finishes her part

– Assume each problem takes 0.15 hour to grade
• Each individual exam still takes 0.9 hours to grade
• But with 6 people, all exams can be graded much quicker:

– 100 exams: 90 hours, vs. 90 hrs x 6 = 540 hours

The load instruction has 5 stages:
– Five independent functional units to work on each stage

• Each functional unit is used only once

– Another load can start as soon as 1st finishes its IF stage

– Each load still takes five cycles to complete
– The throughput, however, is much higher

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 5

Pipelining the Load Instruction

Five independent functional units in pipeline are:
– Instruction Memory for the IF stage

– Register file’s read ports for the RF/ID stage
– ALU for the EX stage

– Data Memory for the MEM stage
– Register File’s Write port (bus W) for the WB stage

1 instruction enters the pipeline every cycle
– 1 instruction comes out of pipeline (completes) every cycle
– “Effective” Cycles per Instruction (CPI) is 1

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

IF RF/ID EX MEM WB1st lw

IF RF/ID EX MEM WB2nd lw

IF RF/ID EX MEM WB3rd lw

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 6

Four Stages of R-type

IF: Instruction Fetch
– Fetch the instruction from the Instruction Memory

RF/ID: Registers Fetch and Instruction Decode
EX: ALU operates on the two register operands
WB: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

IF RF/ID EX WBR-type

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 7

Pipelining R-type + Load

We have a problem:
– Two instructions try to write to register file at same time!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

IF RF/ID EX WBR-type

IF RF/ID EX WBR-type

IF RF/ID EX MEM WBLoad

IF RF/ID EX WBR-type

IF RF/ID EX WBR-type

Ops! We have a problem!

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 8

IF RF/ID EX MEM WBLoad
1 2 3 4 5

IF RF/ID EX WBR-type
1 2 3 4

Important Observation

A functional unit can be used once per instruction
Each functional unit must be used at same stage for
all instructions:
– Load uses Register File’s Write Port during its 5th stage
–

•

–

–

–

– R-type uses Register File’s Write Port during its 4th stage

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 9

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

IF RF/ID EX WBR-type

IF RF/ID EX WBR-type

IF RF/ID EX MEM WBLoad

IF RF/ID EX WBR-type

IF RF/ID EX WBR-type

IF RF/ID EX WBR-type MEM

MEM

MEM

MEM

MEM

1 2 3 4 5

Solution: Delay R-type WB a Cycle

Delay R-type’s register write by one cycle:
– R-type instructions also use Reg File’s write port at Stage 5

– MEM stage is a NOOP stage: nothing is being done

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 10

IF
/ID

 R
egister

ID
/E

x R
egister

E
x/M

E
M

 R
egister

M
E

M
/W

B
 R

egister

P
C

Data
ME
M

WA
Di

RA Do

IU
nit

A

I

RFile

Di

Ra

Rb

Rw

MemWr

RegWr ExtOp

EX
Unit

busA

busB

Imm16

ALUOp

ALUSrc

M
ux

1

0

MemtoReg

1

0

RegDst

Rt

Rd

Imm16

PC+4
PC+4

Rs

Rt

PC
+

4

Zero

Branch

1
0

Clk

IF RF/ID EX MEM WB

A Pipelined Datapath

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 11

How About Control Signals?

IF
/ID

: ID
/E

x R
egister

E
x/M

E
M

: L
oad’s A

ddress

M
E

M
/W

B
 R

egister

P
C

Data
ME
M

WA
Di

RA Do

IU
nit

A

I

RFile

Di

Ra

Rb

Rw

MemWr

RegWr ExtOp=1

EX
Unit

busA

busB

Imm16

ALUOp=Add

ALUSrc=1

M
ux

1

0

MemtoReg

1

0

RegDst=0

Rt

Rd

Imm16

PC+4
PC+4

Rs

Rt

PC
+

4

Zero

Branch

1
0

IF RF/ID EX MEM

Control Signals at Stage N = Func (Instr. at Stage N)
– N = EX, MEM, or WB

Example: Controls Signals at EX Stage
– Func(Load’s EX)

WB

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 12

Pipeline Control
The Main Control generates the control signals during RF/ID

– Control signals for EX (ExtOp, ALUSrc, ...) used 1 cycle later
– Control signals for MEM (MemWr, Branch) used 2 cycles later
– Control signals for WB (MemtoReg MemWr) used 3 cycles later

IF
/ID

 R
egister

ID
/E

x R
egister

E
x/M

E
M

 R
egister

M
E

M
/W

B
 R

egister

RF/ID EX MEM

ExtOp

ALUOp

RegDst

ALUSrc

Branch
MemWr

MemtoReg

RegWr

Main
Control

ExtOp

ALUOp

RegDst

ALUSrc

MemtoReg

RegWr

MemtoReg

RegWr

MemtoReg

RegWr

Branch
MemWr

Branch
MemWr

WB

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 13

Single Cycle, Multi-Cycle, Pipelined

Clk

Cycle 1

Multiple Cycle Implementation:

IF Reg EX MEM WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load IF Reg EX MEM WB

IF Reg EX MEM

Load Store

Pipeline Implementation:

IF Reg EX MEM WBStore

Clk

Single Cycle Implementation:

Load Store Waste

IF

R-type

IF Reg EX MEM WBR-type

Cycle 1 Cycle 2

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 14

Hazards–Challenge to Pipelining

Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle
– structural hazards: HW cannot support this combination of

instructions
• earlier case of load and R-typ like a structural hazard, but

normally cannot fix by retiming instruction.

– data hazards: instruction depends on result of prior
instruction still in the pipeline

– control hazards: pipelining of branches & other
instructionsCommon solution is to stall the later part of the
pipeline until the hazard pipeline

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 15

Data Hazard on r1

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Dependencies backwards in time are hazards

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 16

sub r4, r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

HW Stalls to Resolve Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3
IF ID/RF EX MEM WBA

L
UIm Reg Dm Reg

A
L

UIm Reg Dm

Im bubble bubble bubble

A
L

UReg Dm Reg

A
L

UIm Reg

Im Reg

Dependencies backwards in time are hazards
– eliminate “reverse time” by a stall

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 17

Insight: Data is available!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Pipeline registers already contain needed data
– “Forward” the data to the appropriate unit

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 18

HW for “Forwarding” (Bypassing)

Increase multiplexors to add paths from registers
– Assumes register read during write gets new value

 (otherwise more results to be forwarded)

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 19

Forwarding Cannot Hide All Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 20

Option: HW Stalls to Resolve Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

stall bubble bubble bubble bubbleIm

and r6,r1,r7

or r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

“Interlock”: checks for hazard & stalls

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 21

Option: SW resolves hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WB

unrelated instruction

and r6,r1,r7

or r8,r1,r9

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

SW inserts independent instuctions
– Worst case: performance no better/worse

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 22

Control Hazard on Branches

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 23

Hazards on Branches

Time (clock cycles)

beq r1,r2,L

sub r4,r1,r3

and r6,r2,r7

or r8,r7,r9

L: add r1,r2,r1

IF ID/RF EX MEM WB

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

Stall for two cycles on every branch!

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 24

Branch Stall Impact

CPI Impact:
– If CPI = 1, 30% branch, Stall 2 cycles => new CPI = 1.6!

Reducing the branch penalty
– MIPS branch already more aggressive than most
– limited eq/neq allows us to determine branch condition early

(after EX), rather than later (e.g., after MEM)

– doing better
• use separate comparator rather than ALU and move branch

decision to RF (hard!!!)
• reduces penalty to 1 cycle

 Going further
– Variety of techniques:

• separating branch and destination
• separating branch condition and branch decision
• hardware prediction of branche

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 25

When is pipelining hard?

Interrupts: 5 instructions executing in 5 stage pipeline
– How to stop the pipeline?
– Restrart?
– Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

access; memory-protection violation
Load with data page fault, Add with instruction page fault?
Solution 1: interrupt vector/instruction, restart everything
incomplete

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 26

First Generation RISC Pipelines

All instructions: 1 pipeline order (“static schedule”).
Register write in last stage + reads performed in first
stage after issue.
– Simpliy/eliminate hazards

Memory access in stage 4
– Avoid all memory hazards

Control hazards use delayed branch (with fast path)
RAW hazards use bypass, except on load results
– Load resolved by delayed load or stall

Good pipeline performance at little cost/complexity.

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 27

Summary of Pipelining Basics

Speed Up = Pipeline Depth
Hazards limit performance on computers:
– structural: need more HW resources
– data: need forwarding, compiler scheduling
– control: early evaluation & PC, delayed branch, prediction

Increasing length of pipe increases hazards
– since pipelining helps instruction bandwidth, not latency

Compilers can reduce cost of data & control hazards
– load delay slots
– branch delay slots

Exceptions (also FP, ISA) make pipelining harder

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 28

Advanced Pipelining

Pipelining exploits parallelism among instructions by
overlapping them
– Called Instruction Level Parallelism (ILP)
– Limited by a variety of things:

• parallelism in the program
• compiler technology in exposing parallelism
• functional unit capability: how many ovrlapping instructions
• ability of hardware to find instructions to run in parallel

Exploiting ILP is “hot topic” in processor design:
– Lots of different approaches

• Multiple instuctions/cycle
– compiler vs. HW for scheduling instructions

• Both architecture approaches and compiler approaches

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 29

Exploiting Available ILP
Technique

Pipelining

Super-scalar
Issue multiple scalar

 instructions per cycle

VLIW
Each instruction specifies

multiple scalar operations

HW Limitation
Issue rate,

FU stalls,
FU depth

Hazard resolution

Packing

IF D Ex M W
IF D Ex M W

IF D Ex M W
IF D Ex M W

IF D Ex M W
IF D Ex M W

IF D Ex M W
IF D Ex M W

IF D Ex M W
Ex M W
Ex M W
Ex M W

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 30

Easy Superscalar

Int Reg Inst Issue
and Bypass

FP Reg

Int Unit

I-Cache

Load /
Store
Unit

FP Add FP Mul

D-Cache

Issue integer and FP operations in parallel!
– potential hazards?
– expected speedup?
– what combinations of instructions make sense?

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 31

Issuing Multiple Instruction/ Cycle

Superscalar: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right

– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages
Int. instruction IF ID EX MEM W
FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

 1 cycle load delay expands to 3 instruction in SS
– instruction in right half can’t use result, nor can either

instruction in next slot

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 32

Dynamic Branch Prediction

Predict direction of branches on past behavior
– keep a cache of branch behavior, look up prediction

Performance = f(accuracy, cost of misprediction)
Branch prediction buffer:
– lower bits of PC address index table of 1-bit values

– says whether or not branch taken last time
– evaluate actual banch condition, if prediction incorrect:

• recover by flushing pipeline, restarting fetch
• reset prediction

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 33

Speculative Superscalar Execution

Get all available parallelism
– across branches

– in face cache misses
– limited only by data dependences

Goal: resources and available
bandwidth are only HW limit
Branch prediction
– execute instructions speculatively

Hazard detection and
aggressive resolution
– out-of-order execution (dynamic

scheduling)

– in-order completion
• Exception handling easier
• handles incorrect speculation

Instruction
Fetch

Decode

Instruction
Window

Execution
Units

look ahead
and prefetch
instructions

Issue
multiple

instructions
to Execution

Units
when inputs
are available

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 34

Variety of Modern Microprocessor
Processor Instruction

Completion
Rate

Scheduling of
pipeline

Branch
prediction

PowerPC 604 4 Dynamic,
nonspeculative

HW

MIPS R10000 4 Dynamic,
speculative

HW

Pentium II 4 Dynamic,
nonspeculative

HW

UltraSPARC 4 Static HW

Merced ? Static? Static?

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 35

Limits to Multi-Issue Machines
Inherent limitations of ILP

– 1 branch in 5 => 5-way VLIW busy?
– Latencies of units => many operations must be scheduled
– Need about Pipeline Depth x No. Functional Units of

independentDifficulties in building HW
– Duplicate FUs to get parallel execution
– Increase ports to Register File (3 x integer/FP rate)
– Increase ports to memory
– Decoding challenge and impact on clock rate, pipeline depth

Limitations specific to either SS or VLIW implementation
– Decode issue in SS
– VLIW code size: unroll loops + wasted fields in VLIW
– VLIW lock step => 1 hazard & all instructions stall
– VLIW & binary compatibility

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 36

Summary

Instruction Level Parallelism in SW or HW
Loop level parallelism is easiest to see
SW dependencies/Compiler sophistication determine
if compiler can unroll loops
SW Scheduling
HW scheduling
Branch Prediction
SuperScalar and VLIW
– CPI < 1

– Dynamic issue vs. Static issue
– More instructions issue/clock, larger penalty of hazards

Future? Stay tuned…

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 37

MEM

Single Memory=>Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UMEM Reg MEM Reg

A
L

UMEM Reg MEM Reg

A
L

UMEM Reg MEM Reg

A
L

UReg MEM Reg

A
L

UMEM Reg MEM Reg

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 38

Stall to resolve Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3(stall)

Instr 4

A
L

UMEM Reg MEM Reg

A
L

UMEM Reg MEM Reg

A
L

UMEM Reg MEM Reg

bubble

A
L

UMEM Reg MEM Reg

A
L

UMEM Reg MEM Reg

Adapted from COD2e by Hennessy & Patterson Chapter 6 - Pipelining Basics Slide 39

Duplicate to Resolve Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

 Separate Instruction Cache (Im) & Data Cache (Dm)

