
A Key-based Coordination Algorithm for Dynamic
Readiness and Repair Service Coordination �

Tom Wagner Valerie Guralnik
Honeywell Laboratories

3660 Technology Drive, MN65-2600
Minneapolis, MN 55418

Tom.Wagner@honeywell.com

John Phelps

ABSTRACT
This paper describes an agent application for the coordination of air-
craft repair, refit, refuel, and rearm teams in a dynamic setting. The
paper also presents a new algorithm for dynamic distributed service
team coordination and compares its performance to an optimal cen-
tralized service team scheduler.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—Coherence and Co-
ordination, Multi-Agent Systems

General Terms
Algorithms, Experimentation

Keywords
Coordination, Multi-Agent Systems, Intelligent Agents, TAEMS,
Teams, Real-Time, Dynamic

1. INTRODUCTION
Aircraft returning from an engagement need refueling and poten-

tially need new ordinance and repairs. The implications are that
multiple different service crews, that have different capabilities and
require different resources, must coordinate to effectively prepare
the aircraft for another mission. For instance, it may not be desir-
able to service the engines while new ordinance is being loaded.
Similarly it may not be possible to service the engines while refu-
eling takes place. In contrast, it may be possible to overlap some
activities, e.g., replacing the cockpit avionics while refueling the
aircraft.

�

Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Office of Naval Research under agree-
ment number N00014-02-C-0262 and by Honeywell International
under project number I10105BB4. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), Office of
Naval Research, the U.S. Government or Honeywell International.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: The Simulation Environment and Status Display

In this paper, we explore the use of agent technologies to coor-
dinate aircraft service teams and present a new TÆMS (Task Anal-
ysis Environment Modeling and Simulation) [4] coordination algo-
rithm used to coordinate service team activity. The performance of
the algorithm is compared to a centralized scheduling oracle that
generates optimal schedules for the teams – though the centralized
scheduling problem is exponential, the oracle provides a good basis
for comparison on smaller problem instances. A screen image of
the application is shown in Figure 1. Note the “busy” task structure
in the center of the screen – it is part of the centralized coordination
problem that the agents solve through distributed and local reason-
ing with partial views (the centralized view is that of the simulation
environment). In the following sections, we specify the problem
space, define a new key-based coordination algorithm, and compare
the algorithm to the centralized oracle.

2. DYNAMIC AIRCRAFT READINESS
In this project we simulate aircraft returning from an engagement

and needing repairs / readiness operations to be performed. Three
types of aircraft are modeled: F16s, A10s, and C9 surveillance craft.
When an aircraft returns it is potentially in need of (to varying de-
grees): 1) fuel, 2) missiles, 3) repairs to engines, 4) repairs to cockpit
avionics, or 5) repairs to cockpit weapons controls.1 Each incoming

1Note that this is a small subset of the possible items needing service
or inspection – this simplification is along a dimension that does not
greatly impact the utility of the coordination algorithm.

Repair Repair Repair
Engines Avionics WeapCtrl Refuel Rearm

Engines NLE NLE
Avionics NLE
WeapCtrl NLE

Refuel NLE NLE
Rearm NLE NLE

Table 1: Tasks Interactions Indicated by NLE for Non-Local Ef-
fect. In this paper, NLEs are all mutual exclusion where tasks
that interact cannot be performed on the same aircraft at the
same time (spatial + temporal MUX). Other NLEs supported
include effects like hindering where tasks can be performed to-
gether but will slow each other down in some quantified way.

aircraft is assigned a deadline by which it is to be ready for rede-
ployment. Mission Control is responsible for assigning the deadline
and for identifying the areas of the aircraft that need service.

There are five teams on the ground that ready the aircraft for their
next mission. Each team is controlled by a coordination decision
support agent that uses TÆMS agent technology to reason about
what the team should be doing, when, and with which resources.
In this scenario the following teams handle aircraft preparation: 1)
refuel, 2) rearm (replaces depleted missiles), 3) avionics repair, 4)
weapons controls repair, and 5) engines repair. As aircraft land the
Mission Control agent notifies the service teams of the aircrafts’ ser-
vice needs and readiness deadlines. The agents then communicate
with one another and reason, in a distributed fashion, about how
their tasks may interact and how best to select and sequence op-
erations so that the most aircraft can be ready by their respective
launch times (if possible – not all problem instances contain fully
satisfiable constraints). The agents perform this coordination using
a new coordination-key algorithm presented in later sections.

In this scenario the tasks required to repair an individual plane do
not need to be performed in any specific sequence, however, there
are sets of tasks that cannot be performed simultaneously because
they involve the same geographic regions of the aircraft. For in-
stance, the engines cannot be serviced while a plane is rearmed as
both of these activities take place on or near the wings. In contrast,
avionics can be serviced while an aircraft is rearmed because avion-
ics reside in the cockpit region and the rearming takes place on or
about the wings. A full specification of task interactions is shown in
Table 1.

There are several characteristics of this problem instance that make
it a hard problem:

The situation is dynamic – it is unknown a priori in what state the
planes will be when they return from their mission. Thus the
agents must coordinate and decide which operations to per-
form in real-time.

Agents must make quantified / value decisions – different tasks have
different values and require different amounts of time and la-
bor resources. For instance, it may not be necessary to refuel
the aircraft before the next mission but servicing avionics may
be critical.

Coordination is dynamic – the operations being performed by the
repair teams interact and the occurrence of the interactions are
also not known a priori. For instance, until an aircraft lands
it is not known whether an engine will need servicing at the
same time that a refueling crew is attempting to service the
aircraft.

Deadlines are present – aircraft have a deadline by which repairs
must be completed and different aircraft may have different

deadlines. Without deadlines an inefficient algorithm will
generally still service all of the aircraft. Deadlines require
the agents to reason about end-to-end processes and to co-
ordinate with other agents to optimize their activities. (This
type of agent coordination problem is conceptually dynamic
distributed scheduling.)

Tasks are interdependent – tasks interact in two different ways:
1) over shared resources in a spatial/temporal fashion, 2) mul-
tiple tasks must be performed to accomplish a goal, e.g.,���������
	��������������������������� �!"� �#�%$��&�'(��*),+��- ���.�
/10 ���,23&�'�),45&�' ����&76�)�+��- ���.� /98:8:8

(though in TÆMS this
generally pertains to degrees of satisfaction rather than a boolean
or binary value).

Not always possible to meet all deadlines – not all problem instances
are solvable in the sense that in a given scenario, it may be
possible that the optimal solution is to miss one aircraft dead-
line rather than missing many deadlines. When control is
distributed, this characteristic can make it particularly diffi-
cult to converge on a solution because it is difficult to know
whether an optimal result has been achieved (without a com-
plete, global view and a centralized scheduling technology).
This characteristic means that it is fairly easy for a coordina-
tion algorithm to lead to many planes being partially serviced
and none of them actually meeting their deadlines.

This problem instance requires three classes of simulation activ-
ities: 1) simulating the outcome of the last mission in terms of air-
craft condition, 2) simulating the activities of Mission Control and
the initial damage assessment team, 3) simulating the activities of
the repair crews. While detailed description is beyond the scope of
the paper, from a high level, the aerial battle is simulated using ei-
ther a problem space generator or a human generator who selects air-
craft from a palette and “breaks” the aircraft. The activities of Mis-
sion Control and the initial damage assessment team are captured
in TÆMS task structures that are produced by the generation tools.
In essence, the Mission Control agent “sees” an aircraft for the first
time at its specified landing time and at that same time a description
of the aircraft’s service needs is transmitted to Mission Control in
TÆMS format. Mission Control then disseminates the information
to the service teams. The activities of the service teams are simu-
lated using the TÆMS agent simulation environment [18]. In this
environment the agents, which are distributed on different machines
and execute as different processes, communicate and carry out sim-
ulated tasks. The simulated tasks, like real tasks, take a specified
amount of time to execute and consume resources, e.g., replacing
an avionics module of type 1 consumes one type 1 avionics module.

Space precludes a detailed specification of tasks and attributes,
however, it is important to note that different tasks require different
resources, different amounts of resources, and require different time
to perform. For instance, refueling an aircraft that is fully depleted
requires more time and consumes more fuel (a resource). Other ex-
amples: repairing engines damaged to level 4 (heavily damaged)
requires more time than engines that are damaged to level 1 (lightly
damaged), rearming four missiles requires more time than rearming
two missiles, etc. Similarly, different aircraft consume different re-
sources and not all aircraft need a particular class of service. For in-
stance, the C9 surveillance aircraft does not carry missiles and does
not contain a weapons controls module. In contrast, both the A10
and the F16 carry missiles and both have weapons controls modules
but the modules for the two aircraft are different and require differ-
ent amounts of time to service. The teams themselves also maintain
different resources, e.g., the refueling team is the only team that

Figure 2: Portions of the TÆMS Task Structures for Mission Control and Three of the Service Team Agents

consumes the fuel resource. However, in the problem instance dis-
cussed in this paper the teams do not interact over consumable re-
sources so the coordination problem is one of spatial and temporal
task interaction.

It is worth noting that while both DARPA and Honeywell have in-
terest in this particular type of application, the characteristics of the
application can be found in other problem domains. The underlying
technical problem is to coordinate distributed processes that affect
one another when the environment is dynamic and the coordination
problem cannot be predicted offline / a priori but instead must be
solved as it evolves.

3. TÆMS AND TÆMS AGENTS
We use the expression TÆMS agents to describe our agent tech-

nology because the cornerstone of our approach is a modeling lan-
guage called TÆMS (Task Analysis Environment Modeling and
Simulation) [4]. TÆMS is a way to represent the activities of a prob-
lem solving agent – it is notable in that it explicitly represents alter-
native different ways to carry out tasks, it represents interactions be-
tween activities, it specifies resource use properties, and it quantifies
all of these via discrete probability distributions in terms of quality,
cost, and duration. The end result is a language for representing ac-
tivities that is expressive and has proven useful for many different
domains including the BIG information gathering agent [12], the In-
telligent Home project (IHome) [10], the DARPA ANTS real-time
agent sensor network for vehicle tracking [7], distributed hospital
patient scheduling [3], and others like distributed collaborative de-
sign, process control, agents for travel planning, agent diagnosis,
and others.

Figure 2 shows portions of TÆMS task structures for Mission
Control and three of the service teams. Consider the Mission Con-
trol task structure. It is a hierarchical decomposition of a top level
goal which is simply to Prepare and Launch Aircraft. The
top level goal, or task, has two subtasks which are to Prepare
and Launch Wing1 and Prepare and Launch Wing2. Each
of these tasks are decomposed into subtasks to service a particular
aircraft in the given wing, e.g., Prepare F16.1 For Launch,
and finally into primitive actions. Tasks are represented with oval
boxes, primitive actions with rectangles. Note that most of the de-
compositions are omitted from the figure for clarity. The details are

shown for the Prepare F16.1 For Launch task – it is de-
composed into a single primitive action, Launch F16.1, which
denotes the time required for Mission Control to launch the aircraft
when the plane is ready. The operative word here is ready. In or-
der for a given aircraft to be launched on its next mission, it must
be serviced. The service activities are not carried out by Mission
Control. In the figure, Mission Control’s dependence on the ac-
tivities of the service agents is denoted by the edges leading into
Launch F16.1 from the actions of other agents. These edges,
called enables in TÆMS, denote that the other agents must success-
fully perform their tasks before the Launch F16.1 activity can be
carried out by Mission Control. These enables are non-local-effects
(NLEs) and identify points over which the agents must coordinate.
The time at which Mission Control can execute Launch F16.1
is dependent on when the other agents perform their tasks. A differ-
ent type of NLE exists between the Weapons Controls Repair agent
and the Avionics Repair agent – the two F16.1 actions cannot be
performed simultaneously and that is another point over which the
agents must coordinate. In this problem, this spatial/temporal in-
teraction of the service teams is the coordination problem on which
we focus. The former enabling-of-the-launch-task interaction only
requires that the service agents notify Mission Control of when they
plan to perform their activities because in this application Mission
Control sets and maintains deadlines and the other agents negotiate
over the temporal/spatial MUX NLEs to satisfy the stated deadlines
if possible. Note that within a task structure deadlines and earliest-
start-times are inherited (unless those lower in the tree are tighter)
so the temporal constraints on Prepare and Launch Wing1
also apply to Launch F16.1. The same deadlines are propagated
through the enables coordination to the service team agents – note
that F16.1’s engines must be serviced by 240 also.

Note that all of the primitive actions (leaf nodes) also have Q
(quality), C (cost), and D (duration) discrete probability distribu-
tions associated with them. For simplicity in this paper we do not
use uncertainty and all values will have a density of 100%. Re-
pairing the engines of F16.1 thus takes 200 time units while ser-
vicing the engines of F16.2, which are less damaged, requires 150
time units. The two activities produce qualities of 12 and 9 respec-
tively. The sum() function under most of the parent tasks is called a
quality-accumulation-function or qaf. It describes how quality (akin
to utility) generated at the leaf nodes relates to the performance of

Domain Expert
Planner or

Human Performer

Execution
Subsystem

DTC Hybrid
Scheduling/Planning

Module

Keys Coordination
Module

TAEMS
KB

Other Modules
E.g., MQ for Organizational Control

Other Modules
E.g., MQ for Organizational Control

Schedules

Commitments,
proposals, &
feedback.

Candidate tasks, deadlines, resource constraints, & other options.

Non-local task
information.

Figure 3: A Single TÆMS-based Agent Ready to Coordinate Its
Activities With Other Agents

the parent node. In this case we sum the resultant qualities of the
subtasks – other TÆMS functions include min, max, sigmoid, etc.
Quality is a deliberately abstract concept into which other attributes
may be mapped. In this paper we will assume that quality is a func-
tion of the importance of the repair.2

In the sample task structure there is also an element of choice
– this is a strong part of the TÆMS construct and important for
any dynamic environment in which resources or time may be con-
strained. The Repair Aircraft Engines task, for example,
has two subtasks joined under the sum() qaf. In this case the En-
gine Repair agent may perform either subtask or it may perform
both depending on what activities it has time for and their respec-
tive values. The explicit representation of choice – a choice that
is quantified by those discrete probability distributions attached to
the leaf nodes – is how TÆMS agents make contextually dependent
decisions.

By establishing a domain independent language (TÆMS) for rep-
resenting agent activity, we have been able to design and build a core
set of agent construction components and reuse them on a variety of
different applications (mentioned above). TÆMS agents are created
by bundling our reusable technologies with a domain specific com-
ponent, generally called a domain problem solver, that is responsible
for knowing and encapsulating the details of a particular application
domain. For this paper it is sufficient to know that TÆMS agents
have components for scheduling and coordination that enable them
to 1) reason about what they should be doing and when, 2) reason
about the relative value of activities, 3) reason about temporal and
resource constraints, and 4) reason about interactions between ac-
tivities being carried out by different agents. A high-level view of a
TÆMS agent is shown in Figure 3; everything except for the domain
problem solver is reusable code. Note that each module is a research
topic in its own right. The agent scheduler is the Design-to-Criteria
[14, 19, 20] scheduler and the coordination module is derived from
GPGP [3]. Other modules, e.g., learning, can be added to this archi-
tecture in a similar (conceptual) plug and play fashion. In the aircraft
service application there are two types of domain problem solvers,
those that manage the service teams and the problem solver that
handles mission control. The difference is because Mission Con-
trol has unique responsibilities (initial assessment, information dis-
semination, and control over deadline relaxation – not used in the
experiments presented here).

4. COORDINATION VIA KEYS
The goals of coordination in this application are: 1) to adapt

to a dynamic situation, 2) to maximize the number of planes that
are completely repaired by their respective deadlines, 3) to provide
mutual access to shared physical resources, 4) achieve global opti-
mization of individual service team (agent) schedules through local

2Beyond the scope of this paper is the use of quality for commitment
satisfaction in this application and its role in the control heuristics.

mechanisms and peer-to-peer coordination. When examining the
coordination problem, it became clear that this application domain
has a unique property not generally found in TÆMS agent applica-
tions – for agents whose tasks interact, all of their tasks will interact.
By way of example, all of the engine repair tasks interact with all of
the refueling tasks interact with all of the rearming tasks. Similarly
for the tasks that pertain to the cockpit. All avionics tasks interact
with all weapons controls tasks.

The implications of this property for coordination are that: 1)
there is no reason for a service team that operates on the wing region
to interact with a team that operates in the cockpit and vice versa3, 2)
agents that operate on the same spatial area (wing or cockpit) must
always coordinate their activities. This translates into a discrete par-
titioning of the agents into coordination sets, i.e.,

������' �)�� ����� �
� �5� 2 ����
	 '��.�' ��)������� � �,6�� �����.�����

.������' �)���������� ��� � � ����23�.�� �%$��& '
���)�
�5� 2 ���� 0 ���,23&�') 45& ' �"� & 6�)��
,

where
�
����'
��)�� ������� ������' �)������ � � ��� � ��! �

. Within each coordi-
nation set the tasks of the member agents form a fully connected
graph via TÆMS non-local-effects. This means that for any agent
of a given set, e.g., the engine repair agent of

�
���,' � � �����
, to sched-

ule a repair task it must dialog with the other agents to ensure that
mutual exclusion over the shared resource, e.g., the wing on plane
F16.1, is maintained.

This coordination problem could be solved in typical GPGP [4,
3, 11] fashion. However, GPGP operates in a pairwise peer-to-peer
fashion. For agents in

������' �)�� �����
this means that coordination

could require a significant amount of time to propagate and resolve
the interacting constraints and it is unclear given the dynamics of
the environment and the speed with which coordination must occur
whether convergence on a reasonable, if suboptimal, solution would
ever occur.4 Because of the strong interconnectedness of the tasks
and the partitioning of agents into coordination sets, we developed
a new algorithm for problem classes of this type.5

The algorithm uses a coordination key data structure and concepts
from token-passing [17, 8] algorithms to coordinate the agents. The
general operation of the algorithm is that there is one coordination
key per coordination set that is passed from agent to agent in a cir-
cular fashion. When an agent is holding the coordination key for
its coordination set, it can 1) declare its intended course of action
/ schedules, 2) evaluate existing proposals from other other agents,
3) confirm or negate proposals of other agents, 4) make its own pro-
posals, or 5) read confirmations or negations of its own proposals by
other agents. The coordination key itself is the vehicle by which this
information is communicated. Each key contains intended courses
of action, proposals, and proposal responses, and this information is
modified as the agents circulate the given key. The pseudo-code of
the algorithm is shown in Figure 4.

The coordination key algorithm is effective but approximate and
heuristic. The crux of the matter is that in order for the agents to
coordinate optimally over a single issue, e.g., when agent X should
perform task "$# , the key must circulate through the coordination set
multiple times. The number of times that each agent must hold the

3An indirect interaction occurs when the problem instance contains
deadlines that cannot be met. In such cases both wing and cockpit
agents should forgo work on selected planes in order to avoid having
an entire fleet of aircraft that are partially complete, none of which
are ready for their next mission. This interaction is dealt with us-
ing value for commitment satisfaction and algorithms/experiments
pertaining to that topic must be presented separately due to space
limitations.
4Note that this would also apply to other agent sets if the problem
were expanded.
5Comparison between the new key algorithm and a pairwise tech-
nique is discussed in the conclusion.

If (coordinationKey is not null) and
 (needCoordinate or coordianationKey.othersNeedCoordinate) {

primarySchedule = evaluate(taems,
coordinationKey.getPrimaryDontCommitments());

if (coordinationKey.getSecondaryDontCommitments()
 interractWith taems.getDeadlineCommitments()) {

secondarySchedule = evaluate(taems,
coordinationKey.getSecondaryDontCommitments());

if (primarySchedule.quality > secondarySchedule.quality) {
preferredSchedule = primarySchedule;

 coordinationKey.discardSecondaryDontCommitments();
} else {

preferredSchedule = secondarySchedule;
coordinationKey.replacePrimary-

DontCommitmentsWithSecondaryDontcommitments()
}

} else {
preferredSchedule = primarySchedule;

}
taems.setSchedule(preferredSchedule);
violatedDeadlines = taems.getViolatedDeadlines(preferredSchedule);
newViolatedDeadlines = violatedDeadlines.getNewDeadlines();
whatifDontCommitments = coordinationKey.getPrimaryDontCommitments();
whatifDontCommitments.discardInteractions(newViolatedDeadlines);
whatifSchedule = evaluate(taems, whatifDontCommitments);
if (whatifSchedule != preferredSchedule)

coordinationKey.addSecondaryDontCommitments(whatifSchedule);
whatifViolatedDeadlines = taems.getViolatedDeadlines(whatifSchedule);
taems.markAsOldDeadlines(whatifViolatedDeadlines)

}
oldViolatedDeadlines = violatedDeadlines.getOldDeadlines();
communicateDeadlineViolation(oldViolatedDeadlines);

Figure 4: Pseudo-code of an Individual Agent’s Coordination
Reasoning

key is dependent on the changes made during each iteration. In the
worst case each agent will have to re-sequence each of its

'
activities

once for every change that is made, but these changes propagate to
the other agents so the circulation-to-convergence factor is � 	�-

� �
rather than � 	�'���� (where

-
is a constant). The coordination key

algorithm above multiplexes changes so that in a given pass through
a coordination set multiple changes are considered by the agents at
once.

We hypothesized that in some problem instances the algorithm
would fail to find an optimal solution but that in most problem
instances it would perform well. To test this hypothesis we cre-
ated a centralized global scheduler that creates schedules for all of
the agent teams via exhaustive search. The centralized scheduling
problem is exponential, however, for instances having less than 11
total repairs the exhaustive scheduler is responsive enough for ex-
perimentation.6 Because the problem instance presented here uses
a subset of TÆMS features, the centralized scheduler is designed
to solve a representation of exactly the subset needed, i.e., it does
not perform detailed TÆMS reasoning but instead maintains the re-
quired constraints (e.g., deadlines, earliest start times, service teams
can only service one aircraft at a time, and only one service team
can work in a cockpit or the wing region at a given point in time).
The centralized scheduler algorithm is outlined in Figure 5. The
function of the centralized scheduler is twofold. First, it determines
the minimum number of aircraft deadlines that will be missed by
an optimal solution. In some cases all deadlines can be met and in
others aircraft deadlines represent unsatisfiable constraints. The sec-
ond role of the centralized scheduler is to determine the relative size
of the different solution spaces. For instance, for a given problem

6The centralized scheduler requires on the order of 10 minutes to
schedule 11 repairs on a dual-processor Xenon 2Ghz linux work-
station. A problem instance of that size will generate on or about
241,920 schedules some subset of which are unique.

Figure 5: The Centralized Exhaustive Scheduling Oracle Has
An Omnipotent View – Figure Shows One Scheduling Instance

there may be zero solutions that don’t miss any deadlines, X (opti-
mal) solutions that miss one aircraft deadline, Y solutions that miss
two aircraft deadlines, Z solutions that miss three aircraft deadlines,
etc. By tabulating this information we can determine a percentile
ranking for the solutions produced by the distributed coordination
key algorithm. The centralized scheduler does not compete with the
distributed coordination key algorithm on a completely level play-
ing field. The centralized scheduler sees all the repairs that will be
needed for all planes on a given problem instance at time 0. The
agents in the distributed system only see repairs as the aircraft land.
Thus, for the instance shown in Figure 5, the service team agents
will not see aircraft A10.1 until time 25 (when it lands). At this time
they may be committed to a suboptimal course of action that the cen-
tralized omnipotent scheduler will avoid because it can see A10.1’s
repairs at time 0 along with all of the other repairs that will need
to be scheduled. This difference is due to a need to keep the cen-
tralized scheduler development costs down and has its roots in de-
sign/implementation issues with the simulation environment. A re-
lated bias in favor of the centralized scheduler is that the distributed
coordination mechanisms operate in the same simulated clock as
the repairs themselves. This enables the simulation environment to
control and measure coordination costs but causes a skew in terms
of the apparent cost of coordination relative to domain tasks, e.g.,
in some cases the ten clicks (about 5 seconds in wall clock time)
that the agents require to coordinate will take as much simulation
time as it takes the service teams to rearm one missile on an aircraft.
The skew is of primary relevance when comparing the distributed

Mean # Solutions Possible Characteristics of Solution Generated by Coordination Keys
Expmnt Num Missing X Aircraft Deadlines Median StdDev %-tile %-tile %-tile

Class Trials X=0 X=1 X=2 X=3 X=4 X=5 X=6 Mean %-tile %-tile of %-tile Same Better Worse

A 32 .31 1.09 .75 .31 .13 0 0 1.13 1.0 1.0 0 .80 0 .20
B 32 .31 2 3.1 3.6 2.9 0 0 1.5 .98 1.0 .12 .58 .02 .41
C 32 0 3.2 13 24.1 16.3 2.53 .4 2.1 .97 1.0 .08 .38 .03 .62
D 28 0 3.1 16.8 33.0 49.6 36.3 2.7 2.4 .98 1.0 .04 .26 .02 .73

Table 2: Results Comparing Coordination Keys to Exhaustive and Optimal Centralized Schedule Generation

algorithm to the centralized scheduler and is less of an issue when
comparing different distributed algorithms.

Table 2 presents the results of comparing the coordination key al-
gorithm to the optimal and exhaustive centralized scheduler. Each
row is the statistical aggregation of one set of trials where each set
of trials is drawn from one difficulty class. The rows lower in the ta-
ble represent increasingly more difficult problem instances – aircraft
having more repairs and tighter deadlines relative to their landing
times and the time required for their repairs 7. All rows except for
the last represent 32 random trials. Row D contains 28 because of
the occasional exception thrown by the exhaustive scheduler caused
by running out of RAM. As the difficulty increases, note that the
density of the solution space increases and shifts right. This is rep-
resented by the columns X=0, X=1, ..., which contain the mean
number of solutions produced by the oracle that miss 0 deadlines,
1 deadline, etc., respectively. As the problem instances get harder
more aircraft are likely to miss deadlines. Note that the coordination
key algorithm generally performs well for all of the tested condi-
tions. The Mean value denotes the average number of aircraft dead-
lines missed during a batch of trials. The more descriptive statistics
are those about the percentile ranking of the solutions generated by
coordination keys. This is because how well the keys algorithm per-
forms is determined not by the absolute number of missed deadlines
(the average of which is presented in the mean column) but instead
by the solutions possible for a given trial. For instance, in some trials
the best solution possible may miss two deadlines. As the difficulty
increases the mean value for the keys algorithm increases because
there are more instances where the optimal solution is to miss one
deadline, or two deadlines, etc. Looking at the percentiles, in exper-
iment class A the keys algorithm performed in the 100th percentile,
in experiment class B the 98th percentile, in experiment class C the
97th percentile, and in class D (the most difficult class), the 98th
percentile. The percentile rating is computed as follows:

� The centralized scheduler generates all of the unique sched-
ules that exist for a given individual trial.

� These schedules are binned according to the number of dead-
lines missed, e.g., in X of the schedules 0 aircraft miss a dead-
line, in Y of the schedules 1 aircraft misses a deadline, in Z
of the schedules 2 of the aircraft miss a deadline, etc. Think
of the centralized scheduler as producing a histogram of pos-
sible solutions where solutions are binned by the number of
deadlines missed.

� Let
4�������� �

be the number of aircraft deadlines missed by
the coordination key algorithm in trial i.

� Let 	 �' 4�� �
denote the histogram bin in which

4�������� �
falls (the bin that pertains to

4������
�1�
missed deadlines).

7The seven trial parameters are: (1) land time, (2) takeoff time dead-
lines, (3) level of avionics damage, (4) level of weapons control
damage, (5) level of engines damage, (6) level of rearm damage,
and (7) refuel level.

� Let
� �,')*���� �.� & � ��� & $.� �

be the of the densities of solu-
tions that are in bins � or

�
to 	 �' 4�� �

. Bins ��	 �' 4�� �
represent solutions that are worse because they entail missing
more deadlines.

� Let � ��� ����'
�"�6 � �%��'��.�' �7� =
� ��')*���� ��� &�� ����&�$.�,��� "�� ��������

, where "�� � is the total number of solutions generated by
the centralized scheduler for trail i. � ��� ����'
�"�6 � �5�.'��.�'�� �

is
the percentile ranking for the coordination key algorithm for
trial i of the set of 32.

� Let � $.������6 6 � �����*��' ���6 � �5�.'����'�� �	 ��! �#" # � �����*��' ���6 � �5�.'$�.�'�� � �%�'&�(be the overall percentile
ranking for one batch of 32 trials.

In all cases the median percentile is 100% and the standard de-
viation is low. Because there are generally multiple solutions that
perform as well as the solutions actually generated by the coordina-
tion keys, its percentile is broken down in the last three columns of
Table 2. The column marked %-tile Same indicates the mean % of
possible solutions that miss exactly as many deadlines as the keys
algorithm did. %-tile Better indicates the number that performed
strictly better (missing fewer aircraft deadlines) and %-tile Worse
indicate the number that performed strictly worse. Note that as the
problem space gets harder the number of solutions possible that are
worse than those found by the keys algorithm increases. At the same
time the band of solutions as good as those generated by keys nar-
rows, as does the band of solutions that are strictly better than those
found by the keys algorithm.

While the data suggests that the algorithm performs well on av-
erage, there are circumstances where the algorithm performs less
well. We examined several such instances in detail and while we
have intuitions about when the algorithm will perform in a subop-
timal fashion, the experiments in which performance is suboptimal
pertain to a more basic issue. To illustrate let us assume a three-
aircraft problem instance with the following characteristics:

� Aircraft F16 arrives at time 15 with a deadline or take-off time
of 400 and requires repair of engines damaged to level 2 (the
duration of this repair is 100).

� Aircraft A10 arrives at time 18 with a deadline of 450 and
requires complete refueling (the duration of this task is 100).

� Aircraft C9 arrives at time 24 with a deadline of 240 and re-
quires repair of engines damaged to level 2 (the duration of
this repair is 100) and refueling of a quarter tank (duration of
this tank 25).

The F16 lands at time 15 and the engine service team obtains the
coordination key and schedules the engine repair of the F16 to run
from time 17 to 117. The A10 lands at time 18 and at time 19 the
refuel team gets the coordination key and schedules refueling of the
A10 to last from 19 to 119. When the C9 lands at time 24 the engine
service team is thus occupied with the F16 until time 117 and the re-
fueling team is occupied with the A10 until time 119. To respond to

the C9’s landing and repair needs, the engine service team obtains
the coordination key at time 25 and schedules C9’s repair to run
from time 117 to time 217. At a subsequent time-step, the refueling
team attempts to schedule C9’s refueling, however, because both re-
fueling and engine repair are mutually exclusive tasks, the earliest
time the refueling team can schedule the C9 is at time 217. This
means it is impossible to service the C9 by its deadline (take-off
time) of 240. In response to this pending failure, the refuel service
team attempts to negotiate with the engine service team via the co-
ordination key to obtain a wing access slot between 119 and 217.
However, the engine service team needs that time slot to complete
its portion of the C9’s engine repairs on time. The end result is that
the C9’s deadline cannot be met. For this same problem instance,
however, the centralized scheduler was able to produce a solution in
which all of the deadlines are met.

The underlying issue is that service activities are not interruptible
in this problem instance – otherwise repair teams could run from
aircraft to aircraft and the optimization problem would be much
simpler. If activities were interruptible, when the C9 first landed
either the engine service team or the refuel service team could dis-
engage from their respective current activities (servicing the F16 or
the A10) and attend to the C9, which is the aircraft with the tightest
deadline. The reason the centralized scheduler is able to produce a
better solution in this problem instance – a solution which eludes
the distributed coordination approach – is that the centralized oracle
sees all of the repair tasks a priori. It thus considers the possibility
of not servicing the F16 or A10 immediately upon arrival so that
the C9 can be serviced by engines or refueling immediately upon its
arrival and all deadlines can be met.

This particular performance issue derives from the somewhat im-
balanced playing field (discussed earlier) between the distributed al-
gorithm and the centralized oracle. Interestingly, we can hypothe-
size two instances where the distributed algorithm will fail to per-
form well, even on a level playing field, but such instances occur
infrequently in randomly generated problem instances – even those
with tight deadline constraints and numerous repairs per aircraft.8

One instance where the the coordination key algorithm will per-
form less well entails semi-independent coordination problems that
occur simultaneously in the coordination set of more than two agents.
Imagine a coordination set of the rearm, refuel, and engine repair
agents. Let the key pass from agent to agent in the following order:
rearm to refuel to engine (then the cycle repeats). Now, let us as-
sume that at time

�
the rearm agent needs a time slot that is held by

the engine agent, and that refuel needs a time slot that is held by the
rearm agent. The implications are that multiple unrelated proposals
must reside on one key for part of the coordination set traversal, i.e.,
the proposal from rearm to engine and the proposal from refuel to
rearm both reside on the key during the refuel to engine to rearm
circuit. The key algorithm is designed with the assumption that,
in general, multiple proposals will pertain to a single (sometimes
multi-step) coordination process. Therefore, when the engine agent
receives the coordination key it either accepts or rejects the set of
current proposals (from the rearm and refuel agents) en masse even
though it may only be affected by the rearm agent’s proposal. In this
case, when the set of proposals arrives and the engine agent deter-
mines that it cannot satisfy the rearm agent’s request, it rejects the
proposals en masse and the proposal from refuel to rearm is never
evaluated by the rearm agent. This may result in a missed oppor-
tunity for the refuel agent. The shortcoming described here can be
fixed by making the agents more selective in proposal rejection.

8If the repairs are spread over a large number of aircraft there is little
spatial resource contention and service teams can basically function
in parallel.

Another instance where the coordination key algorithm may per-
form less well is when a long chain of multi-step inter-locking re-
source releases are required. The factor at work is the algorithm’s
approximate limited-cycle-to-action model. However, as noted, nei-
ther class of problems occur frequently with random instances. We
are currently exploring creating a generator and experiments to test
performance under these circumstances.

5. RELATED WORK
The TRACE system [5] also deals with distributed task perfor-

mance though the focus of TRACE is on task allocation to agent
organizations. Like our problem space, TRACE tasks have dead-
lines and required durations. The important difference is that in
TRACE the tasks are independent – they do not interact over shared
resources at run or performance time nor are sets of them required
to solve some larger objective (e.g., in our application there is con-
ceptually an

�.'
�
function over the set of service tasks required to

prepare the plane for its next launch).
The intelligent home, or IHome [10] project, also had resource

coordination issues to resolve. The SHARP protocol used in IHome
was implemented in both centralized and distributed versions. The
distributed version is the most relevant for comparison though it dif-
fers from the key algorithm in several ways. First, SHARP relies on
client assigned priorities to determine which agent should have ac-
cess to a given resource if there is contention. Second, in the IHome
activities are fixed temporally, e.g., the human user takes his/her
shower at a particular time of day so if there is a conflict, the prior-
ity measure alone determines proper resolution. SHARP also does
not partition the agents so agents that did not consume resource X
would still coordinate over the usage of resource X. SHARP also
uses a general broadcast model which means interacting issues can
be broadcast concurrently – we believe this would not work well for
conflict resolution in a domain without hard-set priority measures.

Work in economic agent systems frequently entails protocol de-
velopment, e.g., [9, 2]. The issues addressed by such protocols are
generally a different class. Instead of the global optimization of in-
teracting tasks with resource and temporal constraints, such work
generally relates to fairness, bidding strategies within the problem
space, and obtaining equilibrium. Such work also generally entails
a centralization mechanism, e.g., an auctioneer, not present in the
distributed dynamic coordination of this paper. Note that combina-
torial auctions [15] exhibit intractability in much the same way as
distributed scheduling-esque coordination work like that presented
here do.

Peer-to-peer auctions [13] in which bidding is distributed also ex-
hibit propagation-to-convergence properties. However, because the
attributes being modified are the bid and ask prices, and these are
not fixed temporally the way repair tasks are situated in our prob-
lem instance, the parallels are generally surface level.

Other TÆMS coordination technologies exist and have been used
on related problems. In the distributed sensor network [7] agents
coordinate to track vehicles through a sensor grid. This problem and
the control regime differ because the problem focuses on periodic
tasks. Another example is distributed hospital patient scheduling
[3]. The coordination mechanisms used in that application are the
traditional GPGP pairwise mechanisms that we believe would not
serve well in the aircraft service problem space due to the higher
degree of interdependence (discussion continues in the conclusion).

With respect to the community at large, there are some similari-
ties between our work and that dealing with teamwork [16] or joint
problem solving formalisms [6]. Our work differs in its distributed
dynamic scheduling focus and its implicit, rather than explicit, use
of joint goal constructs. (More details are in [11].)

The coordination key algorithm has some concepts in parallel
with token based networking [17, 8]. One parallel is that the co-
ordination set of agents form a virtual ring around which the key
is passed. The key, like the token in networking, gives the agent
holding the key the ability to enter its conceptual critical section. In
networking, the critical section is actually the network bandwidth
– in our coordination algorithm the critical section is the ability to
propose changes and the ability to respond to other proposals. Our
work differs in that the key represents the ability to make high level
changes that impact the other nodes and that the key itself carries
proposals, responses to proposals, and other coordination data.

6. LIMITATIONS AND FUTURE WORK
In the future, we would like to compare the coordination key al-

gorithm to a distributed pairwise (classic GPGP style) algorithm.
We believe the key-based approach will perform better but this is
only conjecture at this point. Because the character of the spatial
interactions in this problem differs from that typically modeled in
TÆMS the standard GPGP coordination techniques could not be
employed without modifications to TÆMS. Due to time and re-
source constraints, and a desire to compare distributed coordination
to a centralized optimal oracle, resources were directed in that fash-
ion.

Hereto unmentioned is the possibility of creating an efficient op-
timal centralized scheduler for the service teams. As presented here
the task space appears sufficiently constrained to lend itself to cen-
tralized approaches that do not require exhaustive search. This is
partly an artifact of the task space as framed for this application
– we are using a small subset of TÆMS features and the non-local-
effects (NLEs or task interactions) presented in this paper all involve
mutual exclusion. In the general case, task interactions may impact
each other’s quality, cost, and durations (not just dictate mutual ex-
clusion) and the element of choice is larger than presented here –
these characteristics combined with differing deadlines often thwart
typical non-exhaustive centralized scheduling methodologies. More
importantly, however, is the motivation for distribution. Distribution
enables incremental addition of repair teams, gives each team local
autonomy (if the simulated teams were human, they could exercise
their own judgment and the TÆMS technologies would coordinate
with the human’s choices when the coordination recommendation
is over-ridden), removes a central point of failure, and removes the
issue of computational or communication overhead that occurs with
one centralized scheduling node. In the broader sense, centraliza-
tion is often not possible or not desirable due to privacy concerns,
the need to avoid a central point of failure, scalability issues, or the
potential processing delay. In many instances, it is also not required
– consider the discrete spaces represented by the different coordina-
tion sets in this application but imagine a network of 100,000 agents
– not all of these would need to interact, coordinate, or even be
aware of one another.

7. REFERENCES
[1] F.M. Brazier, C.M. Jonker, and J. Treur. Formalization of a

cooperation model based on joint intentions. In Intelligent
Agents II, Springer Verlag, 1997.

[2] E. David, R. Azoulay-Schwartz, and S. Kraus. Protocols and
strategies for automated multi-attribte auctions. In Proc. of
the 1st Intl. Conf. on Autonomous Agents and Multi-Agent
Systems, 2002.

[3] K. Decker and J. Li. Coordinated hospital patient scheduling.
In Proc. of the 3rd Intl. Conf. on Multi-Agent Systems, pages
104–111, 1998.

[4] K. Decker. Environment Centered Analysis and Design of
Coordination Mechanisms. PhD thesis, University of
Massachusetts, 1995.

[5] S. Fatima and M. Wooldridge. Adaptive task and resource
allocation in multi-agent systems. In Proc. of the 5th Intl.
Conf. on Autonomous Agents, 2001.

[6] B. Grosz and S. Kraus. Collaborative plans for complex group
action. Artificial Intelligence, 86:269–357, 1996.

[7] B. Horling et al. Distributed sensor network for real-time
tracking. In Proc. of the 5th Intl. Conf. on Autonomous Agent,
2001.

[8] IEEE. 802.5: Token Ring Access Method. IEEE, New York,
NY, 1985.

[9] T. Ito, M. Yokoo, and S. Matsubara. Designing an auction
protocol under asymmetric information on nature’s selection.
In Proc. of the 1st Intl. Conf. on Autonomous Agents and
Multi-Agent Systems, 2002.

[10] V. Lesser et al. A Multi-Agent System for Intelligent
Environment Control. In Proc. of the 3rd Intl. Conf. on
Autonomous Agents, 1999.

[11] V. Lesser, K. Decker, T. Wagner, et al. Evolution of the GPGP
Domain-Independent Coordination Framework. UMASS CS
Tech. Report TR-98-05. To appear in the Journal of AAMAS,
2003.

[12] V. Lesser et al. BIG: An agent for resource-bounded
information gathering and decision making. Artificial
Intelligence, 118(1-2):197–244, May 2000. Elsevier Science
Publishing.

[13] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction. In
Proc. of the 1st Intl. Conf. on Autonomous Agents and
Multi-Agent Systems, 2002.

[14] A. Raja, V. Lesser, and T. Wagner. Toward Robust Agent
Control in Open Environments. In Proc. of the 4th Intl. Conf.
on Autonomous Agents, 2000.

[15] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner
determination in combinatorial auction generalizations. In
Proc. of the 1st Intl. Conf. on Autonomous Agents and
Multi-Agent Systems, 2002.

[16] M. Tambe and W. Zhang. Towards Flexible Teamwork in
Persistent Teams. In Proc. of the 3rd Intl. Conf. on
Multi-Agent Systems, 1998.

[17] A.S. Tanenbaum. Computer Networks. Prentice Hall, New
Jersey, 1996.

[18] R. Vincent, B. Horling, and V. Lesser. An agent infrastructure
to evaluate multi-agent systems: The java agent framework
and multi-agent system simulator. In Infrastructure for
Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, pages 102–127. Springer, 2001.

[19] T. Wagner, A. Garvey, and V. Lesser. Criteria-Directed
Heuristic Task Scheduling. Intl. Journal of Approximate
Reasoning, Special Issue on Scheduling, 19(1-2):91–118,
1998. Version also avail. as UMASS CS Tech. Report
TR-97-59.

[20] T. Wagner and V. Lesser. Design-to-Criteria Scheduling:
Real-Time Agent Control. In Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent Systems,
LNCS. Springer-Verlag, 2001. Version avail. as UMASS CS
Tech. Report TR-99-58.

[21] N.R. Jennings. Specification and Implementation of a
Belief-Desire-Joint-Intention Architecture for Collaborative
Problem Solving In International Journal of Intelligent and
Cooperative Information Systems, Vol 2, No 3, 1993, pages
289-318.

