Operating Systems, fall 2002
Local File Systemsin UNIX

Lior Amar,
David Breitgand
(recitation)
www.cs.huji.ac.il/~0s

1/O: UNIX approach

* Thebasic modd of the UNIX |/O systemisa
seguence of bytes that can be accessed either
randomly or sequentially

o Applications may need various level of structure
for their data, but the kernel imposes no structure
on /O

ASCII text editors process documents
consisting of lines of characters where each lineis
terminated by ASCII line-feed character. Kernel
knows nothing about this convention

|/O stream

The UNIX kerndl uses a single data model,
byte stream, to serve all applications,

Asaresult I/0O stream from one program
can be fed as input to any other program;

Pipelines can be formed,;

Thisisa characteristic UNI X tool-based
approach;

Descriptors

Unix processes use descriptorsto reference 1/0
streams;

Descriptors are small unsigned integers,

Descriptors are obtained from system calls open(),
socket(), pipe();

System callsread() and write() are applied to
descriptorsto transfer data;

System call |seek() is used to specify position in
the stream referred by desriptor;

System call close() is used to de-allocate
descriptors and the objects they refer to.

What' s behind the descriptor?

 Descriptors represent objects supported by
the kernel:

o file

e socket

File

A linear array of bytes with at least one name;

A file exists until all its names are explicitly
deleted, and no process holds a descriptor for it;

In UNIX, /O devices are accessed asfiles. These
are called special devicefiles,

There i1s nothing special about them for the user
processes, though;

Terminals, printers, tapes are all accessed as if
they were streams of bytes;

They have namesin thefile system and are
referred to through their descriptors.

Special Files

The kernel can determine to what hardware device
aspecia filerefers and uses aresident module
called device driver to communicate with the
device;

Device special files are created by the mknode()
system call (by the super-user only)

To manipulate device parametersioctl() system
call Isused;

Different devices allow different operations
through ioctl()

Devices are divided into two groups:

Devices are not created equal

Block devices:
— Random (anywhere in the stream) access devices,

Internal implementation is based on the notion of block, a
minimal group of bytesthat can be transferred in one
operation to and from the device;

A number of blocks can be transferred in one operation
(thisis, usually, more efficient), but less then block bytes of
datais not transferred;

To user application, the block structure of thedeviceis
made transpar ent through internal buffering being
donein kernel. User process may read/writeasingle
byte because it workswith 1/O stream abstraction ©

tapes, magnetic disks, drums, cd-roms, zip disks, floppy
disks, etc.

Devices are not created equal

e Character devices:
— Sequential access devices,

— Interna implementation often supports the notion of
block transfer,

— Moreover, in many cases the blocks supported by
character devices are very large due to efficiency
considerations (e.g., communication interfaces)

 Then why they are called character?
— Because the first such devices were termina’s

* Mouse, keyboard, display, network interface,
printer, etc.

Devices are not created equal

File systems, organized, collections of files, are always created
on the block devices, and never on the character devices

Block devices can (and usually do) support character device
Interface. But the opposite is not true.

Single physical block device can be partitioned into a number of
logical devices. Each such logical device can have its own file
system. Each such logical deviceis represented by its own special
devicefile. /[take alook at /dev directory to seethem

So far, it’s enough with the special files.
But we'll get back to them later on :)

pipe
They arelinear array of bytes asfiles, but they are

unidirectional sequential communication links
between the related processes (father/son);

They are transient objects,

They get their file names in the /tmp directory
automatically, but open() cannot be used for them;

Descriptors obtained from pipe() system call.

Data written to a pipe can be read only once from
It, and only in the order it was written (FIFO);

Have limited size.

FIFO

 Thereisaspecial kind of pipes, called
named pipes;

* They areidentical to unnamed pipes, except
they have normal names, as any other file,

and descriptors for them can be obtained
through open() system call;

* Processes that wish to communicate through
them in both directions should open one
FIFO for every direction.

Socket

Socket is atransient object that i1s used for inter-
pProcess communication;

It exists only as long as some process holds a
descriptor on it;

Descriptor is created through the socket() system
call;
Sequential access; similar to pipes;
Different types of sockets exist:
— Local IPC;

— Remote | PC;
— Redliable/unreliable etc.

To summarize, so far

» Descriptor refersto some kind of 1/0 stream

e But al I/O streams have the same interface:
— file

Where descriptors are?

The kernel maintains a per-process descriptor
table that kernel usesto trandlate the external
representation of I/O stream into internal
representation;

Descriptor issimply an index into this table;

Conseguently, descriptors have only local
meaning;

Different descriptors in different processes can
refer to the same I/O stream;

Descriptor table is inherited upon fork();

Descriptor table is preserved upon exec();

File Descriptor table

Process
Entry

File Descriptor
table

Process
Entry

File table

\I/O streams

Process
Entry

File Descriptor table

File table

File desariptor entry: \

1) pointer2fte
2) Close on exec() flag

Process
Entry

>

File Descriptor table

File Descriptor table

Process
Entry

R

File table

Filetable entry:

File Descriptor table

Process
Entry

1)Reference count

2) File Offset

2) Flags:
append flag
locking
no-block flag
asynchronous flag

File Descriptor table

File table

I/O streams

Process
Entry o How to refer to
- |/O streams?

Streams are diver se;
_ | -specia devicefile:
e PVt -E.g., fds: 0,1,2
-Regular file:

-Loca?

-What device?
-Remote?

-How to access?
> -Non-UNI[X?

Process
Entry

-How to handle all this?

Solution: virtual file system layer

table
File table
Process
Entry
>
File
Descriptor
table
Process
Entry .

V-node layer

V-node interface functions consist of:

— File system independent functions dealing with:
» Hierarchical naming;
» Locking;
e Quotas,
« Attribute management and protection.

— Object (file) creation and deletion, read and write,
changes in space all ocation:

» These functionsrefer to file-store internals specific to thefile
system:

« Physical organization of data on device;

» For loca datafiles, these functionsrefer to v-node refersto

UNIX-specific structure called i-node (index node) that has all
necessary information to access the actual data store.

Regular Local Files and I-nodes

Information about each regular local fileis
contained in the structure called 1-node;

There is 1-to-1 mapping between the I-node and a
file.

|-node structures are stored on the file system
block device (e.g., disk) in a predefined location;
Where it is exactly isfile system implementation
specific;

To work with afile (through the descriptor

Interface) the I-node of the file should be brought
Into the main memory (in-core I-node) ->

EIEP |wl—
lII
s, o o 080 JoquINU UOTEISUAF
st 2% o |7 W s3ep
wep .l.t“ gt JUNOS 20U313Jal
unod y20[q
eIep |a—| b 3 .
_ j0oxrput 3pdin
RIEP |et—
BIED | 10211pUL 2[qNOP
Sy o BIep [a—— | | 300mpur d[3urs
eIep |t eep - K
D L §)00[q 10211
BIRp '\ azIs
(¢) sdwreisawin
e1ep
(7) s1oumo
4 apout

“apour ue jo armonns 2y, |*2 aanbi4

|N-core |-nodes

ﬁ

Figure 7.2 Layout of kernel tables.

l :

| disk

kernel-resident structures l
= : - inode
process | | openfile | _f . 4. sl inode :
ipt en

descriptor try H_‘“:-*—-—... =
|
|
|

Additional information:

1. how many file entries refer to I-node;
2. Locking status,

How |-nodes are identified?

Each I-node is identified through its number
Non-negative integer;

This number serves as an index into the [-node list
Implemented in each file system;

And thereis afile system per device, remember?
Thus, I-node numbers have only local meaning

How to efficiently refer to the in-core |-nodes
then?

;
'3[qe) apout ayy jo amdnng g7 aunbiy

R
o !
*
< L
R '4
*
~ - - - -—
A
&L T
mm.J S a— ...‘.\M.J.ulu
ad ——

IAQUINUAIP “12qUINuT>
Uo ysey

| ssues with |-nodes

* Sincein-core |-node should be created for each
open file, we need a mechanism how to map the
fillename into the I-node number:

e Sincethisisan often used operation, |-nodes
lookup and management should be efficient Iin
time and space;

 Since each file should be allocated an |-node
structure, we need to know what i1sin use, and
what Is free

Logical View of the File System
(generic)

Figure 7.4 A small filesystem tree.

Directories

In UNIX there are special files (don’t mix with special
devicefiles) called directories;

Directory is afile containing information about other
files;

As afiledirectory has an I-node structure;

Flag in the structure indicates its type;

In contrast to other files, the kernel imposes a
structureon directories

Directory is acollection of directory entries of variable
length where each entry contains mapping:

<name, inode #>

Directories

e Directories allocated in chunks
 Each chunk can be read/written inasingle

1/O operation;
— Why?
e - o y
IFILE 5 foo.c VA # : DIR| 3 | bar | # l DIR mumble
| a directory block with three entries
i
Wi 7

Figure 7.5 Format of directory chunks.

an empty directory block

LA/ uEq/asny
oy

uiq/asny
K1010901p

ooyasny
214

2[4

asmy
K1oj3o211p

AioyoaIp

SH201q BlEp

“wsLSIY [[PWS B JO 2IMIONNS [euiul 92 a4nbBi4

I 3ST] Spour !

eep

X9

A

S661 1 1dy

o1

JJoas

X

<

iPHOA OTTRPH

eep | 1xo

urq

T N>~ |0

(LN]

NNt N

Links (hard)

Figure 7.7 Hard links to a file.

fasr/joe
/ reference count = 2
foo
file
inode

fusr/sue

bar —

directories

Hard links cannot span different file systems (local meaning only)

Links (soft)

/usr/joe
/—- reference count = 1
4 description
of file
/fusr/sue
_—® reference count = 1
bar ™
fusr/joe/foo —
directories

Figure 7.8 Symbolic link to a file.

Soft links can span the device boundaries

Local File System Organization

» Classical UNIX File System (old);

o Seguentially from a predefined disk
addresses (cylinder O, sector 0):

— Boot block;
— Superblock;
— |-node hash-array;
— Data blocks

Superblock

o Contains,
— Size of thefile system;
— The number of free blocks in the file system;
— Size of thelogical file block;
— A list of free blocks available for file allocation,
— Index of the next free block on the lit;
— The size of I-nodelist;
— The number of free I-nodes on the system,
— Thelist of free I-nodes on the file system;
— The index of the next free I-node on the list.

|-node allocation

Aslong asthereis afree |I-node — allocate it;

Otherwise scan the I-node list linearly, and enter
Into the super-block list of free I-nodes as many
numbers as possible;

Remember the highest free I-node number;
Continue with step 1,

Next time start scanning from the remembered |-
node number; when at the end — go back to the
beginning of the I-nodelist.

Relation between logical and physical views

user: write(fd, buffer, cnt);

buffer:
I"'-— cnt —-i
I |
logical file: : i
| |
| I
| I
system buffers: |r :
| 1
I | I
| | I
logical file blocks: 0 1 2 3
I] b
: 1Yy %
PEERITEN, P Ry T R Tt e e e i B A= —
M M

2:| #51879

disk:

#11954

Figure 8.1 The block I/O system.

Im—PeAl NSIP

<J2SJJ0 “Yorn ‘IPUI[Ad> YSIP
01 Jaqunu ys0[q [earsiyd

Jaquinu Yo0[q [estsAyd o) wsAsafy
pue UONEdO[[E I2JNg

s1opnq ¥20[q 2[3urs Jo uonesai3de
pue s}20[q Snongnuod Jo uonedIynuapl

A

()aap

I

()oq

J42151]2

P
() dowiq”sfn
K
(Opoas~sff
4

(O poasua

E

()ppad

Iquinu Y20[q
wIsAsa[y 01 [ed180]

Jequunu Y20[q [e2130]
01 J1asJj0

wWNSASIAY
0] IpOUA

¥oayo ejonb

$Y00]q WNSASI[Y

JO uonEdOo[[E

O bpyyo

()oonv—sf

Vit

(O20nrq~ sy

}

(aram™sff

|

(21am"ua

i

()a1am

‘Sunum pue Surpeal 0) 30eLINUI [BINPOD0I] {8 ainbi4

Example

Block sizeis 1024; .

228
Offset 9000: =
(9000)mod(1024) = 808; 0
(9000)div(1024) = 8§; 0
Offset 350,000: 11811
(350,000)div(1024) = - _WJ
341: 101 data block
75-th direct block of the 167

single indirect block of

0
the 0-th double ==y

indirect block - 0 7 -
(350,000)mod(1024) = 9156 - vy
data block

816; 824 double indirect 731
single indirect

Figure 49, Block Layout of a Sample File and 1ts Inode

What' s next?

|ssues with the old UNIX file system;
BSD FFS (new fsystem)

L og-based file system;

NFS.

