
Chapter 8: Network Management

In this final chapter we provide a brief introduction into network management and
firewalls. We begin my motivating the need to provide appropriate tools for the
network administrator--the person whose job is to keep the network up and
running. These tools are for monitoring, testing, polling, configuring, analyzing,
evaluating, and controlling the operation of a network. We discuss the five key
components of a network management architecture: (1) a network manager, (2)
a set of managed remote devices, (3) management information bases (MIBs), (4)
remote agents that report MIB information and take action under the control of
the network manager, and (5) a protocol for communicating between the network
manager and the remote devices. We then delve into the details of the Internet
Network Management Framework, and the SNMP protocol in particular. We also
examine ASN.1 in some detail. We conclude this chapter with a discussion on
firewalls--a topic that falls within the realms of both security and network
management. We discuss how packet filtering and application-level gateways
can be used to provide the network with some level of protection against
unwanted intruders.

Online Book

8.1: What Is Network Management?
Having made our way through the first seven chapters of this text, we’re
now well aware that a network consists of many complex, interacting pieces
of hardware and software--from the links, bridges, routers, hosts, and other
devices that comprise the physical components of the network to the many
protocols (in both hardware and software) that control and coordinate these
devices. When hundreds or thousands of such components are cobbled
together by an organization to form a network, it is not surprising that
components will occasionally malfunction, that network elements will be
misconfigured, that network resources will be overutilized, or that network
components will simply "break" (for example, a cable will be cut, a can of
soda will be spilled on top of a router). The network administrator, whose
job it is to keep the network "up and running," must be able to respond to
(and better yet, avoid) such mishaps. With potentially thousands of network
components spread out over a wide area, the network administrator in a
network operations center (NOC) clearly needs tools to help monitor,
manage, and control the network. In this chapter, we’ll examine the
architecture, protocols, and information base used by a network
administrator in this task.

Before diving in to network management itself, let’s first consider a few
illustrative "real-world" non-networking scenarios in which a complex
system with many interacting components must be monitored, managed,
and controlled by an administrator. Electrical power-generation plants (at

least as portrayed in the popular media in such movies as the China
Syndrome) have a control room where dials, gauges, and lights monitor the
status (temperature, pressure, flow) of remote valves, pipes, vessels, and
other plant components. These devices allow the operator to monitor the
plant’s many components, and may alert the operator (the famous flashing
red warning light) when trouble is imminent. Actions are taken by the plant
operator to control these components. Similarly, an airplane cockpit is
instrumented to allow a pilot to monitor and control the many components
that make up an airplane. In these two examples, the "administrator"
monitors remote devices and analyzes their data to ensure that they are
operational and operating within prescribed limits (for example, that a core
meltdown of a nuclear power plant is not imminent, or that the plane is not
about to run out of fuel), reactively controls the system by making
adjustments in response to the changes within the system or its
environment, and proactively manages the system (for example, by
detecting trends or anomalous behavior, allowing action to be taken before
serious problems arise). In a similar sense, the network administrator will
actively monitor, manage, and control the system with which she/he is
entrusted.

In the early days of networking, when computer networks were research
artifacts rather than a critical infrastructure used by millions of people a day,
"network management" was an unheard of thing. If one encountered a
network problem, one might run a few pings to locate the source of the
problem and then modify system settings, reboot hardware or software, or
call a remote colleague to do so. (A very readable discussion of the first
major "crash" of the ARPAnet on October 27, 1980, long before network
management tools were available, and the efforts taken to recover from and
understand the crash is RFC 789). As the public Internet and private
intranets have grown from small networks into a large global infrastructure,
the need to more systematically manage the huge number of hardware and
software components within these networks has grown more important as
well.

In order to motivate our study of network management, let’s begin with a
simple example. Figure 8.1 illustrates a small network consisting of three
routers, and a number of hosts and servers.

Figure 8.1: A simple scenario illustrating the uses of network management

Even in such a simple network, there are many scenarios in which a
network administrator might benefit tremendously from having appropriate
network management tools:

• Failure of an interface card at a host or a router. With appropriate
network management tools, a network entity (for example router A)
may report to the network administrator that one of its interfaces has
gone down. (This is certainly preferable to a phone call to the NOC
from an irate user who says the network connection is down!) A
network administrator who actively monitors and analyzes network
traffic may be able to really impress the would-be irate user by
detecting problems in the interface ahead of time and replacing the
interface card before it fails. This might be done, for example, if the
administrator noted an increase in checksum errors in frames being
sent by the soon-to-die interface.

• Host monitoring. Here, the network administrator might periodically
check to see if all network hosts are up and operational. Once again,
the network administrator may be able to really impress a network
user by proactively responding to a problem (host down) before it is
reported by a user.

• Monitoring traffic to aid in resource deployment. A network
administrator might monitor source-to-destination traffic patterns and
notice, for example, that by switching servers between LAN
segments, the amount of traffic that crosses multiple LANs could be
significantly decreased. Imagine the happiness all around (especially
in higher administration) when better performance is achieved with

no new equipment costs. Similarly, by monitoring link utilization, a
network administrator might determine that a LAN segment, or the
external link to the outside world is overloaded and a higher-
bandwidth link should thus be provisioned (alas, at an increased
cost). The network administrator might also want to be notified
automatically when congestion levels on a link exceed a given
threshold value, in order to provision a higher-bandwidth link before
congestion becomes serious.

• Detecting rapid changes in routing tables. Route flapping--frequent
changes in the routing tables--may indicate instabilities in the routing
or a misconfigured router. Certainly, the network administrator who
has improperly configured a router would prefer to discover the error
his/herself, before the network goes down.

• Monitoring for SLAs. With the advent of Service Level Agreements
(SLA)--contracts that define specific performance metrics and
acceptable levels of network provider performance with respect to
these metrics--interest in traffic monitoring has increased
significantly over the past few years [Larsen 1997; Huston 1999a].
UUnet and AT&T are just two of the many network providers that
guarantee SLAs [UUNet 1999; AT&T SLA 1998] to their customers.
These SLAs include service availability (outage), latency,
throughput, and outage notification requirements. Clearly, if
performance criteria are to be part of a service agreement between a
network provider and its users, then measuring and managing
performance will be of great importance to the network administrator.

• Intrusion detection. A network administrator may want to be notified
when network traffic arrives from, or is destined to, a suspicious
source (for example, host or port number). Similarly, a network
administrator may want to detect (and in many cases filter) the
existence of certain types of traffic (for example, source-routed
packets, or a large number of SYN packets directed to a given host)
that are known to be characteristic of certain attacks.

The International Organization for Standards (ISO) has created a network
management model that is useful for placing the above anecdotal scenarios
in a more structured framework. Five areas of network management are
defined:

• Performance management. The goal of performance management is
to quantify, measure, report, analyze, and control the performance
(for example, utilization, throughput) of different network
components. These components include in dividual devices (for
example, links, routers, and hosts) as well as end-to-end
abstractions such as a path through the network. We will see shortly
that protocol standards such as the Simple Network Management
Protocol (SNMP) [RFC 2570] play a central role in Internet

performance management.

• Fault management. The goal of fault management is to log, detect,
and respond to fault conditions in the network. The line between fault
management and performance management is rather blurred. We
can think of fault management as the immediate handling of
transient network failures (for example, link, host, or router hardware
or software outages), while performance management takes the
longer term view of providing acceptable levels of performance in the
face of varying traffic demands and occasional network device
failures. As with performance management, the SNMP protocol
plays a central role in fault management.

• Configuration management. Configuration management allows a
network manager to track which devices are on the managed
network and the hardware and software configurations of these
devices.

• Accounting management. Accounting management allows the
network manager to specify, log, and control user and device access
to network resources. Usage quotas, usage-based charging, and the
allocation of resource-access privileges all fall under accounting
management.

• Security management. The goal of security management is to control
access to network resources according to some well-defined policy.
The key distribution centers and certification authorities that we
studied in Section 7.5 are components of security management. The
use of firewalls to monitor and control external access points to one’s
network, a topic we will study in Section 8.4, is another crucial
component.

In this chapter, we’ll cover only the rudiments of network management. Our
focus will be purposefully narrow--we’ll examine only the infrastructure for
network management--the overall architecture, network management
protocols, and information base through which a network administrator
"keeps the network up and running." We’ll not cover the decision-making
processes of the network administrator, who must plan, analyze, and
respond to the management information that is conveyed to the NOC. In
this area, topics such as fault identification and management [Katzela 1995;
Medhi 1997], proactive anomaly detection [Thottan 1998], alarm correlation
[Jakobson 1993], and more come into consideration. Nor will we cover the
broader topic of service management [Saydam 1996]--the provisioning of
resources such as bandwidth, server capacity, and the other
computational/communication resources needed to meet the mission-
specific service requirements of an enterprise. In this latter area, standards
such as TMN [Glitho 1995; Sidor 1998] and TINA [Hamada 1997] are
larger, more encompassing (and arguably much more cumbersome)

standards that address this larger issue. TINA, for example, is described as
"a set of common goals, principles, and concepts that cover the
management of services, resources, and parts of the Distributed
Processing Environment" [Hamada 1997]. Clearly, all of these topics are
enough for a separate text and would take us a bit far afield from the more
technical aspects of computer networking. So, as noted above, our more
modest goal here will be to cover the important "nuts and bolts" of the
infrastructure through which the network administrator keeps the bits
flowing smoothly.
An often-asked question is "What is network management?". Our
discussion above has motivated the need for, and illustrated a few of the
uses of, network management. We’ll conclude this section with a single-
sentence (albeit a rather long, run-on sentence) definition of network
management from [Saydam 1996]:

"Network management includes the deployment, integration,
and coordination of the hardware, software, and human
elements to monitor, test, poll, configure, analyze, evaluate,
and control the network and element resources to meet the
real-time, operational performance, and Quality of Service
requirements at a reasonable cost."

It’s a mouthful, but it’s a good workable definition. In the following sections,
we’ll add some meat to this rather bare-bones definition of network
management.

© 2000-2001 by Addison Wesley Longman
A division of Pearson Education

Online Book

8.2: The Infrastructure for Network Management
We’ve seen in the previous section that network management requires the ability to
"monitor, test, poll, configure, . . . and control" the hardware and software and
components in a network. Because the network devices are distributed, this will
minimally require that the network administrator be able to gather data (for example,
for monitoring purposes) from a remote entity and be able to affect changes (for
example, control) at that remote entity. A human analogy will prove useful here for
understanding the infrastructure needed for network management.

Imagine that you’re the head of a large organization that has branch offices around
the world. It’s your job to make sure that the pieces of your organization are
operating smoothly. How would you do so? At a minimum, you’ll periodically gather
data from your branch offices in the form of reports and various quantitative

measures of activity, productivity, and budget. You’ll occasionally (but not always) be
explicitly notified when there’s a problem in one of the branch offices; the branch
manager who wants to climb the corporate ladder (perhaps to get your job) may
send you unsolicited reports indicating how smoothly things are running at his/her
branch. You’ll sift through the reports you receive, hoping to find smooth operations
everywhere, but no doubt finding problems in need of your attention. You might
initiate a one-on-one dialogue with one of your problem branch offices, gather more
data in order to understand the problem, and then pass down an executive order
("Make this change!") to the branch office manager.

Implicit in this very common human scenario is an infrastructure for controlling the
organization--the boss (you), the remote sites being controlled (the branch offices),
your remote agents (the branch office managers), communication protocols (for
transmitting standard reports and data, and for one-on-one dialogues), and data (the
report contents and the quantitative measures of activity, productivity, and budget).
Each of these components in human organizational management has a counterpart
in network management.

The architecture of a network management system is conceptually identical to this
simple human organizational analogy. The network management field has its own
specific terminology for the various components of a network management
architecture, and so we adopt that terminology here. As shown in Figure 8.2, there
are three principle components of a network management architecture: a managing
entity (the boss in our above analogy--you), the managed devices (the branch
office), and a network management protocol.

Figure 8.2: Principal components of a network management architecture

The managing entity is an application, typically with a human in the loop, running in
a centralized network management station in the network operations center (NOC).
The managing entity is the locus of activity for network management; it controls the
collection, processing, analysis, and/or display of network management information.

It is here that actions are initiated to control network behavior and here that the
human network administrator interacts with the network devices.

A managed device is a piece of network equipment (including its software) that
resides on a managed network. This is the branch office in our human analogy. A
managed device might be a host, router, bridge, hub, printer, or modem device.
Within a managed device, there may be several so-called managed objects. These
managed objects are the actual pieces of hardware within the managed device (for
example, a network interface card), and the sets of configuration parameters for the
pieces of hardware and software (for example, an intradomain routing protocol such
as RIP). In our human analogy, the managed objects might be the departments
within the branch office. These managed objects have pieces of information
associated with them that are collected into a management information base
(MIB); we’ll see that the values of these pieces of information are available to (and in
many cases able to be set by) the managing entity. In our human analogy, the MIB
corresponds to quantitative data (measures of activity, productivity, and budget, with
the latter being setable by the managing entity!) exchanged between the branch
office and the main office. We’ll study MIBs in detail in Section 8.3. Finally, also
resident in each managed device is a network management agent, a process
running in the managed device that communicates with the managing entity, taking
local actions on the managed device under the command and control of the
managing entity. The network management agent is the branch manager in our
human analogy.

The third piece of a network management architecture is the network management
protocol. The protocol runs between the managing entity and the managed devices,
allowing the managing entity to query the status of managed devices and indirectly
take actions at these devices via its agents. Agents can use the network
management protocol to inform the managing entity of exceptional events (for
example, component failures or violation of performance thresholds). It’s important to
note that the network management protocol does not itself manage the network.
Instead, it provides a tool with which the network administrator can manage
("monitor, test, poll, configure, analyze, evaluate and control") the network. This is a
subtle, but important distinction.

Although the infrastructure for network management is conceptually simple, one can
often get bogged down with the network-management-speak vocabulary of
"managing entity," "managed device," "managing agent," and "management
information base." For example, in network-management-speak, our simple host
monitoring scenario, "managing agents" located at "managed devices" are
periodically queried by the "managing entity"--a simple idea, but a linguistic mouthful!
Hopefully, keeping the human organizational analogy and its obvious parallels with
network management in mind will be of help as we continue through this chapter.

Our discussion of network management architecture above has been generic, and
broadly applies to a number of the network-management standards and efforts that
have been proposed over the years. Network-management standards began
maturing in the late 1980s, with OSI CMISE/CMIP (the Common Management

Service Element/Common Management Information Protocol) [Piscatello 1993;
Stallings 1993; Glitho 1998] and the Internet SNMP (Simple Network-Management
Protocol) [Stallings 1993; RFC 2570, Stallings 1999; Rose 1996] emerging as the
two most important standards [Miller 1997; Subramanian 2000]. Both are designed
to be independent of vendor-specific products or networks. Because SNMP was
quickly designed and deployed at a time when the need for network management
was becoming painfully clear, SNMP found widespread use and acceptance. Today,
SNMP has emerged as the most widely used and deployed network management
framework. We cover SNMP in detail in the following section.

Online Book

8.3: The Internet Network-Management
Framework
Contrary to what the name SNMP (Simple Network-Management Protocol)
might suggest, network management in the Internet is much more than just
a protocol for moving management data between a management entity and
its agents, and has grown to be much more complex than the word "simple"
might suggest. The current Internet Standard Management Framework
traces its roots back to the Simple Gateway Monitoring Protocol, SGMP
[RFC 1028]. SGMP was designed by a group of university network
researchers, users, and managers, whose experience with SGMP allowed
them to design, implement, and deploy SNMP in just a few months [Lynch
1993]--a far cry from today’s rather drawn-out standardization process.
Since then, SNMP has evolved from SNMPv1 through SNMPv2 to the most
recent version, SNMPv3 [RFC 2570], released in April 1999.

When describing any framework for network management, certain
questions must inevitably be addressed:

• What (from a semantic viewpoint) is being monitored? And what
form of control can be exercised by the network administrator?

• What is the specific form of the information that will be reported
and/or exchanged?

• What is the communication protocol for exchanging this information?

Recall our human organizational analogy from the previous section. The
boss and the branch managers will need to agree on the measures of
activity, productivity, and budget used to report the branch office’s status.
Similarly, they’ll need to agree on the actions the boss can take (for

example, cut the budget, order the branch manager to change some aspect
of the office’s operation, or fire the staff and shut down the branch office). At
a lower level of detail, they’ll need to agree on the form in which this data is
reported. For example, in what currency (dollars, euros?) will the budget be
reported? In what units will productivity be measured? While these are
trivial details, they must be agreed upon, nonetheless. Finally, the manner
in which information is conveyed between the main office and the branch
offices (that is, their communication protocol) must be specified.
The Internet Network-Management Framework addresses the questions
posed above. The framework consists of four parts:

• Definitions of network-management objects known as MIB objects.
In the Internet network-management framework, management
information is represented as a collection of managed objects that
together form a virtual information store, known as the Management
Information Base (MIB). An MIB object might be a counter, such as
the number of IP datagrams discarded at a router due to errors in an
IP datagram header; or the number of carrier sense errors in an
Ethernet interface card; descriptive information such as the version
of the software running on a DNS server; status information such as
whether a particular device is functioning correctly or not; or
protocol-specific information such as a routing path to a destination.
MIB objects thus define the management information maintained by
a managed node. Related MIB objects are gathered into so-called
MIB modules. In our human organization analogy, the MIB defines
the information conveyed between the branch office and the main
office.

• A data definition language, known as SMI (Structure of Management
Information) that defines the data types, an object model, and rules
for writing and revising management information. MIB objects are
specified in this data definition language. In our human
organizational analogy, the SMI is used to define the details of the
format of the information to be exchanged.

• A protocol, SNMP, for conveying information and commands
between a managing entity and an agent executing on behalf of that
entity within a managed network device.

• Security and administration capabilities. The addition of these
capabilities represents the major enhancement in SNMPv3 over
SNMPv2.

The Internet network-management architecture is thus modular by design,
with a protocol-independent data-definition language and MIB, and an MIB-
independent protocol. Interestingly, this modular architecture was first put in
place to ease the transition from an SNMP-based network management to
a network-management framework being developed by the International
Organization for Standardization (ISO), the competing network-

management architecture when SNMP was first conceived--a transition that
never occurred. Over time, however, SNMP’s design modularity has
allowed it to evolve through three major revisions, with each of the four
major parts of SNMP discussed above evolving independently. Clearly, the
right decision about modularity was made, if even for the wrong reason!
In the following four subsections, we cover the four major components of
the Internet network-management framework in more detail.

8.3.1: Structure of Management Information: SMI
The Structure of Management Information, SMI (a rather oddly named
component of the network-management framework whose name gives no
hint of its functionality), is the language used to define the management
information residing in a managed-network entity. Such a definition
language is needed to ensure that the syntax and semantics of the
network-management data are well-defined and unambiguous. Note that
the SMI does not define a specific instance of the data in a managed-
network entity, but rather the language in which such information is
specified. The documents describing the SMI for SNMPv3 (which rather
confusingly, is called SMIv2) are [RFC 2578; RFC 2579; RFC 2580]. Let us
examine the SMI in a bottom-up manner, starting with the base data types
in the SMI. We’ll then look at how managed objects are described in SMI,
and then how related managed objects are grouped into modules.
SMI Base Data Types
RFC 2578 specifies the basic data types in the SMI MIB module-definition
language. Although the SMI is based on the ASN.1 (Abstract Syntax
Notation One) [ISO 1987; ISO X.680 1998] object-definition language (see
Section 8.4), enough SMI-specific data types have been added that SMI
should be considered a data-definition language in its own right. The 11
basic data types defined in RFC 2578 are shown in Table 8.1. In addition to
these scalar objects, it is also possible to impose a tabular structure on an
ordered collection of MIB objects using the SEQUENCE OF construct; see
RFC 2578 for details. Most of the data types in Table 8.1 will be familiar (or
self-explanatory) to most readers. The one data type we will discuss in
more detail shortly is the OBJECT IDENTIFIER data type, which is used to
name an object.
Table 8.1: Basic data types of the SMI
Data type
Description

INTEGER
32 bit integer, as defined in ASN.1, with a value between -2^31 and 2^31-1 inclusive, or a
value from a list of possible named constant values

Integer 32
32 bit integer with a value between -2^31 and 2^31-1 inclusive

Unsigned 32
Unsigned 32 bit integer in the range 0 to 2^23-1 inclusive

OCTET STRING
ASN.1-format byte string representing arbitrary binary or textual data, up to 65535 bytes
long

OBJECT IDENTIFIER
ASN.1-format administratively assigned (structured name); see Section 8.3

IPaddress
32-bit Internet address, in network byte order

Counter32
32-bit counter that increases from 0 to 2^32-1 and then wraps around to 0.

Counter64
64-bit counter

Gauge32
32-bit integer that will not count above 2^31-1 nor decrease beyond 0 when increased or
decreased

TimeTicks
Time, measured in 1/100th of seconds since some event

Opaque
Uninterrupted ASN.1 string, needed for backward compatibility

SMI Higher-Level Constructs
In addition to the basic data types, the SMI data-definition language also
provides higher-level language constructs.
The OBJECT-TYPE construct is used to specify the data type, status, and
semantics of a managed object. Collectively, these managed objects
contain the management data that lie at the heart of network management.
There are nearly 10,000 defined objects in various Internet RFC’s [RFC
2570]. The OBJECT-TYPE construct has four clauses. The SYNTAX
clause of an OBJECT-TYPE definition specifies the basic data type
associated with the object. The MAX-ACCESS clause specifies whether the
managed object can be read, be written, be created, or have its value
included in a notification. The STATUS clause indicates whether object
definition is current and valid, obsolete (in which case it should not be
implemented, as its definition is included for historical purposes only) or
deprecated (obsolete, but implementable for interoperability with older
implementations). The DESCRIPTION clause contains a human-readable
textual definition of the object; this "documents" the purpose of the
managed object and should provide all the semantic information needed to
implement the managed object.
As an example of the OBJECT-TYPE construct, consider the LS,Q'HOLYHUV
object type definition from RFC 2011. This object defines a 32-bit counter
that keeps track of the number of IP datagrams that were received at the
managed node and were successfully delivered to an upper-layer protocol.
The final line of this definition is concerned with the name of this object, a
topic we will consider in the following section.

LS,Q'HOLYHUV�2%-(&7�7<3(

���6<17$;�&RXQWHU��

���0$;�$&&(66�UHDG�RQO\

���67$786�FXUUHQW

���'(6&5,37,21

�������������7KH�WRWDO�QXPEHU�RI�LQSXW�GDWDJUDPV

�������������VXFFHVVIXOO\�GHOLYHUHG�WR�,3�XVHU�SURWRFROV

��������������LQFOXGLQJ�,&03���

����� �^�LS���`

The MODULE-IDENTITY construct allows related objects to be grouped
together within a "module." For example, RFC 2011 specifies the MIB
module that defines managed objects (including LS,Q'HOLYHUV) for managing
implementations of the Internet Protocol (IP) and its associated Internet
Control Message Protocol (ICMP). RFC 2012 specifies the MIB module for
TCP, and RFC 2013 specifies the MIB module for UDP. RFC 2021 defines
the MIB module for RMON remote monitoring. In addition to containing the
OBJECT-TYPE definitions of the managed objects within the module, the
MODULE-IDENTITY construct contains clauses to document contact
information of the author of the module, the date of the last update, a
revision history, and a textual description of the module. As an example,
consider the module definition for management of the IP protocol:
LS0,%�02'8/(�,'(17,7<

����/$67�83'$7('������������=�

����25*$1,=$7,21��,(7)�6103Y��:RUNLQJ�*URXS�

����&217$&7�,1)2

���������������������.HLWK�0F&ORJKULH

������������3RVWDO���&LVFR�6\VWHPV��,QF�

�������������������������:HVW�7DVPDQ�'ULYH

���������������������6DQ�-RVH��&$�����������

���������������������86

������������3KRQH�������������������

������������(�PDLO���N]P#FLVFR�FRP�

����'(6&5,37,21

�������������7KH�0,%�PRGXOH�IRU�PDQDJLQJ�,3�DQG�,&03

������������LPSOHPHQWDWLRQV��EXW�H[FOXGLQJ�WKHLU

������������PDQDJHPHQW�RI�,3�URXWHV��

����5(9,6,21������������=�

����'(6&5,37,21

�������������7KH�LQLWLDO�UHYLVLRQ�RI�WKLV�0,%�PRGXOH�ZDV

������������SDUW�RI�0,%�,,��

������ �^�PLE�����`

The NOTIFICATION-TYPE construct is used to specify information
regarding "SNMPv2-Trap" and "InformationRequest" messages generated
by an agent, or a managing entity; see Section 8.3.3. This information
includes a textual DESCRIPTION of when such messages are to be sent,
as well as list of values to be included in the message generated; see RFC
2578 for details.
The MODULE-COMPLIANCE construct defines the set of managed objects
within a module that an agent must implement.
The AGENT-CAPABILITIES construct specifies the capabilities of agents
with respect to object- and event-notification definitions.

8.3.2: Management Information Base: MIB
As noted above, the Management Information Base, MIB, can be thought
of as a virtual information store, holding managed objects whose values
collectively reflect the current "state" of the network. These values may be
queried and/or set by a managing entity by sending SNMP messages to the
agent that is executing in a managed node on behalf of the managing
entity. Managed objects are specified using the OBJECT-TYPE SMI
construct discussed above and gathered into MIB modules using the
MODULE-IDENTITY construct.
The IETF has been busy standardizing the MIB modules associated with
routers, hosts, and other network equipment. This includes basic
identification data about a particular piece of hardware, and management
information about the device’s network interfaces and protocols. As of the
release of SNMPv3 (mid-1999), there were nearly 100 standards-based
MIB modules and an even larger number of vendor-specific (private) MIB
modules. With all of these standards, the IETF needed a way to identify and
name the standardized modules, as well as the specific managed objects
within a module. Rather than start from scratch, the IETF adopted a
standardized object identification (naming) framework that had already
been put in place by the International Organization for Standardization
(ISO). As is the case with many standards bodies, the ISO had "grand
plans" for their standardized object identification framework--to identify
every possible standardized object (for example, data format, protocol, or
piece of information) in any network, regardless of the network standards
organization (for example, Internet IETF, ISO, IEEE, or ANSI), equipment
manufacturer, or network owner. A lofty goal indeed! The object
identification framework adopted by ISO is part of the ASN.1 (Abstract
Syntax Notation One) [ISO 1987; ISO X.680 1998] object-definition
language that we’ll discuss in section 8.4. Standardized MIB modules have
their own cozy corner in this all-encompassing naming framework, as
discussed below.
As shown in Figure 8.3, objects are named in the ISO naming framework in
a hierarchical manner. Note that each branch point in the tree has both a
name and a number (shown in parentheses); any point in the tree is thus
identifiable by the sequence of names or numbers that specify the path
from the root to that point in the identifier tree. A fun, but incomplete and

unofficial, Web-based utility for traversing part of the object identifier tree
(using branch information contributed by volunteers) may be found in
[Alvestrand 1997].

Figure 8.3: ADN.1 Object identifier tree
At the top of the hierarchy are the International Organization for
Standardization (ISO) and the Telecommunication Standardization Sector
of the International Telecommunication Union (ITU-T), the two main
standards organizations dealing with ASN.1, as well as a branch for joint
efforts by these two organizations. Under the ISO branch of the tree, we
find entries for all ISO standards (1.0) and for standards issued by
standards bodies of various ISO-member countries (1.2). Although not
shown in Figure 8.3, under (ISO ISO-Member-Body, a.k.a. 1.2) we would
find USA (1.2.840), under which we would find a number of IEEE, ANSI,
and company-specific standards. These include RSA (1.2.840.11359) and
Microsoft (1.2.840.113556), under which we find the Microsoft File Formats
(1.2.840.113556.4) for various Microsoft products, such as Word
(1.2.840.113556.4.2). But we are interested here in networking (not
Microsoft Word files), so let us turn our attention to the branch labeled 1.3,
the standards issued by bodies recognized by the ISO. These include the
U.S. Department of Defense (6) (under which we will find the Internet
standards), the Open Software Foundation (22), the airline association

SITA (69) and NATO-identified bodies (57), as well as many other
organizations.
Under the ,QWHUQHW branch of the tree (1.3.6.1), there are seven categories.
Under the SULYDWH (1.3.6.1.4) branch, we will find a list [IANA 1999b] of the
names and private enterprise codes of more than 4,000 private companies
that have registered with the Internet Assigned Numbers Authority (IANA)
[IANA 1999]. Under the PDQDJHPHQW (1.3.6.1.2) and 0,%�� branch
(1.3.6.1.2.1) of the object identifier tree, we find the definitions of the
standardized MIB modules. Whew--it’s a long journey down to our corner of
the ISO name space!
Standardized MIB Modules
The lowest level of the tree in Figure 8.3 shows some of the important
hardware-oriented MIB modules (V\VWHP and LQWHUIDFH) as well as modules
associated with some of the most important Internet protocols. RFC 2400
lists all of the standardized MIB modules. While MIB-related RFCs make for
rather tedious and dry reading, it is instructive (that is, like eating
vegetables, it is "good for you") to consider a few MIB module definitions to
get a flavor for the type of information in a module.
The managed objects falling under V\VWHP contain general information
about the device being managed; all managed devices must support the
system MIB objects. Table 8.2 defines the objects in the system group, as
defined in RFC 1213.
Table 8.2: Managed objects in the MIB-2 system group
Object Identifier
Name
Type
Description (from RFC 1213)

1.3.6.1.2.1.1.1

V\V'HVFU
OCTET STRING
"full name and version identification of the system’s hardware type, software operating-
system, and networking software

1.3.6.1.2.1.1.2

V\V2EMHFW,'
OBJECT IDENTIFIER
Vendor assigned object ID that "provides an easy and unambiguous means for
determining ’what kind of box’ is being managed."

1.3.6.1.2.1.1.3

V\V8S7LPH
TimeTicks
"The time (in hundredths of a second) since the network management portion of the
system was last re-initialized."

1.3.6.1.2.1.1.4

V\V&RQWDFW
OCTET STRING

"The contact person for this managed node, together with information on how to contact
this person."

1.3.6.1.2.1.1.5

V\V1DPH
OCTET STRING
"An administratively assigned name for this managed node. By convention, this is the
node’s fully qualified domain name."

1.3.6.1.2.1.1.6

V\V/RFDWLRQ
OCTET STRING
"The physical location of this node."

1.3.6.1.2.1.1.7

V\V6HUYLFHV
Integer32
A coded value that indicates the set of services available at this node: physical (for
example, a repeater), datalink/subnet (for example, bridge), Internet (for example, IP
gateway), end-end (for example, host), applications

Table 8.3 defines the managed objects in the MIB module for the UDP
protocol at a managed entity.
Table 8.3: Managed objects in the MIB-2 udp module
Object identifier
Name
Type
Description (from RFC 2013)

1.3.6.1.2.1.7.1

XGS,Q'DWDJUDPV
Counter32
"total number of UDP datagrams to UDP users"

1.3.6.1.2.1.7.2

XGS1R3RUWV
Counter32
"total number of received UDP datagrams for which there was no application at the
destination port"

1.3.6.1.2.1.7.3

XGS,Q(UURUV
Counter32
"number of received UDP datagrams that could not be delivered for reasons other than the
lack of an application at the destination port"

1.3.6.1.2.1.7.4

XGS2XW'DWDJUDPV
Counter32
"total number of UDP datagrams sent from this entity"

1.3.6.1.2.1.7.5.

XGS7DEOH

SEQUENCE of UdpEntry
"a sequence of UdpEntry objects, one for each port that is currently open by an application,
giving the IP address and the port number used by the application"

8.3.3: SNMP Protocol Operations and Transport Mappings
The Simple Network Management Protocol Version 2 (SNMPv2) [RFC
1905] is used to convey MIB information among managing entities and
agents executing on behalf of managing entities. The most common usage
of SNMP is in a request-response mode in which an SNMPv2 managing
entity sends a request to an SNMPv2 agent, who receives the request,
performs some action, and sends a reply to the request. Typically, a
request will be used to query (retrieve) or modify (set) MIB object values
associated with a managed device. A second common usage of SNMP is
for an agent to send an unsolicited message, known as a trap message, to
a managing entity. Trap messages are used to notify a managing entity of
an exceptional situation that has resulted in changes to MIB object values.
We saw earlier in Section 8.1 that the network administrator might want to
receive a trap message, for example, when an interface goes down,
congestion reaches a predefined level on a link, or some other noteworthy
event occurs. Note that there are a number of important tradeoffs between
polling (request-response interaction) and trapping; see the homework
problems.
SNMPv2 defines seven types of messages, known generically as Protocol
Data Units--PDUs, as shown in Table 8.4.
Table 8.4: SNMPv2 PDU types
SNMPv2 PDU Type
sender-receiver
Description

*HW5HTXHVW
manager-to-agent
get value of one or more MIB object instances

*HW1H[W5HTXHVW
manager-to-agent
get value of next MIB object instance in list or table

*HW%XON5HTXHVW
manager-to-agent
get values in large block of data, for example values in a large table

,QIRUP5HTXHVW
manager-to-manager
inform remort managing entity of MIB values remote to its access

6HW5HTXHVW
manager-to-agent
set value of one or more MIB object instances

5HVSRQVH
agent-to-manager or manager-to-manager

generated in response to *HW5HTXHVW��*HW1H[W5HTXHVW��*HW%XON5HTXHVW�
6HW5HTXHVW3'8� or ,QIRUP5HTXHVW

6103Y��7UDS
agent-to-manager
inform manager of an exceptional event

The format of the PDU is shown in Figure 8.4.

Figure 8.4: SNMP PDU format

• The *HW5HTXHVW, *HW1H[W5HTXHVW, and *HW%XON5HTXHVW PDUs are all
sent from a managing entity to an agent to request the value of one
or more MIB objects at the agent’s managed device. The object
identifiers of the MIB objects whose values are being requested are
specified in the variable binding portion of the PDU. *HW5HTXHVW,
*HW1H[W5HTXHVW, and *HW%XON5HTXHVW differ in the granularity of their
data requests. *HW5HTXHVW can request an arbitrary set of MIB values;
multiple *HW1H[W5HTXHVWV can be used to sequence through a list or
table of MIB objects; *HW%XON5HTXHVW allows a large block of data to be
returned, avoiding the overhead incurred if multiple *HW5HTXHVW or
*HW1H[W5HTXHVW messages were to be sent. In all three cases, the
agent responds with a 5HVSRQVH PDU containing the object identifiers
and their associated values.

• The 6HW5HTXHVW PDU is used by a managing entity to set the value of
one or more MIB objects in a managed device. An agent replies with
a 5HVSRQVH PDU with the ’noError’ Error Status to confirm that the
value has indeed been set.

• The ,QIRUP5HTXHVW PDU is used by a managing entity to notify
another managing entity of MIB information that is remote to the

receiving entity. The receiving entity replies with a 5HVSRQVH PDU
with the ’noError’ Error Status to acknowledge receipt of the
,QIRUP5HTXHVW PDU.

• The final type of SNMPv2 PDU is the trap message. Trap messages
are generated asynchronously, that is, not in response to a received
request but rather in response to an event for which the managing
entity requires notification. RFC 1907 defines well-known trap types
that include a cold or warm start by a device, a link going up or
down, the loss of a neighbor, or an authentication failure event. A
received trap request has no required response from a managing
entity.

Given the request-response nature of SNMPv2, it is worth noting here that
although SNMP PDUs can be carried via many different transport protocols,
the SNMP PDU is typically carried in the payload of a UDP datagram.
Indeed, RFC 1906 states that UDP is "the preferred transport mapping."
Since UDP is an unreliable transport protocol, there is no guarantee that a
request, or its response will be received at the intended destination. The
Request ID field of the PDU is used by the managing entity to number its
requests to an agent; an agent’s response takes its Request ID from that of
the received request. Thus, the Request ID field can be used by the
managing entity to detect lost requests or replies. It is up to the managing
entity to decide whether to retransmit a request if no corresponding
response is received after a given amount of time. In particular, the SNMP
standard does not mandate any particular procedure for retransmission, or
even if retransmission is to be done in the first place. It only requires that
the managing entity "needs to act responsibly in respect to the frequency
and duration of re-transmissions." This, of course, leads one to wonder how
a "responsible" protocol should behave!

8.3.4: Security and Administration
The designers of SNMPv3 have said that "SNMPv3 can be thought of as
SNMPv2 with additional security and administration capabilities" [RFC
2570]. Certainly, there are changes in SNMPv3 over SNMPv2, but nowhere
are those changes more evident than in the area of administration and
security. The central role of security in SNMPv3 was particularly important,
since the lack of adequate security resulted in SNMP being used primarily
for monitoring rather than control (e.g., 6HW5HTXHVW is rarely used in
SNMPv1).
As SNMP has matured through three versions, its functionality has grown
but so too, alas, has the number of SNMP-related standards documents.
This is evidenced by the fact that there is even now an RFC [RFC 2571]
that " describes an architecture for describing SNMP Management
Frameworks"! While the notion of an "architecture" for "describing a
framework" might be a bit much to wrap one’s mind around, the goal of
RFC 2571 is an admirable one--to introduce a common language for

describing the functionality and actions taken by an SNMPv3 agent or
managing entity. The architecture of an SNMPv3 entity is straightforward,
and a tour through the architecture will serve to solidify our understanding
of SNMP.
So-called SNMP applications consist of a command generator, notification
receiver, and proxy forwarder (all of which are typically found in a managing
entity); a command responder and notification originator (both of which are
typically found in an agent); and the possibility of other applications. The
command generator generates the *HW5HTXHVW, *HW1H[W5HTXHVW,
*HW%XON5HTXHVW, and 6HW5HTXHVW PDUs that we examined in Section 8.3.3 and
handles the received responses to these PDUs. The command responder
executes in an agent and receives, processes, and replies to (using the
5HVSRQVH message) received *HW5HTXHVW, *HW1H[W�5HTXHVW, *HW%XON5HTXHVW,
and 6HW5HTXHVW PDUs. The notification originator application in an agent
generates 7UDS PDUs; these PDUs are eventually received and processed
in a notification receiver application at a managing entity. The proxy
forwarder application forwards request, notification, and response PDUs.
A PDU sent by an SNMP application next passes through the SNMP
"engine" before it is sent via the appropriate transport protocol. Figure 8.5
shows how a PDU generated by the command generator application first
enters the dispatch module, where the SNMP version is determined. The
PDU is then processed in the message-processing system, where the PDU
is wrapped in a message header containing the SNMP version number, a
message ID, and message size information. If encryption or authentication
is needed, the appropriate header fields for this information are included as
well; see RFC 2571 for details. Finally, the SNMP message (the
application-generated PDU plus the message header information) is
passed to the appropriate transport protocol. The preferred transport
protocol for carrying SNMP messages is UDP (that is, SNMP messages are
carried as the payload in a UDP datagram), and the preferred port number
for the SNMP is port 161. Port 162 is used for trap messages.

Figure 8.5: SNMPv3 engine and applications
We have seen above that SNMP messages are used to not just monitor,
but also to control (for example, through the 6HW5HTXHVW command) network
elements. Clearly, an intruder that could intercept SNMP messages and/or
generate its own SNMP packets into the management infrastructure could
wreak havoc in the network. Thus, it is crucial that SNMP messages be
transmitted securely. Surprisingly, it is only in the most recent version of
SNMP that security has received the attention that it deserves. SNMPv3
provides for encryption, authentication, protection against playback attacks
(see Sections 7.2 and 7.3), and access control. SNMPv3 security is known
as user-based security [RFC 2574] in that there is the traditional concept
of a user, identified by a user name, with which security information such as
a password, key value, or access privileges are associated.

• Encryption. SNMP PDUs can be encrypted using the Data
Encryption Standard (DES) in cipher block chaining mode; see
Section 7.2 for a discussion of DES. Note that since DES is a
shared-key system, the secret key of the user encrypting data must
be known by the receiving entity that must decrypt the data.

• Authentication. SNMP combines the use of a hash function, such as
the MD5 algorithm that we studied in Section 7.4, with a secret key
value to provide both authentication and protection against
tampering. The approach, known as HMAC (Hashed Message

Authentication Codes) [RFC 2104] is conceptually simple. Suppose
the sender has an SNMP PDU, m, that it wants to send to the
receiver. This PDU may have already been encrypted. Suppose also
that both the sender and receiver know a shared secret key, K,
which need not be the same key used for encryption. The sender will
send m to the receiver. However, rather than sending along a simple
Message Integrity Code (MIC), MIC(m), that has been computed
over m (see Section 7.4.2) to protect against tampering, the sender
appends the shared secret key to m and computes a MIC, MIC(m,K)
over the combined PDU and key. The value MIC(m,K) (but not the
secret key!) is then transmitted along with m. When the receiver
receives m, it appends the secret key K and computes MIC(m,K). If
this computed value matches the transmitted value of MIC(m,K),
then the receiver knows not only that the message has not been
tampered with, but also that the message was sent by someone who
knows the value of K, that is, by a trusted, and now authenticated,
sender. In operation, HMAC actually performs the append-and-hash
operation twice, using a slightly modified key value each time; see
RFC 2104 for details.

• Protection against playback. Recall from our discussion in Chapter 7
that nonces can be used to guard against playback attacks. SNMPv3
adopts a related approach. In order to ensure that a received
message is not a replay of some earlier message, the receiver
requires that the sender include a value in each message that is
based on a counter in the receiver. This counter, which functions as
a nonce, reflects the amount of time since the last reboot of the
receiver’s network management software and the total number of
reboots since the receiver’s network-management software was last
configured. As long as the counter in a received message is within
some margin of error from the receiver’s actual value, the message
is accepted as a nonreplay message, at which point it may be
authenticated and/or decrypted. See RFC 2574 for details.

• Access control. SNMPv3 provides a view-based access control [RFC
2575] that controls which network-management information can be
queried and/or set by which users. An SNMP entity retains
information about access rights and policies in a Local Configuration
Datastore (LCD). Portions of the LCD are themselves accessible as
managed objects, defined in the View-based Access Control Model
Configuration MIB [RFC 2575], and thus can be managed and
manipulated remotely via SNMP.

There are hundreds (if not thousands) of network management products available today,
all embodying to some extent the network management framework and SNMP foundation
that we have studied in this section. A survey of these products is well beyond the scope of
this text and (no doubt) the reader’s attention span. Thus, we provide here pointers to a
few of the more prominent products. A good starting point for an overview of the breadth of
network management tools is Chapter 12 in [Subramanian 2000]

Network management tools divide broadly into those from network equipment vendors, that specialize in the
management of the vendor’s equipment, and those aimed at managing networks with heterogeneous equipment. Among
the vendor- specific offerings is CiscoWorks2000 [Cisco CiscoWorks 2000], for the management of LANs and WANs built
on a Cisco device foundation. 3Com’s Transcend network management system [3Com Transcend 2000] is SNMP-
compliant and provides "3Com SmartAgent intelligent agent" technology to aid in network management. Nortel’s Optivity
Network Management System [Nortel 2000] provides for network management, service management and policy
management (bandwidth management, QoS, application-level security, and IP/address).

Among the popular tools for managing heterogeneous networks are Hewlett-Packard’s Openview [Openview 2000],
Aprisa’s Spectrum [Aprisa 2000], and Sun’s Solstice network management system[Sun 2000]. All three of these systems
adopt a distributed system architecture in which multiple servers gather network management information from their
managed domain. The network management station can then gather results from these servers, display information, and
take control actions. All three products support the SNMP and CMIP protocols, and provide automated assistance for
event/alarm correlation.

Online Book

8.4: ASN.1
In this book we have covered a number of interesting topics in computer
networking. This section on ASN.1, however, may not make the top-10 list
of interesting topics. Like vegetables, knowledge about ASN.1 and the
broader issue of presentation services is something that is "good for you."
ASN.1 is an ISO-originated standard that is used in a number of Internet-
related protocols, particularly in the area of network management. For
example, we saw in Section 3.2 that MIB variables in SNMP were
inextricably tied to ASN.1. So while the material on ASN.1 in this section
may be rather dry, the reader will hopefully take it on faith that the material
is important.

In order to motivate our discussion here, consider the following thought
experiment. Suppose one could reliably copy data from one computer’s
memory directly into another remote computer’s memory. If one could do
this, would the communication problem be "solved"? The answer to the
question depends on one’s definition of "the communication problem."
Certainly, a perfect memory-to-memory copy would exactly communicate
the bits and bytes from one machine to another. But does such an exact
copy of the bits and bytes mean that when software running on the
receiving computer accesses this data, it will see the same values that were

stored into the sending computer’s memory? The answer to this question is
"not necessarily"! The crux of the problem is that different computer
architectures, different operating systems, and compilers have different
conventions for storing and representing data. If data is to be
communicated and stored among multiple computers (as it is in every
communication network), this problem of data representation must clearly
be solved.

As an example of this problem, consider the simple C code fragment below.
How might this structure be laid out in memory?

����VWUXFW�^

������FKDU�FRGH�

������LQW�[�

������`�WHVW�

������WHVW�[� �����

������WHVW�FRGH� �
D
�

The left side of Figure 8.6 shows a possible layout of this data on one
hypothetical architecture: there is a single byte of memory containing the
character ’D’, followed by a 16-bit word containing the integer value 259,
stored with the most significant byte first. The layout in memory on another
computer is shown in the right half of Figure 8.6. The character ’D’ is
followed by the integer value stored with the least significant byte stored
first and with the 16-bit integer aligned to start on a 16-bit word boundary.
Certainly, if one were to perform a verbatim copy between these two
computers’ memories and use the same structure definition to access the
stored values, one would see very different results on the two computers!

Figure 8.6: Two different data layouts on two different architectures
The fact that different architectures have a different internal data format is a
real and pervasive problem. The particular problem of integer storage in
different formats is so common that it has a name. "Big-endian" order for
storing integers has the most significant bytes of the integer stored first (at
the lowest storage address). "Little-endian" order stores the least significant
bytes first. Sun SPARC and Motorola processors are big-endian, while Intel
and DEC Alpha processors are little-endian. As an aside, the terms "big-
endian" and "little-endian" come from the book, Gulliver’s Travels by
Jonathan Smith, in which two groups of people dogmatically insist on doing
a simple thing in two different ways (hopefully, the analogy to the computer
architecture community is clear). One group in the land of Lilliput insists on
breaking their eggs at the larger end ("the big-endians"), while the other

insists on breaking them at the smaller end. The difference was the cause
of great civil strife and rebellion.
Given that different computers store and represent data in different ways,
how should networking protocols deal with this? For example, if an SNMP
agent is about to send a 5HVSRQVH message containing the integer count of
the number of received UDP datagrams, how should it represent the integer
value to be sent to the managing entity--in big-endian or little-endian order?
One option would be for the agent to send the bytes of the integer in the
same order in which they would be stored in the managing entity. Another
option would be for the agent to send in its own storage order and have the
receiving entity reorder the bytes, as needed. Either option would require
the sender or receiver to learn the other’s format for integer representation.
A third option is to have a machine-, OS-, language-independent method
for describing integers and other data types (that is, a data-description
language) and rules that state the manner in which each of the data types
are to be transmitted over the network. When data of a given type is
received, it is received in a known format and can then be stored in
whatever machine-specific format is required. Both the SMI that we studied
in Section 8.3 and ASN.1 adopt this third option. In ISO parlance, these two
standards describe a presentation service--the service of transmitting and
translating information from one machine-specific format to another. Figure
8.7 illustrates a real-world presentation problem; neither receiver
understands the essential idea being communicated--that the speaker likes
something. As shown in Figure 8.8, a presentation service can solve this
problem by translating the idea into a commonly understood (by the
presentation service), person-independent language, sending that
information to the receiver, and then translating into a language understood
by the receiver.

Figure 8.7: The presentation problem

Figure 8.8: The presentation problem solved
Table 8.5 shows a few of the ASN.1-defined data types. Recall that we
encountered the INTEGER, OCTET STRING, and OBJECT IDENTIFIER
data types in our earlier study of the SMI. Since our goal here is (mercifully)
not to provide a complete introduction to ASN.1, we refer the reader to the
standards or to the printed and online book [Larmouth 1996] for a
description of ASN.1 types and constructors such as SEQUENCE and SET
that allow for the definition of structured data types.
Table 8.5: Selected ASN.1 data types
Tag
Type
Description

1
BOOLEAN
value is "true" or "false"

2
INTEGER
can be arbitrarily large

3
BITSTRING
list of one or more bits

4
OCTET STRING
list of one or more bytes

5
NULL
no value

6
OBJECT IDENTIFIER
name in the ASN.1 standard naming tree, see Section 8.2.2

9
REAL
floating point

In addition to providing a data description language, ASN.1 also provides
Basic Encoding Rules (BER) that specify how instances of objects that
have been defined using the ASN.1 data-description language are to be
sent over the network. The BER adopts a so-called TLV (Type, Length,
Value) approach to encoding data for transmission. For each data item to
be sent, the data type, the length of the data item, and then the actual value
of the data item are sent, in that order. With this simple convention, the
received data is essentially self identifying.
Figure 8.9 shows how the two data items in a simple example would be
sent. In this example, the sender wants to send the character string ’smith’
followed by the value 259 decimal (which equals 00000001 00000011 in
binary, or a byte value of 1 followed by a byte value of 3) assuming big-
endian order. The first byte in the transmitted stream has the value 4,
indicating that the type of the following data item is an OCTET STRING;
this is the ’T’ in the TLV encoding. The second byte in the stream contains
the length of the OCTET STRING, in this case 5. The third byte in the
transmitted stream begins the OCTET STRING of length 5; it contains the
ASCII representation of the letter ’s’. The T, L, and V values of the next data
item are 2 (the INTEGER type tag value), 2 (that is, an integer of length 2
bytes), and the two-byte big-endian representation of the value 259
decimal.

Figure 8.9: BER encoding example
In our discussion above, we have only touched on a small and simple
subset of ASN.1. Resources for learning more about ASN.1 include the
ASN.1 standards document [ISO 1987, ISO X.680 1998], Philippe
Hoschka’s ASN.1 homepage [Hoschka 1997], and [Larmouth 1996].

Online Book

8.5: Firewalls
In motivating the need for security in Chapter 7, we noted that the Internet
is not a very "safe" place--ne’er-do-wells are "out there" breaking into
networks at an alarming rate. (For a summary of reported attacks, see the
CERT Coordination Center [CERT 1999]. For a discussion of nearly 300
known attacks that firewalls, the topic we consider here, are designed to

thwart, see [Newman 1998]. As a result, network administrators must be
concerned not only with keeping the bits flowing smoothly through their
network, but also with securing their network infrastructure from outside
threats.

We’ve seen that SNMPv3 provides authentication, encryption, and access
control in order to secure network management functions. While this is
important (certainly, the network administrator does not want others to gain
access to network-management functionality), it is only a small part of the
network administrator’s security concerns. In addition to monitoring and
controlling the components of one’s network, a network administrator also
wants to exclude unwanted traffic (that is, intruders) from the managed
network. This is where firewalls come in. A firewall is a combination of
hardware and software that isolates an organization’s internal network from
the Internet at large, allowing some packets to pass and blocking others.
Organizations employ firewalls for one or more of the following reasons:

• To prevent intruders from interfering with the daily operation of the
internal network. An organization’s competitor--or just some Internet
prankster looking for a good time--can wreak havoc on an unsecured
network. In the denial-of-service attack, an intruder monopolizes a
critical network resource, bringing the internal network (at its network
administrator) to its knees. An example of a denial-of-service attack
is so-called SYN flooding [CERT 2000] in which the attacker sends
forged TCP connection-establishment segments to a particular host.
The host sets aside buffer space for each connection, and within
minutes there is no TCP buffer space left for "honest" TCP
connections.

• To prevent intruders from deleting or modifying information stored
within the internal network. For example, an attacker can attempt to
meddle with an organization’s public presence on a Web server--a
successful attack may be seen by thousands of people in a matter of
minutes. Attackers may also be able to obtain customer purchase-
card information from Web servers that provide Internet commerce
(see Section 7.7).

• To prevent intruders from obtaining secret information. Most
organizations have secret information that is stored on computers.
This information includes trade secrets, product-development plans,
marketing strategies, personal employee records, and financial
analysis.

The simplest firewall consists of a packet filter. More sophisticated firewalls
consist of combinations of packet filters and application gateways, topics
we cover in the following two subsections.

8.5.1: Packet Filtering

An organization typically has a router that connects its internal network to
its ISP (and hence to the larger public Internet). All traffic leaving and
entering the internal network passes through this router. Most router
manufacturers provide options for filtering; when these options are turned
on, the router becomes a filter in addition to a router. As the name implies,
a filter lets some datagrams pass through the router and filters out other
datagrams. Filtering decisions are typically based on:

• The IP address the data is (supposedly) coming from.

• IP destination address.

• TCP or UDP source and destination port.

• ICMP message type.

• Connection initialization datagrams using the TCP SYN or ACK bits.

As a simple example, a filter can be set to block all UDP segments and all
Telnet connections. Such a configuration prevents outsiders from logging
onto internal hosts using Telnet, insiders from logging onto external hosts
using Telnet, and "weird" UDP traffic from entering or leaving the internal
network. The router filters the UDP traffic by blocking all datagrams whose
IP protocol field is set to 17 (corresponding to UDP); it filters all Telnet
connections by blocking all TCP segments (each encapsulated in a
datagram) whose source or destination port number is 23 (corresponding to
Telnet). Filtering of UDP traffic is a popular policy for corporations--much to
the chagrin of leading audio and video streaming vendors, whose products
stream over UDP in the default mode. Filtering Telnet connections is also
popular, as it prevents outside intruders from logging onto internal
machines.
A filtering policy can also be based on the combination of addresses and
port numbers. For example, the router can forward all Telnet packets (port
23) except those going to and coming from a list of specific IP addresses.
This policy permits Telnet connections to and from hosts on the list. It is
highly recommended to reject all datagrams that have internal source IP
addresses--that is, packets that claim to be coming from internal hosts but
are actually coming in from the outside. These packets are often part of
address spoofing attacks, whereby the attacker is pretending to be coming
from an internal machine. Unfortunately, basing the policy on external
addresses provides no protection from an external host claiming to be a
different external host.
Filtering can also be based on whether or not the TCP ACK bit is set. This
trick is quite useful if an organization wants to let its internal clients connect
to external servers, but wants to prevent external clients from connecting to
internal servers. Recall from Section 3.4 that the first segment in every TCP
connection has the ACK bit set to 0 whereas all the other segments in the
connection have the ACK bit set to 1. Thus, if an organization wants to
prevent external clients from initiating connections to internal servers, it

simply filters all incoming segments with the ACK bit set to 0. This policy
kills all TCP connections originating from the outside, but permits
connections originating internally.
Now suppose an organization doesn’t want to block all connections
originating from outside; instead it just wants to block only the Telnet
connections originating from outside. This can be done by blocking inbound
packets with destination port 23, or outbound packets with source port 23.

8.5.2: Application Gateways
Filters allow an organization to perform coarse-grain filtering on IP and
TCP/UDP headers, including IP addresses, port numbers, and
acknowledgment bits. We saw that filtering based on a combination of IP
addresses and port numbers can allow internal clients to Telnet outside
while preventing external clients from Telneting inside. But what if an
organization wants to provide the Telnet service to a restricted set of
internal users? Such a task is beyond the capabilities of a filter. Indeed,
information about the identity of the internal users is not included in the
IP/TCP/UDP headers, but is instead in the application-layer data.
In order to have a finer-level security, firewalls must combine pack et filters
with application gateways. Application gateways look beyond the
IP/TCP/UDP headers and actually make policy decisions based on
application data. An application gateway is an application-specific server
through which all application data (inbound and outbound) must pass.
Multiple application gateways can run on the same host, but each gateway
is a separate server with its own processes.
To get some insight into application gateways, let us design a firewall that
allows only a restricted set of internal users to Telnet outside and prevents
all external clients from Telneting inside. Such a policy can be
accomplished by implementing a combination of a packet filter (in a router)
and a Telnet application gateway, as shown in Figure 8.10. The router’s
filter is configured to block all Telnet connections except those that originate
from the IP address of the application gateway. Such a filter configuration
forces all outbound Telnet connections to pass through G. When an internal
user wants to Telnet to the outside world, it first sets up a Telnet session
with the application gateway. An application running in the gateway, which
listens for incoming Telnet sessions, prompts the user for its user id and
password. When the user supplies this information, the application gateway
checks to see if the user has permission to Telnet to the outside world. If
not, the Telnet connection from the internal user to gateway is terminated
by the gateway. If the user has permission, then the gateway (1) prompts
the user for the hostname of the external host to which the user wants to
connect, (2) sets up a Telnet session between the gateway and the external
host, (3) relays to the external host all data arriving from the user, and
relays to the user all data arriving from the external host. Thus the Telnet
application gateway not only performs user authorization but also acts as a
Telnet server and a Telnet client. Note that the filter will permit step (2)
because the gateway initiates the Telnet connection to the outside world.

Figure 8.10: Firewall consisting of an application gateway and a filter
Internal networks often have multiple application gateways, for example,
gateways for Telnet, HTTP, FTP, and e-mail. In fact, an organization’s mail
server (see Section 2.4) and Web cache (see Section 2.6) are application
gateways.
Application gateways do not come without their disadvantages. First, a
different application gateway is needed for each application. Second, either:

• the client software must know how to contact the gateway instead of
the external server when the user makes a request, and must know
how to tell the application gateway what external server to connect
to,

• or the user must explicitly connect to the external server through the
application gateway.

We conclude this section by mentioning that firewalls are by no means a
panacea for all security problems. They introduce a tradeoff between the
degree of communication with the outside world and level of security.
Because filters can’t stop spoofing of IP addresses and port numbers, filters
often use an all or nothing policy (for example, banning all UDP traffic).
Gateways can have software bugs, allowing attackers to penetrate them.
Also, firewalls are even less effective if the internal users have wireless
communication with the external world.

The Limitations of Firewalls

In February 2000, a number of major Internet commerce sites were brought to their knees
by a distributed denial-of-service attack. As of this writing (March 2000), neither the
perpetrators of the attack nor their motives are known. The attackers first hit Yahoo!, and
then spread their offensive to other major sites, including Amazon.com, eBay, CNN.com,
and Buy.com. In the case of Yahoo!, at the worst moment, less than 10 percent of Yahoo’s
customers could access a page.

A denial-of-service attack is an attack in which the aggressor swamps a host or a set of hosts with incoming packets--a
kind of packet blitzkrieg. For a Web site, the aggressor most easily does this by sending massive numbers of HTTP
requests, using destination port 80, to the Web site. The Web site then becomes bogged down in serving the bogus
requests, causing the TCP connections carrying the bona fide requests to time out. Firewalls can provide limited
protection from a denial-of-service attack--by identifying the source IP address of the perpetrator and filtering out all
packets with that IP address.

But the perpetrators of the February 2000 attack used some simple (and well-known!) tricks to break the superficial
defenses of a firewall. First, they planted programs called "zombies" in at least 50 innocent hosts, most of which were
residing at universities and research institutions. At a given time, they then commanded the zombies to attack the Yahoo
site--the zombies swamped Yahoo!, and then the other sites, with TCP connections. Whoever was behind the attacks
didn’t gain root access on any targeted machine, and no proprietary information was stolen. But the attackers did
succeed at bringing many major sites to their knees.

What can be done to prevent such distributed denial-of-service attacks? There doesn’t appear to a clear and easy
answer to this question. One approach is to find the perpetrators and prosecute them--thereby discouraging other
attackers. But it appears the attackers have left few electronic traces for determining their identities. Investigators are
therefore taking a more traditional approach, using informants in the digital underground to try to gain information on who
might be behind the attacks.

Online Book

8.6: Summary
Our study of network management, and indeed of all of networking, is now
complete!

In this final chapter on network management, we began by motivating the
need for providing appropriate tools for the network administrator--the
person whose job it is to keep the network "up and running"--for monitoring,
testing, polling, configuring, analyzing, evaluating, and controlling the
operation of the network. Our analogies with the management of complex
systems such as power plants, airplanes, and human organization helped
motivate this need. We saw that the architecture of network-management
systems revolve around five key components--(1) a network manager, (2) a
set of managed remote (from the network manager) devices, (3) the
management information bases (MIBs) at these devices, containing data
about the device’s status and operation, (4) remote agents that report MIB
information and take action under the control of the network manager, and
(5) a protocol for communicating between the network manager and the
remote devices.

We then delved into the details of the Internet Network Management
Framework, and the SNMP protocol in particular. We saw how SNMP
instantiates the five key components of a network management
architecture, and spent considerable time examining MIB objects, the SMI--
the data-definition language for specifying MIBs, and the SNMP protocol
itself. Noting that the SMI and ASN.1 are inextricably tied together, and that
ASN.1 plays a key role in the presentation layer in the ISO/OSI seven-layer
reference model, we then briefly examined ASN.1. Perhaps more important
than the details of ASN.1 itself, was the noted need to provide for
translation between machine-specific data formats in a network. While
some network architectures explicitly acknowledge the importance of this
service by having a presentation layer, this layer is absent in the Internet
protocol stack. Finally, we concluded this chapter with a discussion of
firewalls--a topic that falls within the realms of both security and network
management. We saw how packet filtering and application-level gateways
can be used to provide the network with some level of protection against
unwanted intruders, perhaps allowing the network manager to sleep better
at night, knowing the network is relatively safe from these intruders.

It is also worth noting that there are many topics in network management
that we chose not to cover--topics such as fault identification and
management, pro active anomaly detection, alarm correlation, and the
larger issues of service management (for example, as opposed to network
management). While important, these topics would form a text in their own
right, and we refer the reader to the references noted in Section 8.1.

