
Chapter 4: Network Layer and Routing

In this chapter we begin our journey into the network core. We learn that one of
the biggest challenges is routing datagrams through a network of millions of
hosts and routers. We investigate how to solve this scaling problem by
partitioning large networks, such as the Internet, into independent administrative
domains called Autonomous Systems (ASs). We learn that routing is done on
two levels--one level for within each of the ASs and another level for among the
ASs. We examine the underlying principles of routing algorithms for intra-AS
routing and inter-AS routing, including link-state routing algorithms and distance-
vector routing algorithms. We then survey many of the Internet routing protocols
for intra-AS and inter-AS routing. In this chapter we also examine the IP protocol
in detail, covering IP addressing, IP datagram format, datagram fragmentation,
and the ICMP (Internet Control Message Protocol). We also explore two more
advanced topics, namely, IPv6 and multicast routing.

Online Book

4.1: Introduction and Network Service Models
We saw in the previous chapter that the transport layer provides
communication service between two processes running on two different hosts.
In order to provide this service, the transport layer relies on the services of the
network layer, which provides a communication service between hosts. In
particular, the network layer moves transport-layer segments from one host to
another. At the sending host, the transport-layer segment is passed to the
network layer. It is then the job of the network layer to get the segment to the
destination host and pass the segment up the protocol stack to the transport
layer. Exactly how the network layer moves a segment from the transport
layer of an origin host to the transport layer of the destination host is the
subject of this chapter. We will see that unlike the transport layers, the
network layer involves each and every host and router in the network.
Because of this, network-layer protocols are among the most challenging (and
therefore interesting!) in the protocol stack.

Figure 4.1 shows a simple network with two hosts (H1 and H2) and several
routers on the path between H1 and H2. The role of the network layer in a
sending host is to begin the packet on its journey to the receiving host. For
example, if H1 is sending to H2, the network layer in host H1 transfers these
packets to its nearby router R2. At the receiving host (for example, H2), the
network layer receives the packet from its nearby router (in this case, R2) and
delivers the packet up to the transport layer at H2. The primary role of the
routers is to "switch" packets from input links to output links. Note that the
routers in Figure 4.1 are shown with a truncated protocol stack, that is, with no
upper layers above the network layer, because (except for control purposes)
routers do not run transport- and application-layer protocols such as those we

examined in Chapters 2 and 3.

Figure 4.1: The network layer

The role of the network layer is thus deceptively simple--to transport packets
from a sending host to a receiving host. To do so, three important network-
layer functions can be identified:

• Path determination. The network layer must determine the route or
path taken by packets as they flow from a sender to a receiver. The
algorithms that calculate these paths are referred to as routing
algorithms. A routing algorithm would determine, for example, the path
along which packets flow from H1 to H2. Much of this chapter will focus
on routing algorithms. In Section 4.2 we will study the theory of routing
algorithms, concentrating on the two most prevalent classes of routing
algorithms: link-state routing and distance vector routing. We’ll see that
the complexity of routing algorithms grows considerably as the number
of routers in the network increases. This motivates the use of
hierarchical routing, a topic we cover in Section 4.3. In Section 4.8 we
cover multicast routing--the routing algorithms, switching functions, and
call setup mechanisms that allow a packet that is sent just once by a
sender to be delivered to multiple destinations.

• Switching. When a packet arrives at the input to a router, the router

must move it to the appropriate output link. For example, a packet
arriving from host H1 to router R2 must be forwarded to the next router
on the path to H2. In Section 4.6, we look inside a router and examine
how a packet is actually switched (moved) from an input link at a router
to an output link.

• Call setup. Recall that in our study of TCP, a three-way handshake was
required before data actually flowed from sender to receiver. This
allowed the sender and receiver to set up the needed state information
(for example, sequence number and initial flow-control window size). In
an analogous manner, some network-layer architectures (for example,
ATM) require that the routers along the chosen path from source to
destination handshake with each other in order to setup state before
data actually begins to flow. In the network layer, this process is
referred to as call setup. The network layer of the Internet architecture
does not perform any such call setup.

Before delving into the details of the theory and implementation of the network
layer, however, let us first take the broader view and consider what different
types of service might be offered by the network layer.

4.1.1: Network Service Model
When the transport layer at a sending host transmits a packet into the network
(that is, passes it down to the network layer at the sending host), can the
transport layer count on the network layer to deliver the packet to the
destination? When multiple packets are sent, will they be delivered to the
transport layer in the receiving host in the order in which they were sent? Will
the amount of time between the sending of two sequential packet
transmissions be the same as the amount of time between their reception?
Will the network provide any feedback about congestion in the network? What
is the abstract view (properties) of the channel connecting the transport layer
in the sending and receiving hosts? The answers to these questions and
others are determined by the service model provided by the network layer.
The network-service model defines the characteristics of end-to-end
transport of data between one "edge" of the network and the other, that is,
between sending and receiving end systems.
Datagram or Virtual Circuit?
Perhaps the most important abstraction provided by the network layer to the
upper layers is whether or not the network layer uses virtual circuits (VCs).
You may recall from Chapter 1 that a virtual-circuit packet network behaves
much like a telephone network, which uses "real circuits" as opposed to
"virtual circuits." There are three identifiable phases in a virtual circuit:

• VC setup. During the setup phase, the sender contacts the network
layer, specifies the receiver address, and waits for the network to set
up the VC. The network layer determines the path between sender and
receiver, that is, the series of links and packet switches through which
all packets of the VC will travel. As discussed in Chapter 1, this

typically involves updating tables in each of the packet switches in the
path. During VC setup, the network layer may also reserve resources
(for example, bandwidth) along the path of the VC.

• Data transfer. Once the VC has been established, data can begin to
flow along the VC.

• Virtual-circuit teardown. This is initiated when the sender (or receiver)
informs the network layer of its desire to terminate the VC. The network
layer will then typically inform the end system on the other side of the
network of the call termination and update the tables in each of the
packet switches on the path to indicate that the VC no longer exists.

There is a subtle but important distinction between VC setup at the network
layer and connection setup at the transport layer (for example, the TCP three-
way handshake we studied in Chapter 3). Connection setup at the transport
layer involves only the two end systems. The two end systems agree to
communicate and together determine the parameters (for example, initial
sequence number, flow-control window size) of their transport-layer
connection before data actually begins to flow on the transport-level
connection. Although the two end systems are aware of the transport-layer
connection, the switches within the network are completely oblivious to it. On
the other hand, with a virtual-circuit network layer, packet switches along the
path between the two end systems are involved in virtual-circuit setup, and
each packet switch is fully aware of all the VCs passing through it.
The messages that the end systems send to the network to indicate the
initiation or termination of a VC, and the messages passed between the
switches to set up the VC (that is, to modify switch tables) are known as
signaling messages and the protocols used to exchange these messages
are often referred to as signaling protocols. VC setup is shown pictorially in
Figure 4.2. ATM, frame relay and X.25, which will be covered in Chapter 5,
are three other networking technologies that use virtual circuits.

Figure 4.2: Virtual-circuit service model
With a datagram network layer, each time an end system wants to send a
packet, it stamps the packet with the address of the destination end system,
and then pops the packet into the network. As shown in Figure 4.3, this is

done without any VC setup. Packet switches in a datagram network (called
"routers" in the Internet) do not maintain any state information about VCs
because there are no VCs! Instead, packet switches route a packet toward its
destination by examining the packet’s destination address, indexing a routing
table with the destination address, and forwarding the packet in the direction
of the destination. (As discussed in Chapter 1, datagram routing is similar to
routing ordinary postal mail.) Because routing tables can be modified at any
time, a series of packets sent from one end system to another may follow
different paths through the network and may arrive out of order. The Internet
uses a datagram network layer. [Paxson 1997] presents an interesting
measurement study of packet reordering and other phenomena in the public
Internet.

Figure 4.3: Datagram service model
You may recall from Chapter 1 that a packet-switched network typically offers
either a VC service or a datagram service to the transport layer, but not both
services. For example, we’ll see in Chapter 5 that an ATM network offers only
a VC service to the transport layer. The Internet offers only a datagram
service to the transport layer.
An alternate terminology for VC service and datagram service is network-
layer connection-oriented service and network-layer connectionless
service, respectively. Indeed, VC service is a sort of connection-oriented
service, as it involves setting up and tearing down a connection-like entity,
and maintaining connection-state information in the packet switches.
Datagram service is a sort of connectionless service in that it does not employ
connection-like entities. Both sets of terminology have advantages and
disadvantages, and both sets are commonly used in the networking literature.
In this book we decided to use the "VC service" and "datagram service"
terminology for the network layer, and reserve the "connection-oriented
service" and "connectionless service" terminology for the transport layer. We
believe this distinction will be useful in helping the reader delineate the
services offered by the two layers.
The key aspects of the service model of the Internet and ATM network
architectures are summarized in Table 4.1. We do not want to delve deeply
into the details of the service models here (it can be quite "dry" and detailed
discussions can be found in the standards themselves [ATM Forum 1997]). A

comparison between the Internet and ATM service models is, however, quite
instructive.
Table 4.1: Internet and ATM Network Service Models
Network Architecture
Service Model
Bandwidth Guarantee
No Loss Guarantee
Ordering
Timing
Congestion Indication

Internet
Best Effort
None
None
Any order possible
Not maintained
None

ATM
CBR
Guaranteed constant rate
Yes
In order
Maintained
Congestion will not occur

ATM
VBR
Guaranteed Rate
Yes
In order
Maintained
Congestion will not occur

ATM
ABR
Guaranteed minimum
None
In order
Not maintained
Congestion indication provided

ATM
UBR
None
None
In order
Not maintained
None

The current Internet architecture provides only one service model, the
datagram service, which is also known as "best-effort service." From Table
4.1, it might appear that best effort service is a euphemism for "no service at
all." With best-effort service, timing between packets is not guaranteed to be

preserved, packets are not guaranteed to be received in the order in which
they were sent, nor is the eventual delivery of transmitted packets guaranteed.
Given this definition, a network that delivered no packets to the destination
would satisfy the definition of best-effort delivery service. (Indeed, today’s
congested public Internet might sometimes appear to be an example of a
network that does so!) As we will discuss shortly, however, there are sound
reasons for such a minimalist network service model. The Internet’s best-effort
only service model is currently being extended to include so-called integrated
services and differentiated service. We will cover these still-evolving service
models later in Chapter 6.
Let us next turn to the ATM service models. We’ll focus here on the service
model standards being developed in the ATM Forum [ATM Forum 1997]. The
ATM architecture provides for multiple service models (that is, the ATM
standard has multiple service models). This means that within the same
network, different connections can be provided with different classes of
service.
Constant bit rate (CBR) network service was the first ATM service model to
be standardized, probably reflecting the fact that telephone companies were
the early prime movers behind ATM, and CBR network service is ideally
suited for carrying real-time, constant-bit-rate audio (for example, a digitized
telephone call) and video traffic. The goal of CBR service is conceptually
simple--to make the network connection look like a dedicated copper or fiber
connection between the sender and receiver. With CBR service, ATM packets
(referred to as cells in ATM jargon) are carried across the network in such a
way that the end-to-end delay experienced by a cell (the so-called cell-transfer
delay, CTD), the variability in the end-end delay (often referred to as "jitter" or
cell-delay variation, CDV), and the fraction of cells that are lost or delivered
late (the so-called cell-loss rate, CLR) are guaranteed to be less than some
specified values. Also, an allocated transmission rate (the peak cell rate,
PCR) is defined for the connection and the sender is expected to offer data to
the network at this rate. The values for the PCR, CTD, CDV, and CLR are
agreed upon by the sending host and the ATM network when the CBR
connection is first established.
A second conceptually simple ATM service class is Unspecified bit rate
(UBR) network service. Unlike CBR service, which guarantees rate, delay,
delay jitter, and loss, UBR makes no guarantees at all other than in-order
delivery of cells (that is, cells that are fortunate enough to make it to the
receiver). With the exception of in-order delivery, UBR service is thus
equivalent to the Internet best-effort service model. As with the Internet best-
effort service model, UBR also provides no feedback to the sender about
whether or not a cell is dropped within the network. For reliable transmission
of data over a UBR network, higher-layer protocols (such as those we studied
in the previous chapter) are needed. UBR service might be well suited for
noninteractive data transfer applications such as e-mail and newsgroups.
If UBR can be thought of as a "best-effort" service, then available bit rate
(ABR) network service might best be characterized as a "better" best-effort

service model. The two most important additional features of ABR service
over UBR service are:

• A minimum cell transmission rate (MCR) is guaranteed to a connection
using ABR service. If, however, the network has enough free resources
at a given time, a sender may actually be able to successfully send
traffic at a higher rate than the MCR.

• Congestion feedback from the network. We saw in Section 3.6.3 that
an ATM network can provide feedback to the sender (in terms of a
congestion notification bit, or a lower rate at which to send) that
controls how the sender should adjust its rate between the MCR and
the peak cell rate (PCR). ABR senders control their transmission rates
based on such feedback.

ABR provides a minimum bandwidth guarantee, but on the other hand
will attempt to transfer data as fast as possible (up to the limit imposed
by the PCR). As such, ABR is well suited for data transfer, where it is
desirable to keep the transfer delays low (for example, Web browsing).

The final ATM service model is variable bit rate (VBR) network service.
VBR service comes in two flavors (perhaps indicating a service class with an
identity crisis!). In real-time VBR service, the acceptable cell-loss rate, delay,
and delay jitter are specified as in CBR service. However, the actual source
rate is allowed to vary according to parameters specified by the user to the
network. The declared variability in rate may be used by the network
(internally) to more efficiently allocate resources to its connections, but in
terms of the loss, delay, and jitter seen by the sender, the service is
essentially the same as CBR service. While early efforts in defining a VBR
service model were clearly targeted toward real-time services (for example, as
evidenced by the PCR, CTD, CDV, and CLR parameters), a second flavor of
VBR service is now targeted toward non-real-time services and provides a
cell-loss rate guarantee. An obvious question with VBR is what advantages it
offers over CBR (for real-time applications) and over UBR and ABR for non-
real-time applications. Currently, there is not enough (any?) experience with
VBR service to answer these questions.
An excellent discussion of the rationale behind various aspects of the ATM
Forum’s Traffic Management Specification 4.0 [ATM Forum 1996] for CBR,
VBR, ABR, and UBR service is [Garrett 1996].

4.1.2: Origins of Datagram and Virtual Circuit Service
The evolution of the Internet and ATM network service models reflects their
origins. With the notion of a virtual circuit as a central organizing principle, and
an early focus on CBR services, ATM reflects its roots in the telephony world
(which uses "real circuits"). The subsequent definition of UBR and ABR
service classes acknowledges the importance of data applications developed
in the data networking community. Given the VC architecture and a focus on
supporting real-time traffic with guarantees about the level of received

performance (even with data-oriented services such as ABR), the network
layer is significantly more complex than the best-effort Internet. This, too, is in
keeping with the ATM’s telephony heritage. Telephone networks, by
necessity, had their "complexity" within the network, since they were
connecting "dumb" end-system devices such as a rotary telephone. (For those
too young to know, a rotary phone is a nondigital telephone with no buttons--
only a dial.)
The Internet, on the other hand, grew out of the need to connect computers
(that is, more sophisticated end devices) together. With sophisticated end-
system devices, the Internet architects chose to make the network-service
model (best effort) as simple as possible and to implement any additional
functionality (for example, reliable data transfer), as well as any new
application-level network services at a higher layer, at the end systems. This
inverts the model of the telephone network, with some interesting
consequences:

• The resulting Internet network-service model, which made minimal
(no!) service guarantees (and hence posed minimal requirements on
the network layer), also made it easier to interconnect networks that
used very different link-layer technologies (for example, satellite,
Ethernet, fiber, or radio) that had very different transmission rates and
loss characteristics. We will address the interconnection of IP networks
in detail in Section 4.4.

• As we saw in Chapter 2, applications such as e-mail, the Web, and
even a network-layer-centric service such as the DNS are implemented
in hosts (servers) at the edge of the network. The ability to add a new
service simply by attaching a host to the network and defining a new
higher-layer protocol (such as HTTP) has allowed new services such
as the WWW to be adopted in the Internet in a breathtakingly short
period of time.

As we will see in Chapter 6, however, there is considerable debate in the
Internet community about how the network-layer architecture must evolve in
order to support real-time services such as multimedia. An interesting
comparison of the ATM and the proposed next generation Internet
architecture is given in [Crowcroft 1995].

Online Book

4.2: Routing Principles
In order to transfer packets from a sending host to the destination host, the
network layer must determine the path or route that the packets are to

follow. Whether the network layer provides a datagram service (in which
case different packets between a given host-destination pair may take
different routes) or a virtual-circuit service (in which case all packets
between a given source and destination will take the same path), the
network layer must nonetheless determine the path for a packet. This is the
job of the network layer routing protocol.

At the heart of any routing protocol is the algorithm (the routing algorithm)
that determines the path for a packet. The purpose of a routing algorithm is
simple: given a set of routers, with links connecting the routers, a routing
algorithm finds a "good" path from source to destination. Typically, a "good"
path is one that has "least cost." We’ll see, however, that in practice, real-
world concerns such as policy issues (for example, a rule such as "router X,
belonging to organization Y should not forward any packets originating from
the network owned by organization Z") also come into play to complicate
the conceptually simple and elegant algorithms whose theory underlies the
practice of routing in today’s networks.

The graph abstraction used to formulate routing algorithms is shown in
Figure 4.4. To view some graphs representing real network maps, see
[Dodge 1999]; for a discussion of how well different graph-based models
model the Internet, see [Zegura 1997]. Here, nodes in the graph represent
routers--the points at which packet routing decisions are made--and the
lines ("edges" in graph theory terminology) connecting these nodes
represent the physical links between these routers. A link also has a value
representing the "cost" of sending a packet across the link. The cost may
reflect the level of congestion on that link (for example, the current average
delay for a packet across that link) or the physical distance traversed by
that link (for example, a transoceanic link might have a higher cost than a
short-haul terrestrial link). For our current purposes, we’ll simply take the
link costs as a given and won’t worry about how they are determined.

Figure 4.4: Abstract model of a network

Given the graph abstraction, the problem of finding the least-cost path from
a source to a destination requires identifying a series of links such that:

• the first link in the path is connected to the source

• the last link in the path is connected to the destination

• for all i, the i and i-1st link in the path are connected to the same
node

• for the least-cost path, the sum of the cost of the links on the path is
the minimum over all possible paths between the source and
destination. Note that if all link costs are the same, the least-cost
path is also the shortest path (that is, the path crossing the smallest
number of links between the source and the destination).

In Figure 4.4, for example, the least-cost path between nodes A (source)
and C (destination) is along the path ADEC. (We will find it notationally
easier to refer to the path in terms of the nodes on the path, rather than the
links on the path.)
As a simple exercise, try finding the least-cost path from nodes A to F, and
reflect for a moment on how you calculated that path. If you are like most
people, you found the path from A to F by examining Figure 4.4, tracing a
few routes from A to F, and somehow convincing yourself that the path you
had chosen had the least cost among all possible paths. (Did you check all
of the 12 possible paths between A and F? Probably not!) Such a
calculation is an example of a centralized routing algorithm--the routing
algorithm was run in one location, your brain, with complete information
about the network. Broadly, one way in which we can classify routing
algorithms is according to whether they are global or decentralized:

• A global routing algorithm computes the least-cost path between a
source and destination using complete, global knowledge about the
network. That is, the algorithm takes the connectivity between all
nodes and all link costs as inputs. This then requires that the
algorithm somehow obtain this information before actually
performing the calculation. The calculation itself can be run at one
site (a centralized global routing algorithm) or replicated at multiple
sites. The key distinguishing feature here, however, is that a global
algorithm has complete information about connectivity and link costs.
In practice, algorithms with global state information are often referred
to as link state algorithms, since the algorithm must be aware of
the cost of each link in the network. We will study a global link state
algorithm in Section 4.2.1.

• In a decentralized routing algorithm, the calculation of the least-
cost path is carried out in an iterative, distributed manner. No node
has complete information about the costs of all network links.
Instead, each node begins with only the knowledge of the costs of its
own directly attached links. Then, through an iterative process of
calculation and exchange of information with its neighboring nodes
(that is, nodes that are at the "other end" of links to which it itself is
attached), a node gradually calculates the least-cost path to a

destination or set of destinations. We will study a decentralized
routing algorithm known as a distance vector algorithm in Section
4.2.2. It is called a distance vector algorithm because a node never
actually knows a complete path from source to destination. Instead,
it only knows the neighbor to which it should forward a packet in
order to reach a given destination along the least-cost path, and the
cost of that path from itself to the destination.

A second broad way to classify routing algorithms is according to whether
they are static or dynamic. In static routing algorithms, routes change very
slowly over time, often as a result of human intervention (for example, a
human manually editing a router’s forwarding table). Dynamic routing
algorithms change the routing paths as the network traffic loads or topology
change. A dynamic algorithm can be run either periodically or in direct
response to topology or link cost changes. While dynamic algorithms are
more responsive to network changes, they are also more susceptible to
problems such as routing loops and oscillation in routes, issues we will
consider in Section 4.2.2.
Only two types of routing algorithms are typically used in the Internet: a
dynamic global link state algorithm, and a dynamic decentralized distance
vector algorithm. We cover these algorithms in Section 4.2.1 and 4.2.2,
respectively. Other routing algorithms are surveyed briefly in Section 4.2.3.

4.2.1: A Link State Routing Algorithm
Recall that in a link state algorithm, the network topology and all link costs
are known; that is, available as input to the link state algorithm. In practice
this is accomplished by having each node broadcast the identities and
costs of its attached links to all other routers in the network. This link state
broadcast [Perlman 1999], can be accomplished without the nodes having
to initially know the identities of all other nodes in the network. A node need
only know the identities and costs to its directly attached neighbors; it will
then learn about the topology of the rest of the network by receiving link
state broadcasts from other nodes. (In Chapter 5, we will learn how a router
learns the identities of its directly attached neighbors). The result of the
nodes’ link state broadcast is that all nodes have an identical and complete
view of the network. Each node can then run the link state algorithm and
compute the same set of least-cost paths as every other node.
The link state algorithm we present below is known as Dijkstra’s algorithm,
named after its inventor. A closely related algorithm is Prim’s algorithm; see
[Corman 1990] for a general discussion of graph algorithms. Dijkstra’s
algorithm computes the least-cost path from one node (the source, which
we will refer to as A) to all other nodes in the network. Dijkstra’s algorithm is
iterative and has the property that after the kth iteration of the algorithm, the
least-cost paths are known to k destination nodes, and among the least-
cost paths to all destination nodes, these k paths will have the k smallest
costs. Let us define the following notation:

• c(i,j): link cost from node i to node j. If nodes i and j are not directly

connected, then c(i,j) = . We will assume for simplicity that c(i,j)
equals c(j,i).

• D(v): cost of the path from the source node to destination v that has
currently (as of this iteration of the algorithm) the least cost

• p(v): previous node (neighbor of v) along the current least-cost path
from the source to v

• N: set of nodes whose least-cost path from the source is definitively
known

The link state algorithm consists of an initialization step followed by a loop.
The number of times the loop is executed is equal to the number of nodes
in the network. Upon termination, the algorithm will have calculated the
shortest paths from the source node to every other node in the network.
Link State (LS) Algorithm:
��,QLWLDOL]DWLRQ�

���1� �^$`

���IRU�DOO�QRGHV�Y

����LI�Y�DGMDFHQW�WR�$

�����WKHQ�'�Y�� �F�$�Y�

�����HOVH�'�Y�� �

�

��/RRS

���ILQG�Z�QRW�LQ�1�VXFK�WKDW�'�Z��LV�D�PLQLPXP

����DGG�Z�WR�1

����XSGDWH�'�Y��IRU�DOO�Y�DGMDFHQW�WR�Z�DQG�QRW�LQ�1�

�����'�Y�� �PLQ��'�Y���'�Z����F�Z�Y���

�����
�QHZ�FRVW�WR�Y�LV�HLWKHU�ROG�FRVW�WR�Y�RU�NQRZQ

�����VKRUWHVW�SDWK�FRVW�WR�Z�SOXV�FRVW�IURP�Z�WR�Y�
�

���XQWLO�DOO�QRGHV�LQ�1

As an example, let’s consider the network in Figure 4.4 and compute the
least-cost paths from A to all possible destinations. A tabular summary of
the algorithm’s computation is shown in Table 4.2, where each line in the
table gives the values of the algorithm’s variables at the end of the iteration.
Table 4.2: Running the link state algorithm on the network in Figure 4.4

step
N

D(B),p(B)
D(C),p(C)
D(D),p(D)
D(E),p(E)
D(F),p(F)

0
A

2,A

5,A
1,A

1
AD

2,A
4,D

2,D

2
ADE

2,A
3,E

4,E

3
ADEB

3,E

4,E

4
ADEBC

4,E

5
ADEBCF

Let’s consider the few first steps in detail:

• In the initialization step, the currently known least-cost path from A
to its directly attached neighbors, B, C, and D are initialized to 2, 5,
and 1 respectively. Note in particular that the cost to C is set to 5
(even though we will soon see that a lesser-cost path does indeed
exist) since this is the cost of the direct (one hop) link from A to C.
The costs to E and F are set to infinity because they are not directly
connected to A.

• In the first iteration, we look among those nodes not yet added to
the set N and find that node with the least cost as of the end of the
previous iteration. That node is D, with a cost of 1, and thus D is
added to the set N. Line 12 of the LS algorithm is then performed to
update D(v) for all nodes v, yielding the results shown in the second
line (step 1) in Table 4.2. The cost of the path to B is unchanged.
The cost of the path to C (which was 5 at the end of the initialization)
through node D is found to have a cost of 4. Hence this lower cost
path is selected and C’s predecessor along the shortest path from A
is set to D. Similarly, the cost to E (through D) is computed to be 2,
and the table is updated accordingly.

• In the second iteration, nodes B and E are found to have the least
path costs (2), and we break the tie arbitrarily and add E to the set N
so that N now contains A, D, and E. The cost to the remaining nodes
not yet in N, that is, nodes B, C, and F, are updated via line 12 of the
LS algorithm, yielding the results shown in the third row in the Table
4.2.

• and so on...

When the LS algorithm terminates, we have, for each node, its predecessor
along the least-cost path from the source node. For each predecessor, we
also have its predecessor, and so in this manner we can construct the
entire path from the source to all destinations.
What is the computational complexity of this algorithm? That is, given n
nodes (not counting the source), how much computation must be done in
the worst case to find the least-cost paths from the source to all
destinations? In the first iteration, we need to search through all n nodes to
determine the node, w, not in N that has the minimum cost. In the second
iteration, we need to check n - 1 nodes to determine the minimum cost; in
the third iteration n - 2 nodes, and so on. Overall, the total number of nodes
we need to search through over all the iterations is n(n + 1)/2, and thus we
say that the above implementation of the link state algorithm has worst-
case complexity of order n squared: O(n2). (A more sophisticated
implementation of this algorithm, using a data structure known as a heap,
can find the minimum in line 9 in logarithmic rather than linear time, thus
reducing the complexity.)
Before completing our discussion of the LS algorithm, let us consider a
pathology that can arise. Figure 4.5 shows a simple network topology
where link costs are equal to the load carried on the link, for example,
reflecting the delay that would be experienced. In this example, link costs
are not symmetric, that is, c(A,B) equals c(B,A) only if the load carried on
both directions on the AB link is the same. In this example, node D
originates a unit of traffic destined for A, node B also originates a unit of
traffic destined for A, and node C injects an amount of traffic equal to e,
also destined for A. The initial routing is shown in Figure 4.5(a) with the link

costs corresponding to the amount of traffic carried.

Figure 4.5: Oscillations with link state (LS) routing
When the LS algorithm is next run, node C determines (based on the link
costs shown in Figure 4.5a) that the clockwise path to A has a cost of 1,
while the counterclockwise path to A (which it had been using) has a cost of
1 + e. Hence C’s least-cost path to A is now clockwise. Similarly, B
determines that its new least-cost path to A is also clockwise, resulting in
costs shown in Figure 4.5b. When the LS algorithm is run next, nodes B, C,
and D all detect a zero-cost path to A in the counterclockwise direction, and
all route their traffic to the counterclockwise routes. The next time the LS
algorithm is run, B, C, and D all then route their traffic to the clockwise
routes.
What can be done to prevent such oscillations (which can occur in any
algorithm that uses a congestion or delay-based link metric). One solution
would be to mandate that link costs not depend on the amount of traffic
carried--an unacceptable solution since one goal of routing is to avoid
highly congested (for example, high-delay) links. Another solution is to
ensure that all routers do not run the LS algorithm at the same time. This
seems a more reasonable solution, since we would hope that even if
routers run the LS algorithm with the same periodicity, the execution
instance of the algorithm would not be the same at each node. Interestingly,
researchers have recently noted that routers in the Internet can self-
synchronize among themselves [Floyd Synchronization 1994]. That is, even
though they initially execute the algorithm with the same period but at
different instants of time, the algorithm execution instance can eventually
become, and remain, synchronized at the routers. One way to avoid such
self-synchronization is to purposefully introduce randomization into the
period between execution instants of the algorithm at each node.
Having now studied the link state algorithm, let’s next consider the other
major routing algorithm that is used in practice today--the distance vector
routing algorithm.

4.2.2: A Distance Vector Routing Algorithm
While the LS algorithm is an algorithm using global information, the
distance vector (DV) algorithm is iterative, asynchronous, and distributed.
It is distributed in that each node receives some information from one or
more of its directly attached neighbors, performs a calculation, and may
then distribute the results of its calculation back to its neighbors. It is

iterative in that this process continues on until no more information is
exchanged between neighbors. (Interestingly, we will see that the algorithm
is self terminating--there is no "signal" that the computation should stop; it
just stops.) The algorithm is asynchronous in that it does not require all of
the nodes to operate in lock step with each other. We’ll see that an
asynchronous, iterative, self terminating, distributed algorithm is much more
interesting and fun than a centralized algorithm!
The principal data structure in the DV algorithm is the distance table
maintained at each node. Each node’s distance table has a row for each
destination in the network and a column for each of its directly attached
neighbors. Consider a node X that is interested in routing to destination Y
via its directly attached neighbor Z. Node X’s distance table entry, Dx(Y,Z)
is the sum of the cost of the direct one-hop link between X and Z, c(X,Z),
plus neighbor Z’s currently known minimum-cost path from itself (Z) to Y.
That is:

Dx(Y,Z) = c(X,Z) + minw{Dz(Y,w)}
The minw term in the equation is taken over all of Z’s directly attached
neighbors (including X, as we shall soon see).
The equation suggests the form of the neighbor-to-neighbor communication
that will take place in the DV algorithm--each node must know the cost of
each of its neighbors’ minimum-cost path to each destination. Thus,
whenever a node computes a new minimum cost to some destination, it
must inform its neighbors of this new minimum cost.
Before presenting the DV algorithm, let’s consider an example that will help
clarify the meaning of entries in the distance table. Consider the network
topology and the distance table shown for node E in Figure 4.6. This is the
distance table in node E once the DV algorithm has converged. Let’s first
look at the row for destination A.

Figure 4.6: A distance table example

• Clearly the cost to get to A from E via the direct connection to A has
a cost of 1. Hence DE(A,A) = 1.

• Let’s now consider the value of DE(A,D)--the cost to get from E to A,
given that the first step along the path is D. In this case, the distance
table entry is the cost to get from E to D (a cost of 2) plus whatever
the minimum cost it is to get from D to A. Note that the minimum cost
from D to A is 3--a path that passes right back through E!

Nonetheless, we record the fact that the minimum cost from E to A
given that the first step is via D has a cost of 5. We’re left, though,
with an uneasy feeling that the fact that the path from E via D loops
back through E may be the source of problems down the road (it
will!).

• Similarly, we find that the distance table entry via neighbor B is
DE(A,B) = 14. Note that the cost is not 15. (Why?)

A circled entry in the distance table gives the cost of the least-cost path to
the corresponding destination (row). The column with the circled entry
identifies the next node along the least-cost path to the destination. Thus, a
node’s routing table (which indicates which outgoing link should be used to
forward packets to a given destination) is easily constructed from the node’s
distance table.
In discussing the distance table entries for node E above, we informally
took a global view, knowing the costs of all links in the network. The
distance vector algorithm we will now present is decentralized and does not
use such global information. Indeed, the only information a node will have
are the costs of the links to its directly attached neighbors, and information
it receives from these directly attached neighbors. The distance vector
algorithm we will study is also known as the Bellman-Ford algorithm, after
its inventors. It is used in many routing protocols in practice, including:
Internet BGP, ISO IDRP, Novell IPX, and the original ARPAnet.
Distance Vector (DV) algorithm
At each node, X:
��,QLWLDOL]DWLRQ�

���IRU�DOO�DGMDFHQW�QRGHV�Y�

����'
�
��
�Y�� � ��������
�WKH�
�RSHUDWRU�PHDQV��IRU�DOO�URZV��
�

����'
�
��Y�Y�� �F�;�Y�

���IRU�DOO�GHVWLQDWLRQV��\

����VHQG�PLQ � '�\�Z��WR�HDFK�QHLJKERU���
�Z�RYHU�DOO�;
V�QHLJKERUV�
�

�

��ORRS

����ZDLW��XQWLO�,�VHH�D�OLQN�FRVW�FKDQJH�WR�QHLJKERU�9

���������RU�XQWLO�,�UHFHLYH�DQ�XSGDWH�IURP�QHLJKERU�9�

��

����LI��F�;�9��FKDQJHV�E\�G�

�������
�FKDQJH�FRVW�WR�DOO�GHVW
V�YLD�QHLJKERU�Y�E\�G�
�

�������
�QRWH��G�FRXOG�EH�SRVLWLYH�RU�QHJDWLYH�
�

������IRU�DOO�GHVWLQDWLRQV�\��'
�
��\�9�� �'

�
��\�9����G

��

����HOVH�LI��XSGDWH�UHFHLYHG�IURP�9�ZUW�GHVWLQDWLRQ�<�

�������
�VKRUWHVW�SDWK�IURP�9�WR�VRPH�<�KDV�FKDQJHG�
�

�������
�9�KDV�VHQW�D�QHZ�YDOXH�IRU�LWV�PLQ � �'
�
��<�Z��
�

�������
�FDOO�WKLV�UHFHLYHG�QHZ�YDOXH��QHZYDO��
�

������IRU�WKH�VLQJOH�GHVWLQDWLRQ�\��'
�
��<�9�� �F�;�9����QHZYDO

��

����LI�ZH�KDYH�D�QHZ�PLQ � �'
�
��<�Z�IRU�DQ\�GHVWLQDWLRQ�<

������VHQG�QHZ�YDOXH�RI�PLQ � �'
�
��<�Z��WR�DOO�QHLJKERUV

��

���IRUHYHU

The key steps are lines 15 and 21, where a node updates its distance table
entries in response to either a change of cost of an attached link or the
receipt of an update message from a neighbor. The other key step is line
24, where a node sends an update to its neighbors if its minimum cost path
to a destination has changed.
Figure 4.7 illustrates the operation of the DV algorithm for the simple three
node network shown at the top of the figure. The operation of the algorithm
is illustrated in a synchronous manner, where all nodes simultaneously
receive messages from their neighbors, compute new distance table
entries, and inform their neighbors of any changes in their new least path
costs. After studying this example, you should convince yourself that the
algorithm operates correctly in an asynchronous manner as well, with node
computations and update generation/reception occurring at any times.

Figure 4.7: Distance vector (DV) algorithm: Example
The circled distance table entries in Figure 4.7 show the current minimum
path cost to a destination. A double-circled entry indicates that a new
minimum cost has been computed (in either line 4 of the DV algorithm
(initialization) or line 21). In such cases an update message will be sent
(line 24 of the DV algorithm) to the node’s neighbors as represented by the
arrows between columns in Figure 4.7.
The leftmost column in Figure 4.7 shows the distance table entries for
nodes X, Y, and Z after the initialization step.
Let’s now consider how node X computes the distance table shown in the
middle column of Figure 4.7 after receiving updates from nodes Y and Z. As
a result of receiving the updates from Y and Z, X computes in line 21 of the
DV algorithm:

DX(Y,Z)

= c(X,Z) + minw DZ(Y,w)
= 7 + 1
= 8

DX(Z,Y)
= c(X,Y) + minw DY(Z,w)
= 2 + 1
= 3

It is important to note that the only reason that X knows about the terms
minw DZ(Y,w) and minw DY(Z,w) is because nodes Z and Y have sent those
values to X (and are received by X in line 10 of the DV algorithm). As an
exercise, verify the distance tables computed by Y and Z in the middle
column of Figure 4.7.
The value DX(Z,Y) = 3 means that X’s minimum cost to Z has changed from
7 to 3. Hence, X sends updates to Y and Z informing them of this new least
cost to Z. Note that X need not update Y and Z about its cost to Y since this
has not changed. Note also that although Y’s recomputation of its distance
table in the middle column of Figure 4.7 does result in new distance entries,
it does not result in a change of Y’s least-cost path to nodes X and Z.
Hence Y does not send updates to X and Z.
The process of receiving updated costs from neighbors, recomputation of
distance table entries, and updating neighbors of changed costs of the
least-cost path to a destination continues until no update messages are
sent. At this point, since no update messages are sent, no further distance
table calculations will occur and the algorithm enters a quiescent state; that
is, all nodes are performing the wait in line 9 of the DV algorithm. The
algorithm would remain in the quiescent state until a link cost changes, as
discussed below.
The Distance Vector Algorithm: Link Cost Changes and Link Failure
When a node running the DV algorithm detects a change in the link cost
from itself to a neighbor (line 12), it updates its distance table (line 15) and,
if there’s a change in the cost of the least-cost path, updates its neighbors
(lines 23 and 24). Figure 4.8 illustrates this behavior for a scenario where
the link cost from Y to X changes from 4 to 1. We focus here only on Y and
Z’s distance table entries to destination (row) X.

Figure 4.8: Link-cost change: Good news travels fast

• At time t0, Y detects the link-cost change (the cost has changed from
4 to 1) and informs its neighbors of this change since the cost of the
minimum cost path has changed.

• At time t1, Z receives the update from Y and then updates its table.
Since it computes a new least cost to X (it has decreased from a
cost of 5 to a cost of 2), it informs its neighbors.

• At time t2, Y receives Z’s update and updates its distance table. Y’s
least costs have not changed (although its cost to X via Z has
changed) and hence Y does not send any message to Z. The
algorithm comes to a quiescent state.

In Figure 4.8, only two iterations are required for the DV algorithm to reach
a quiescent state. The "good news" about the decreased cost between X
and Y has propagated fast through the network.
Let’s now consider what can happen when a link cost increases. Suppose
that the link cost between X and Y increases from 4 to 60 as shown in
Figure 4.9.

Figure 4.9: Link-cost changes: Bad news travels slowly and causes loops

• At time t0, Y detects the link-cost change (the cost has changed from
4 to 60). Y computes its new minimum cost path to X to have a cost
of 6 via node Z. Of course, with our global view of the network, we
can see that this new cost via Z is wrong. But the only information
node Y has is that its direct cost to X is 60 and that Z has last told Y
that Z could get to X with a cost of 5. So in order to get to X, Y would
now route through Z, fully expecting that Z will be able to get to X
with a cost of 5. As of t1 we have a routing loop--in order to get to X,
Y routes through Z, and Z routes through Y. A routing loop is like a
black hole--a packet arriving at Y or Z as of t1 and destined for X, will
bounce back and forth between these two nodes forever (or until the
routing tables are changed).

• Since node Y has computed a new minimum cost to X, it informs Z
of this new cost at time t1.

• Sometime after t1, Z receives the new least cost to X via Y (Y has
told Z that Y’s new minimum cost is 6). Z knows it can get to Y with a
cost of 1 and hence computes a new least cost to X (still via Y) of 7.
Since Z’s least cost to X has increased, it then informs Y of its new
cost at t2.

• In a similar manner, Y then updates its table and informs Z of a new
cost of 8. Z then updates its table and informs Y of a new cost of 9,
etc.

How long will the process continue? You should convince yourself that the
loop will persist for 44 iterations (message exchanges between Y and Z)--
until Z eventually computes the cost of its path via Y to be greater than 50.

At this point, Z will (finally!) determine that its least-cost path to X is via its
direct connection to X. Y will then route to X via Z. The result of the "bad
news" about the increase in link cost has indeed traveled slowly! What
would have happened if the link cost c(Y,X) had changed from 4 to 10,000
and the cost c(Z,X) had been 9,999? Because of such scenarios, the
problem we have seen is sometimes referred to as the "count-to-infinity"
problem.
Distance Vector Algorithm: Adding Poisoned Revers
The specific looping scenario illustrated in Figure 4.9 can be avoided using
a technique known as poisoned reverse. The idea is simple--if Z routes
through Y to get to destination X, then Z will advertise to Y that its (Z’s)
distance to X is infinity. Z will continue telling this little "white lie" to Y as
long as it routes to X via Y. Since Y believes that Z has no path to X, Y will
never attempt to route to X via Z, as long as Z continues to route to X via Y
(and lies about doing so).
Figure 4.10 illustrates how poisoned reverse solves the particular looping
problem we encountered before in Figure 4.9. As a result of the poisoned
reverse, Y’s distance table indicates an infinite cost when routing to X via Z
(the result of Z having informed Y that Z’s cost to X was infinity). When the
cost of the XY link changes from 4 to 60 at time t0, Y updates its table and
continues to route directly to X, albeit at a higher cost of 60, and informs Z
of this change in cost. After receiving the update at t1, Z immediately shifts
its route to X to be via the direct ZX link at a cost of 50. Since this is a new
least-cost to X, and since the path no longer passes through Y, Z informs Y
of this new least-cost path to X at t2. After receiving the update from Z, Y
updates its distance table to route to X via Z at a least cost of 51. Also,
since Z is now on Y’s least-cost path to X, Y poisons the reverse path from
Z to X by informing Z at time t3 that it (Y) has an infinite cost to get to X. The
algorithm becomes quiescent after t4, with distance table entries for
destination X shown in the rightmost column in Figure 4.10.

Figure 4.10: Poisoned reverse
Does poison reverse solve the general count-to-infinity problem? It does
not. You should convince yourself that loops involving three or more nodes
(rather than simply two immediately neighboring nodes, as we saw in
Figure 4.10) will not be detected by the poison reverse technique.
A Comparison of Link State and Distance Vector Routing Algorithms
Let’s conclude our study of link state and distance vector algorithms with a
quick comparison of some of their attributes.

• Message complexity. We have seen that LS requires each node to
know the cost of each link in the network. This requires O(nE)
messages to be sent, where n is the number of nodes in the network
and E is the number of links. Also, whenever a link cost changes, the
new link cost must be sent to all nodes. The DV algorithm requires
message exchanges between directly connected neighbors at each
iteration. We have seen that the time needed for the algorithm to
converge can depend on many factors. When link costs change, the
DV algorithm will propagate the results of the changed link cost only
if the new link cost results in a changed least-cost path for one of the
nodes attached to that link.

• Speed of convergence. We have seen that our implementation of LS
is an O(n2) algorithm requiring O(nE) messages, and that it
potentially suffers from oscillations. The DV algorithm can converge
slowly (depending on the relative path costs, as we saw in Figure
4.10) and can have routing loops while the algorithm is converging.
DV also suffers from the count-to-infinity problem.

• Robustness. What can happen if a router fails, misbehaves, or is
sabotaged? Under LS, a router could broadcast an incorrect cost for

one of its attached links (but no others). A node could also corrupt or
drop any LS broadcast packets it receives as part of a link state
broadcast. But an LS node is only computing its own routing tables;
other nodes are performing the similar calculations for themselves.
This means route calculations are somewhat separated under LS,
providing a degree of robustness. Under DV, a node can advertise
incorrect least-cost paths to any/all destinations. (Indeed, in 1997, a
malfunctioning router in a small ISP provided national backbone
routers with erroneous routing tables. This caused other routers to
flood the malfunctioning router with traffic and caused large portions
of the Internet to become disconnected for up to several hours
[Neumann 1997].) More generally, we note that at each iteration, a
node’s calculation in DV is passed on to its neighbor and then
indirectly to its neighbor’s neighbor on the next iteration. In this
sense, an incorrect node calculation can be diffused through the
entire network under DV.

In the end, neither algorithm is a "winner" over the other; as we will see in
Section 4.4, both algorithms are used in the Internet.

4.2.3: Other Routing Algorithms
The LS and DV algorithms we have studied are not only widely used in
practice, they are essentially the only routing algorithms used in practice
today.
Nonetheless, many routing algorithms have been proposed by researchers
over the past 30 years, ranging from the extremely simple to the very
sophisticated and complex. One of the simplest routing algorithms
proposed is hot potato routing. The algorithm derives its name from its
behavior--a router tries to get rid of (forward) an outgoing packet as soon as
it can. It does so by forwarding it on any outgoing link that is not congested,
regardless of destination.
Another broad class of routing algorithms are based on viewing packet
traffic as flows between sources and destinations in a network. In this
approach, the routing problem can be formulated mathematically as a
constrained optimization problem known as a network flow problem
[Bertsekas 1991]. Let us define ij as the amount of traffic (for example, in
packets/sec) entering the network for the first time at node i and destined
for node j. The set of flows, { ij} for all i,j, is sometimes referred to as the
network traffic matrix. In a network flow problem, traffic flows must be
assigned to a set of network links subject to constraints such as:

• The sum of the flows between all source destination pairs passing
though link m must be less than the capacity of link m.

• The amount of ij traffic entering any router r (either from other
routers, or directly entering that router from an attached host) must
equal the amount of ij traffic leaving the router either via one of r’s
outgoing links or to an attached host at that router. This is a flow

conservation constraint.

Let us define ij
m as the amount of source i, destination j traffic passing

through link m. The optimization problem then is to find the set of link flows,
{ ij

m} for all links m and all sources, i, and destinations, j, that satisfies the
constraints above and optimizes a performance measure that is a function
of { ij

m}. The solution to this optimization problem then defines the routing
used in the network. For example, if the solution to the optimization problem
is such that ij

m = ij for some link m, then all i-to-j traffic will be routed over
link m. In particular, if link m is attached to node i, then m is the first hop on
the optimal path from source i to destination j.
But what performance function should be optimized? There are many
possible choices. If we make certain assumptions about the size of packets
and the manner in which packets arrive at the various routers, we can use
the so-called M/M/1 queuing theory formula [Kleinrock 1975] to express the
average delay at link m as:

where Rm is link m’s capacity (measured in terms of the average number of
packets/sec it can transmit) and i j ij

m is the total arrival rate of packets
(in packets/ sec) that arrive to link m. The overall network-wide
performance measure to be optimized might then be the sum of all link
delays in the network, or some other suitable performance metric. A
number of elegant distributed algorithms exist for computing the optimum
link flows (and hence the routing paths, as discussed above). The reader is
referred to [Bertsekas 1991] for a detailed study of these algorithms.
The final set of routing algorithms we mention here are those derived from
the telephony world. These circuit-switched routing algorithms are of
interest to packet-switched data networking in cases where per-link
resources (for example, buffers, or a fraction of the link bandwidth) are to
be reserved for each connection that is routed over the link. While the
formulation of the routing problem might appear quite different from the
least-cost routing formulation we have seen in this chapter, we will see that
there are a number of similarities, at least as far as the path finding
algorithm (routing algorithm) is concerned. Our goal here is to provide a
brief introduction for this class of routing algorithms. The reader is referred
to [Ash 1998; Ross 1995; Girard 1990] for a detailed discussion of this
active research area.
The circuit-switched routing problem formulation is illustrated in Figure 4.11.
Each link has a certain amount of resources (for example, bandwidth). The
easiest (and a quite accurate) way to visualize this is to consider the link to
be a bundle of circuits, with each call that is routed over the link requiring
the dedicated use of one of the link’s circuits. A link is thus characterized
both by its total number of circuits, as well as the number of these circuits
currently in use. In Figure 4.11, all links except AB and BD have 20 circuits;

the number to the left of the number of circuits indicates the number of
circuits currently in use.

Figure 4.11: Circuit-switched routing
Suppose now that a call arrives at node A, destined to node D. What path
should be taken? In shortest path first (SPF) routing, the shortest path
(least number of links traversed) is taken. We have already seen how the
Dijkstra LS algorithm can be used to find shortest-path routes. In Figure
4.11, either the ABD or ACD path would thus be taken. In least loaded
path (LLP) routing, the load at a link is defined as the ratio of the number of
used circuits at the link and the total number of circuits at that link. The path
load is the maximum of the loads of all links in the path. In LLP routing, the
path taken is that with the smallest path load. In Figure 4.11, the LLP path
is ABCD. In maximum free circuit (MFC) routing, the number of free
circuits associated with a path is the minimum of the number of free circuits
at each of the links on a path. In MFC routing, the path with the maximum
number of free circuits is taken. In Figure 4.11, the path ABD would be
taken with MFC routing.
Given these examples from the circuit-switching world, we see that the path
selection algorithms have much the same flavor as LS routing. All nodes
have complete information about the network’s link states. Note, however,
that the potential consequences of old or inaccurate state information are
more severe with circuit-oriented routing--a call may be routed along a path
only to find that the circuits it had been expecting to be allocated are no
longer available. In such a case, the call setup is blocked and another path
must be attempted. Nonetheless, the main differences between connection-
oriented, circuit-switched routing and connectionless packet-switched
routing come not in the path-selection mechanism, but rather in the actions
that must be taken when a connection is set up, or torn down, from source
to destination.

Online Book

4.3: Hierarchical Routing
In the previous section, we viewed the network simply as a collection of
interconnected routers. One router was indistinguishable from another in

the sense that all routers executed the same routing algorithm to compute
routing paths through the entire network. In practice, this model and its view
of a homogenous set of routers all executing the same routing algorithm is
a bit simplistic for at least two important reasons:

• Scale. As the number of routers becomes large, the overhead
involved in computing, storing, and communicating the routing table
information (for example, link-state updates or least-cost path
changes) becomes prohibitive. Today’s public Internet consists of
millions of interconnected routers and more than 50 million hosts.
Storing routing table entries to each of these hosts and routers would
clearly require enormous amounts of memory. The overhead
required to broadcast link state updates among millions of routers
would leave no bandwidth left for sending data packets! A distance
vector algorithm that iterated among millions of routers would surely
never converge! Clearly, something must be done to reduce the
complexity of route computation in networks as large as the public
Internet.

• Administrative autonomy. Although engineers tend to ignore issues
such as a company’s desire to run its routers as it pleases (for
example, to run whatever routing algorithm it chooses), or to "hide"
aspects of the networks’ internal organization from the outside, these
are important considerations. Ideally, an organization should be able
to run and administer its network as it wishes, while still being able to
connect its network to other "outside" networks.

Both of these problems can be solved by aggregating routers into regions
or autonomous systems (ASs). Routers within the same AS all run the
same routing algorithm (for example, an LS or DV algorithm) and have
information about each other--exactly as was the case in our idealized
model in the previous section. The routing algorithm running within an
autonomous system is called an intraautonomous system routing
protocol. It will be necessary, of course, to connect ASs to each other, and
thus one or more of the routers in an AS will have the added task of being
responsible for routing packets to destinations outside the AS. Routers in
an AS that have the responsibility of routing packets to destinations outside
the AS are called gateway routers. In order for gateway routers to route
packets from one AS to another (possibly passing through multiple other
ASs before reaching the destination AS), the gateways must know how to
route (that is, determine routing paths) among themselves. The routing
algorithm that gateways use to route among the various ASs is known as
an inter-autonomous system routing protocol.
In summary, the problems of scale and administrative authority are solved
by defining autonomous systems. Within an AS, all routers run the same
intra-autonomous system routing protocol. Special gateway routers in the
various ASs run an inter-autonomous system routing protocol that
determines routing paths among the ASs. The problem of scale is solved

since an intra-AS router need only know about routers within its AS and the
gateway router(s) in its AS. The problem of administrative authority is
solved since an organization can run whatever intra-AS routing protocol it
chooses, as long as the AS’s gateway(s) is able to run an inter-AS routing
protocol that can connect the AS to other ASs.
Figure 4.12 illustrates this scenario. Here, there are three routing ASs, A, B,
and C. Autonomous system A has four routers, A.a, A.b, A.c, and A.d,
which run the intra-AS routing protocol used within autonomous system A.
These four routers have complete information about routing paths within
autonomous system A. Similarly, autonomous systems B and C have three
and two routers, respectively. Note that the intra-AS routing protocols
running in A, B, and C need not be the same. The gateway routers are A.a,
A.c, B.a, and C.b. In addition to running the intra-AS routing protocol in
conjunction with other routers in their ASs, these four routers run an inter-
AS routing protocol among themselves. The topological view they use for
their inter-AS routing protocol is shown at the higher level, with "links"
shown in blue. Note that a "link" at the higher layer may be an actual
physical link, for example, the link connection A.c and B.a, or a logical link,
such as the link connecting A.c and A.a. Figure 4.12 also illustrates that the
gateway router A.c must run an intra-AS routing protocol with its neighbors
A.b and A.d, as well as an inter-AS protocol with gateway router B.a.

Figure 4.12: Intra-AS and Inter-AS routing
Suppose now that a host h1 attached to router A.d needs to route a packet
to destination h2 in autonomous system B, as shown in Figure 4.13.
Assuming that A.d’s routing table indicates that router A.c is responsible for
routing its (A.d’s) packets outside the AS, the packet is first routed from A.d
to A.c using A’s intra-AS routing protocol. It is important to note that router
A.d does not know about the internal structure of autonomous systems B
and C and indeed need not even know about the topology connecting

autonomous systems A, B, and C. Router A.c will receive the packet and
see that it is destined to an autonomous system outside of A. A.c’s routing
table for the inter-AS protocol would indicate that a packet destined to
autonomous system B should be routed along the A.c to B.a link. When the
packet arrives at B.a, B.a’s inter-AS routing sees that the packet is destined
for autonomous system B. The packet is then "handed over" to the intra-AS
routing protocol within B, which routes the packet to its final destination, h2.
In Figure 4.13, the portion of the path routed using A’s intra-AS protocol is
shown on the lower plane with a dotted line, the portion using the inter-AS
routing protocol is shown in the upper plane as a solid line, and the portion
of the path routed using B’s intra-AS protocol is shown on the lower plane
with a dotted line. We will examine specific inter-AS and intra-AS routing
protocols used in the Internet in Section 4.5.

Figure 4.13: The route from A.d to B.b: intra-AS and inter-AS path segments

Online Book

4.4: Internet Protocol
So far in this chapter we’ve focused on underlying principles of the network
layer, without reference to any specific network architecture. We’ve discussed
various network-layer service models, the routing algorithms commonly used
to deter mine paths between source and destination, and the use of hierarchy
to address the problem of scale. In this section, we turn our attention to the
network layer of the Internet, the pieces of which are often collectively referred
to as the IP layer (named after the Internet’s IP protocol). We’ll see, though,
that the IP protocol itself is just one piece (albeit a very important piece) of the
Internet’s network layer.

As noted in Section 4.1, the Internet’s network layer provides connectionless
datagram service rather than virtual-circuit service. When the network layer at
the sending host receives a segment from the transport layer, it encapsulates
the segment within an IP datagram, writes the destination host address as

well as other fields in the datagram, and sends the datagram to the first router
on the path toward the destination host. Our analogy from Chapter 1 was that
this process is similar to a person writing a letter, inserting the letter in an
envelope, writing the destination address on the envelope, and dropping the
envelope into a mailbox. Neither the Internet’s network layer nor the postal
service make any preliminary contact with the destination before moving its
"parcel" (datagram or letter, respectively) toward the destination. Furthermore,
as discussed in Section 4.1, the Internet’s network-layer service and the postal
delivery service both provide so-called best-effort service: neither guarantee
that a parcel will arrive within a certain time at the destination, nor does either
guarantee that a series of parcels will arrive in the order sent. Indeed, neither
even guarantee that a parcel will ever arrive at its destination!

As shown in Figure 4.14, the network layer in a datagram-oriented network
such as the Internet has three major components.

Figure 4.14: A look inside the Internet’s network layer

• The first component is the network protocol, which defines network-
layer addressing, the fields in the datagram (that is, the network-layer
PDU), and the actions taken by routers and end systems on a
datagram based on the values in these fields. The network protocol in
the Internet is called the Internet Protocol, or more commonly, the IP
Protocol. There are two versions of the IP protocol in use today. We’ll
examine the widely deployed Internet Protocol version 4, more
commonly known simply as IPv4 [RFC 791] in Sections 4.4.1 through
4.4.4. In Section 4.7 we’ll examine IP version 6 [RFC 2373; RFC 2460],
which has been proposed to replace IPv4 in upcoming years.

• The second major component of the network layer is the path
determination component; it determines the route a datagram follows
from source to destination. We saw in Section 4.2 that routing protocols
compute the routing tables that are used to route packets through the
network. We’ll study the Internet’s path determination component in
Section 4.5.

• The final component of the network layer is a facility to report errors in
datagrams and respond to requests for certain network-layer
information. We’ll cover the Internet’s network-layer error and
information reporting protocol, ICMP, in Section 4.4.5.

4.4.1: IPv4 Addressing
Let’s begin our study of IPv4 by considering IPv4 addressing. Although
addressing may seem a rather straightforward and perhaps tedious topic, the
coupling between addressing and network-layer routing is both crucial and
subtle. Excellent treatments of IPv4 addressing are [Semeria 1996] and the
first chapter in [Stewart 1999].
Before discussing IP addressing, however, we’ll need to say a few words
about how hosts and routers are connected into the network. A host typically
has only a single link into the network. When IP in the host wants to send a
datagram, it will do so over this link. The boundary between the host and the
physical link is called an interface. A router, on the other hand, is
fundamentally different from a host. Because a router’s job is to receive a
datagram on an "incoming" link and forward the datagram on some "outgoing"
link, a router necessarily has two or more links to which it is connected. The
boundary between the router and any one of its links is also called an
interface. A router thus has multiple interfaces, one for each of its links.
Because every host and router is capable of sending and receiving IP
datagrams, IP requires each interface to have an IP address. Thus, an IP
address is technically associated with an interface, rather than with the host or
router containing that interface
Each IP address is 32 bits long (equivalently, four bytes), and there are thus a
total of 232 possible IP addresses. These addresses are typically written in so-
called dotted-decimal notation, in which each byte of the address is written
in its decimal form and is separated by a period ("dot") from other bytes in the
address. For example, consider the IP address 193.32.216.9. The 193 is the
decimal equivalent of the first eight bits of the address; the 32 is the decimal
equivalent of the second eight bits of the address, and so on. Thus, the
address 193.32.216.9 in binary notation is:

11000001 00100000 11011000 00001001.
Each interface on every host and router in the global Internet must have an IP
address that is globally unique. These addresses cannot be chosen in a willy-
nilly manner, however. To a large extent, an interface’s IP address will be
determined by the "network" to which it is connected. In this context, the term
"network" does not refer to the general infrastructure of hosts, routers, and
links that make up a network. Instead, the term has a very precise meaning
that is closely tied to IP addressing, as we will see. Figure 4.15 provides an
example of IP addressing and interfaces. In this figure, one router (with three
interfaces) is used to interconnect seven hosts. Take a close look at the IP
addresses assigned to the host and router interfaces; there are several things
to be noted. The three hosts in the upper-left portion of Figure 4.15, and the
router interface to which they are connected all have an IP address of the form

223.1.1.xxx. That is, they share a common leftmost 24 bits of their IP address.
They are also interconnected to each other by a single physical link (in this
case, a broadcast link such as an Ethernet cable to which they are all
physically attached) with no intervening routers. In the jargon of IP, the
interfaces in these hosts and the upper-left interface in the router form an IP
network or more simply a network. The 24 address bits that they share in
common constitute the network portion of their IP address; the remaining eight
bits are the host portion of the IP address. (We would prefer to use the
terminology "interface part of the address" rather than "host part of the
address" because an IP address is really for an interface rather than a host;
but the terminology "host part" is commonly used in practice.) The network
itself also has an address: 223.1.1.0/24, where the "/24" notation, sometimes
known as a network mask, indicates that the leftmost 24 bits of the 32-bit
quantity define the network address. These leftmost bits that define the
network address are also often referred to as the network prefix. The
network 223.1.1.0/24 thus consists of the three host interfaces (223.1.1.1,
223.1.1.2, and 223.1.1.3) and one router interface (223.1.1.4). Any additional
hosts attached to the 223.1.1.0/24 network would be required to have an
address of the form 223.1.1.xxx. There are two additional networks shown in
Figure 4.15: the 223.1.2.0/24 network and the 223.1.3.0/24 network. Figure
4.16 illustrates the three IP networks present in Figure 4.15.

Figure 4.15: Interface addresses

Figure 4.16: Network addresses
The IP definition of a "network" is not restricted to Ethernet segments that
connect multiple hosts to a router interface. To get some insight here,
consider Figure 4.17, which shows three routers that are interconnected with
each other by point-to-point links. Each router has three interfaces, one for
each point-to-point link, and one for the broadcast link that directly connects
the router to a pair of hosts. What IP networks are present here? Three
networks, 223.1.1.0/24, 223.1.2.0/24, and 223.1.3.0/24 are similar in spirit to
the networks we encountered in Figure 4.15. But note that there are three
additional networks in this example as well: one network, 223.1.9.0/24, for the
interfaces that connect routers R1 and R2; another network, 223.1.8.0/24, for
the interfaces that connect routers R2 and R3; and a third network,
223.1.7.0/24, for the interfaces that connect routers R3 and R1.

Figure 4.17: Three routers interconnecting six hosts
For a general interconnected system of routers and hosts, we can use the
following recipe to define the networks in the system. We first detach each
interface from its host or router. This creates islands of isolated networks, with
interfaces terminating the endpoints of the isolated networks. We then call
each of these isolated networks a network. If we apply this procedure to the
interconnected system in Figure 4.17, we get six islands or networks. The
current Internet consists of millions of such networks. The notion of a network
and a network address is an important one, and plays a central role in the
Internet’s routing architecture.
Now that we have defined a network, we are ready to discuss IP addressing in
more detail. The original Internet addressing architecture defined four classes
of address, as shown in Figure 4.18. A fifth address class, beginning with
11110, was reserved for future use. For a class A address, the first eight bits
identify the network, and the last 24 bits identify the interface within that
network. Thus, within class A we can have up to 27 networks (the first of the
eight bits is fixed as 0), each with up to 224 interfaces. The class B address
space allows for 214 networks, with up to 216 interfaces within each network. A
class C address uses 21 bits to identify the network and leaves only eight bits
for the interface identifier. Class D addresses are reserved for so-called
multicast addresses; we’ll defer our discussion of class D addresses until
Section 4.7.

Figure 4.18: IPv4 address formats
The four address classes shown in Figure 4.18 (sometimes known as classful
addressing) are no longer formally part of the IP addressing architecture. The
requirement that the network portion of an IP address be exactly one, two, or
three bytes long turned out to be problematic for supporting the rapidly
growing number of organizations with small and medium-sized networks. A
class C (/24) network could only accommodate up to 28 - 2 = 254 hosts (two of
the 28 = 256 addresses are reserved for special use)--too small for many
organizations. However, a class B (/16) network, which supports up 65,634
hosts was too large. Under classful addressing, an organization with, say,
2,000 hosts was typically allocated a class B (/16) network address. This led
to a rapid depletion of the class B address space and poor utilization of the
assigned address space. For example, the organization that used a class B
address for its 2,000 hosts was allocated enough of the address space for up
to 65,534 interfaces--leaving more than 63,000 unused addresses that could
not be used by other organizations.
In 1993, the IETF standardized on Classless Interdomain Routing (CIDR--
pronounced the same as "cider") [RFC 1519]. With so-called CIDRized
network addresses, the network part of an IP address can be any number of
bits long, rather than being constrained to 8, 16, or 24 bits. A CIDRized
network address has the dotted-decimal form a.b.c.d/x, where x indicates the
number of leading bits in the 32-bit quantity that constitutes the network
portion of the address. In our example above, the organization needing to
support 2,000 hosts could be allocated a block of only 2,048 host addresses
of the form a.b.c.d/21, allowing the approximately 63,000 addresses that
would have been allocated and unused under classful addressing to be
allocated to a different organization. In this case, the first 21 bits specify the
organization’s network address and are common in the IP addresses of all
hosts in the organization. The remaining 11 bits then identify the specific hosts
in the organization. In practice, the organization could further divide these 11
rightmost bits using a procedure known as subnetting [RFC 950] to create its
own internal networks within the a.b.c.d/21 network.
Assigning Addresses
Having introduced IP addressing, a question that immediately comes to mind
is how a host gets its own IP address. We have just learned that an IP
address has two parts, a network part and a host part. The host part of the
address can be assigned in several different ways, including:

• Manual configuration. The IP address is configured into the host
(typically in a file) by the system administrator.

• Dynamic Host Configuration Protocol (DHCP) [RFC 2131]. DHCP is
an extension of the BOOTP [RFC 1542] protocol, and is sometimes
referred to as Plug and Play. With DHCP, a DHCP server in a network
(for example, in a LAN) receives DHCP requests from a client and, in
the case of dynamic address allocation, allocates an IP address back to
the requesting client. DHCP is used extensively in LANs and in
residential Internet access.

Obtaining a network address is not as simple. An organization’s network
administrator might first contact its ISP, which would provide addresses from a
larger block of addressees that had already been allocated to the ISP. For
example, the ISP may itself have been allocated the address block
200.23.16.0/20. The ISP, in turn could divide its address block into eight
equal-size smaller address blocks and give one of these address blocks out to
each of up to eight organizations that are supported by this ISP, as shown
below. (We have underlined the network part of these addresses for visual
convenience.)
ISP’s block 11001000 00010111 00010000 00000000 200.23.16.0/20
Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23
...
Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23
Let’s conclude our discussion of addressing by considering how an ISP itself
gets a block of addresses. IP addresses are managed under the authority of
The Internet Corporation for Assigned Names and Numbers (ICANN) [ICANN
2000] based on guidelines set forth in RFC 2050. The role of the nonprofit
ICANN organization [NTIA 1998] is to allocate not only IP addresses, but also
to manage the DNS root servers. It also has the very contentious job of
assigning domain names and resolving domain name disputes. The actual
assignment of addresses is now managed by regional Internet registries. As of
mid-2000, there are three such regional registries: the American Registry for
Internet Number (ARIN, which handles registrations for North and South
America, as well as parts of Africa. ARIN has recently taken over a number of
the functions previously provided by Network Solutions), the Reseaux IP
Europeans (RIPE, which covers Europe and nearby countries), and the Asia
Pacific Network Information Center (APNIC).
Before leaving our discussion of addressing, we want to mention that mobile
hosts may change the network to which they are attached, either dynamically
while in motion or on a longer time scale. Because routing is to a network first,
and then to a host within the network, this means that the mobile host’s IP
address must change when the host changes networks. Techniques for
handling such issues are now under development within the IETF and the
research community [RFC 2002; RFC 2131].

This example of an ISP that connects eight organizations into the larger Internet also nicely
illustrates how carefully allocated CIDRized addresses facilitate hierarchical routing. Suppose,
as shown in Figure 4.19, that the ISP (which we’ll call Fly-By-Night-ISP) advertises to the
outside world that it should be sent any datagrams whose first 20 address bits match
200.23.16.0/20. The rest of the world need not know that within the address block
200.23.16.0/20 there are in fact eight other organizations, each with their own networks. This
ability to use a single network prefix to advertise multiple networks is often referred to as
route aggregation or route summarization.

Figure 4.19: Hierarchical addressing and route aggregation

Route aggregation works extremely well when addresses are allocated in blocks to ISPs and then from ISPs to client
organizations. But what happens when addresses are not allocated in such a hierarchical manner? What would happen, for
example, if Organization 1 becomes discontent with the poor service provided by Fly-By-Night-ISP and decides to switch over
to a new ISP, say, ISPs-R-Us? As shown in Figure 4.19, ISPs-R-Us owns the address block 199.31.0.0/16, but Organization
2’s IP addresses are unfortunately outside of this address block. What should be done here? Certainly, Organization 1 could
renumber all of its routers and hosts to have addresses within the ISPs-R-Us address block. But this is a costly solution, and
Organization 1 might well choose to switch from ISPs-R-Us to yet another ISP in the future. The solution typically adopted is
for Organization 1 to keep its IP addresses in 200.23.18.0/23. In this case, as shown in Figure 4.20, Fly-By-Night-ISP
continues to advertise the address block 200.23.16.0/20 and ISPs-R-Us continues to advertise 199.31.0.0/16. However,
ISPs-R-Us now also advertises the block of addresses for Organization 1, 200.23.18.0/23. When other routers in the larger
Internet see the address blocks 200.23.16.0/20 (from Fly-By-Night-ISP) and 200.23.18.0/23 (from ISPs-R-Us) and want to
route to an address in the block 200.23.18.0/23, they will use a longest prefix matching rule, and route toward ISPs-R-Us,
as it advertises the longest (more specific) address prefix that matches the destination address.

Figure 4.20: ISPs-R-Us has a more specific route to Organization 1

4.4.2: Transporting a Datagram from Source to Destination:
Addressing and Routing
Now that we have defined interfaces and networks and have a basic
understanding of IP addressing, we take a step back and examine how hosts
and routers transport an IP datagram from source to destination. To this end,
a high-level view of an IP datagram is shown in Figure 4.21. Every IP
datagram has a source address field and a destination address field. The
source host fills a datagram’s source address field with its own 32-bit IP
address. It fills the destination address field with the 32-bit IP address of the
final destination host to which the datagram is being sent. The data field of the
datagram is typically filled with a TCP or UDP segment. We’ll discuss the
remaining IP datagram fields a little later in this section.

Figure 4.21: The key fields of an IP datagram
Once the source host creates the IP datagram, how does the network layer
transport the datagram from the source host to the destination host? The
answer to this question depends on whether the source and destination reside
on the same network (where the term "network" is used here in the precise,
addressing sense discussed in Section 4.4.1). Let’s consider this question in
the context of the network shown in Figure 4.22. First suppose host A wants to
send an IP datagram to host B, which resides on the same network,
223.1.1.0/24, as A. This is accomplished as follows. IP in host A first consults
its internal routing table, shown in Figure 4.22, and finds an entry,
223.1.1.0/24, whose network address matches the leading bits in the IP
address of host B. The routing table shows that the number of hops to network
223.1.1.0 is 1, indicating that B is on the very same network to which A itself is

attached. Host A thus knows that destination host B can be reached directly
via A’s outgoing interface, without the need for any intervening routers. Host A
then passes the IP datagram to the link-layer protocol for the interface, which
then has the responsibility of transporting the datagram to host B. (We’ll study
how the link layer transports a datagram between two interfaces on the same
network in Chapter 5.)

Figure 4.22: Routing table in host A
Let’s next consider the more interesting case that host A wants to send a
datagram to another host, say E, that is on a different network. Host A again
consults its routing table and finds an entry, 223.1.2.0/24, whose network
address matches the leading bits in the IP address of host E. Because the
number of hops to the destination is 2, host A knows that the destination is on
another network and thus an intervening router will necessarily be involved.
The routing table also tells host A that in order to get the datagram to host E,
host A should first send the datagram to IP address 223.1.1.4, the router
interface to which A’s own interface is directly connected. IP in host A then
passes the datagram down to the link layer and indicates to the link layer that
it should send the datagram to IP address 223.1.1.4. It’s important to note
here that although the datagram is being sent (via the link layer) to the router’s
interface, the destination address of the datagram remains that of the ultimate
destination (host E,) not that of the intermediate router interface.
The datagram is now in the router, and it is the job of the router to move the
datagram toward its ultimate destination. As shown in Figure 4.23, the router
consults it own routing table and finds an entry, 223.1.2.0/24, whose network

address matches the leading bits in the IP address of host E. The routing table
indicates that the datagram should be forwarded on router interface 223.1.2.9.
Since the number of hops to the destination is 1, the router knows that
destination host E is on the same network as its own interface, 223.1.2.9. The
router thus moves the datagram to this interface, which then transmits the
datagram to host E.

Figure 4.23: Routing table in router
In Figure 4.23, note that the entries in the "next router" column are all empty
since each of the networks (223.1.1.0/24., 223.1.2.0/24, and 223.1.3.0/24) is
directly attached to the router. In this case, there is no need to go through an
intermediate router to get to a destination host. However, if host A and host E
were separated by two routers, then within the routing table of the first router
along the path from A to B, the appropriate row would indicate 2 hops to the
destination and would specify the IP address of the second router along the
path. The first router would then forward the datagram to the second router,
using the link-layer protocol that connects the two routers. The second router
would then forward the datagram to the destination host, using the link-layer
protocol that connects the second router to the destination host.
You may recall from Chapter 1 that we said that routing a datagram in the
Internet is similar to a person driving a car and asking gas station attendants
at each intersection along the way how to get to the ultimate destination. It
should now be clear why this an appropriate analogy for routing in the
Internet. As a datagram travels from source to destination, it visits a series of
routers. At each router in the series, it stops and asks the router how to get to
its ultimate destination. Unless the router is on the same network as the
ultimate destination, the routing table essentially says to the datagram: "I don’t
know exactly how to get to the ultimate destination, but I do know that the

ultimate destination is in the direction of the link (analogous to a road)
connected to one of my interfaces." The datagram then sets out on the link
connected to this interface, arrives at a new router, and again asks for new
directions.
From this discussion we see that the routing tables in the routers play a
central role in routing datagrams through the Internet. But how are these
routing tables configured and maintained for large networks with multiple
paths between sources and destinations (such as in the Internet)? Clearly,
these routing tables should be configured so that the datagrams follow "good"
routes from source to destination. As you probably guessed, routing
algorithms--like those studied in Section 4.2--have the job of configuring and
maintaining the routing tables. We will discuss the Internet’s routing algorithms
in Section 4.5. But before moving on to routing algorithms, we cover three
more important topics for the IP protocol, namely, the datagram format,
datagram fragmentation, and the Internet Control Message Protocol (ICMP).

4.4.3: Datagram Format
The IPv4 datagram format is shown in Figure 4.24.

Figure 4.24: IPv4 datagram format
The key fields in the IPv4 datagram are the following:

• Version Number. These four bits specify the IP protocol version of the
datagram. By looking at the version number, the router can then
determine how to interpret the remainder of the IP datagram. Different
versions of IP use different datagram formats. The datagram format for
the current version of IP, IPv4, is shown in Figure 4.24. The datagram
format for the new version of IP (IPv6) is discussed in Section 4.7.

• Header Length. Because an IPv4 datagram can contain a variable
number of options (that are included in the IPv4 datagram header)

these four bits are needed to determine where in the IP datagram the
data actually begins. Most IP datagrams do not contain options so the
typical IP datagram has a 20-byte header.

• TOS. The type of service (TOS) bits were included in the IPv4 header
to allow different "types" of IP datagrams to be distinguished from each
other, presumably so that they could be handled differently in times of
overload. When the network is overloaded, for example, it would be
useful to be able to distinguish network-control datagrams (for example,
see the ICMP discussion in Section 4.4.5) from datagrams carrying
data (for example, HTTP messages). It would also be useful to
distinguish real-time datagrams (for example, used by an IP telephony
application) from non-real-time traffic (for example, FTP). More
recently, one major routing vendor (Cisco) interprets the first three TOS
bits as defining differential levels of service that can be provided by the
router. The specific level of service to be provided is a policy issue
determined by the router’s administrator. We’ll explore the topic of
differentiated service in detail in Chapter 6.

• Datagram Length. This is the total length of the IP datagram (header
plus data) measured in bytes. Since this field is 16 bits long, the
theoretical maximum size of the IP datagram is 65,535 bytes. However,
datagrams are rarely greater than 1,500 bytes and are often limited in
size to 576 bytes.

• Identifier, Flags, Fragmentation Offset. These three fields have to do
with so-called IP fragmentation, a topic we will consider in depth
shortly. Interestingly, the new version of IP, IPv6, does not allow for
fragmentation at routers.

• Time-to-live. The time-to-live (TTL) field is included to ensure that
datagrams do not circulate forever (due to, for example, a long-lived
router loop) in the network. This field is decremented by one each time
the datagram is processed by a router. If the TTL field reaches 0, the
datagram must be dropped.

• Protocol. This field is used only when an IP datagram reaches its final
destination. The value of this field indicates the transport-layer protocol
at the destination to which the data portion of this IP datagram will be
passed. For example, a value of 6 indicates that the data portion is
passed to TCP, while a value of 17 indicates that the data is passed to
UDP. For a listing of all possible numbers, see RFC 1700. Note that the
protocol number in the IP datagram has a role that is fully analogous to
the role of the port number field in the transport-layer segment. The
protocol number is the "glue" that binds the network and transport
layers together, whereas the port number is the "glue" that binds the
transport and application layers together. We will see in Chapter 5 that
the link-layer frame also has a special field that binds the link layer to

the network layer.

• Header Checksum. The header checksum aids a router in detecting bit
errors in a received IP datagram. The header checksum is computed
by treating each two bytes in the header as a number and summing
these numbers using 1’s complement arithmetic. As discussed in
Section 3.3, the 1’s complement of this sum, known as the Internet
checksum, is stored in the checksum field. A router computes the
Internet checksum for each received IP datagram and detects an error
condition if the checksum carried in the datagram does not equal the
computed checksum. Routers typically discard datagrams for which an
error has been detected. Note that the checksum must be recomputed
and restored at each router, as the TTL field, and possibly options
fields as well, may change. An interesting discussion of fast algorithms
for computing the Internet checksum is RFC 1071. A question often
asked at this point is, why does TCP/IP perform error checking at both
the transport and network layers? There are many reasons for this
repetition. First, routers are not required to perform error checking, so
the transport layer cannot count on the network layer to do the job.
Second, TCP/UDP and IP do not necessarily both have to belong to the
same protocol stack. TCP can, in principle, run over a different protocol
(for example, ATM) and IP can carry data that will not be passed to
TCP/UDP.

• Source and Destination IP Address. These fields carry the 32-bit IP
address of the source and final destination for this IP datagram. The
use and importance of the destination address is clear. Recall from
Section 3.2 that the source IP address (along with the source and
destination port numbers) is used at the destination host to direct the
application data to the proper socket.

• Options. The options fields allow an IP header to be extended. Header
options were meant to be used rarely--hence the decision to save
overhead by not including the information in options fields in every
datagram header. However, the mere existence of options does
complicate matters--since datagram headers can be of variable length,
one cannot determine a priori where the data field will start. Also, since
some datagrams may require options processing and others may not,
the amount of time needed to process an IP datagram at a router can
vary greatly. These considerations become particularly important for IP
processing in high-performance routers and hosts. For these reasons
and others, IP options were dropped in the IPv6 header.

• Data (payload). Finally, we come to the last, and most important field--
the raison d'être for the datagram in the first place! In most
circumstances, the data field of the IP datagram contains the transport-
layer segment (TCP or UDP) to be delivered to the destination.
However, the data field can carry other types of data, such as ICMP

messages (discussed in Section 4.4.5).

Note that an IP datagram has a total of 20 bytes of header (assuming it has no
options). If the datagram carries a TCP segment, then each (non-fragmented)
datagram carries a total of 40 bytes of header (20 IP header bytes and 20
TCP header bytes) along with the application-layer message.

4.4.4: IP Fragmentation and Reassembly
We will see in Chapter 5 that not all link-layer protocols can carry packets of
the same size. Some protocols can carry "big" packets, whereas other
protocols can only carry "little" packets. For example, Ethernet packets can
carry no more than 1,500 bytes of data, whereas packets for many wide-area
links can carry no more than 576 bytes. The maximum amount of data that a
link-layer packet can carry is called the MTU (maximum transfer unit).
Because each IP datagram is encapsulated within the link-layer packet for
transport from one router to the next router, the MTU of the link-layer protocol
places a hard limit on the length of an IP datagram. Having a hard limit on the
size of an IP datagram is not much of a problem. What is a problem is that
each of the links along the route between sender and destination can use
different link-layer protocols, and each of these protocols can have different
MTUs.
To understand the problem better, imagine that you are a router that
interconnects several links, each running different link-layer protocols with
different MTUs. Suppose you receive an IP datagram from one link, you check
your routing table to determine the outgoing link, and this outgoing link has an
MTU that is smaller than the length of the IP datagram. Time to panic--how
are you going to squeeze this oversized IP packet into the payload field of the
link-layer packet? The solution to this problem is to "fragment" the data in the
IP datagram among two or more smaller IP datagrams, and then send these
smaller datagrams over the outgoing link. Each of these smaller datagrams is
referred to as a fragment.
Fragments need to be reassembled before they reach the transport layer at
the destination. Indeed, both TCP and UDP are expecting to receive
complete, unfragmented segments from the network layer. The designers of
IPv4 felt that reassembling (and possibly refragmenting) datagrams in the
routers would introduce significant complication into the protocol and put a
damper on router performance. (If you were a router, would you want to be
reassembling fragments on top of everything else you have to do?) Sticking to
the principle of keeping the network layer simple, the designers of IPv4
decided to put the job of datagram reassembly in the end systems rather than
in network routers.
When a destination host receives a series of datagrams from the same
source, it needs to determine if any of these datagrams are fragments of some
original larger datagram. If it does determine that some datagrams are
fragments, it must further determine when it has received the last fragment
and how the fragments it has received should be pieced back together to form
the original datagram. To allow the destination host to perform these

reassembly tasks, the designers of IP (version 4) put identification, flag, and
fragmentation fields in the IP datagram. When a datagram is created, the
sending host stamps the datagram with an identification number as well as a
source and destination address. The sending host increments the
identification number for each datagram it sends. When a router needs to
fragment a datagram, each resulting datagram (that is, "fragment") is stamped
with the source address, destination address, and identification number of the
original datagram. When the destination receives a series of datagrams from
the same sending host, it can examine the identification numbers of the
datagrams to determine which of the datagrams are actually fragments of the
same, larger datagram. Because IP is an unreliable service, one or more of
the fragments may never arrive at the destination. For this reason, in order for
the destination host to be absolutely sure it has received the last fragment of
the original datagram, the last fragment has a flag bit set to 0 whereas all the
other fragments have this flag bit set to 1. Also, in order for the destination
host to determine if a fragment is missing (and also to be able to reassemble
the fragments in their proper order), the offset field is used to specify where
the fragment fits within the original IP datagram.
Figure 4.25 illustrates an example. A datagram of 4,000 bytes arrives at a
router, and must be forwarded to a link with an MTU of 1,500 bytes. This
implies that the 3,980 data bytes in the original datagram must be allocated to
three separate fragments (each of which are also IP datagrams). Suppose
that the original datagram is stamped with an identification number of 777.
The characteristics of the three fragments are shown in Table 4.3.

Figure 4.25: IP fragmentation and reassembly
Table 4.3: IP Fragments
Fragment
Bytes

ID
Offset
Flag

1st fragment
1480 bytes in the data field of the IP datagram
identification=777
offset=0 (meaning the data should be inserted beginning at byte 0)
flag=1 (meaning there is more)

2nd fragment
1480 byte information field
identification=777
offset=1,480 (meaning the data should be inserted beginning at byte 1,480)
flag=1 (meaning there is more)

3rd fragment
1020 byte (=3980 - 1480 - 1480) information field
identification=777
offset=2,960 (meaning the data should be inserted beginning at byte 2,960)
flag=0 (meaning this is the last fragment)

The payload of the datagram is only passed to the transport layer at the
destination once the IP layer has fully reconstructed the original IP datagram.
If one or more of the fragments does not arrive to the destination, the
datagram is discarded and not passed to the transport layer. But, as we
learned in the previous chapter, if TCP is being used at the transport layer,
then TCP will recover from this loss by having the source retransmit the data
in the original datagram.
Fragmentation and reassembly puts an additional burden on Internet routers
(the additional effort to create fragments out of a datagram) and on the
destination hosts (the additional effort to reassemble fragments). For this
reason it is desirable to keep fragmentation to a minimum. This is often done
by limiting the TCP and UDP segments to a relatively small size, so that
fragmentation of the corresponding datagrams is unlikely. Because all data-
link protocols supported by IP are supposed to have MTUs of at least 576
bytes, fragmentation can be entirely eliminated by using an MSS of 536 bytes,
20 bytes of TCP segment header and 20 bytes of IP datagram header. This is
why most TCP segments for bulk data transfer (such as with HTTP) are 512-
536 bytes long. (You may have noticed while surfing the Web that 500 or so
bytes of data often arrive at a time.)
Following this section, we provide a Java applet that generates fragments.
You provide the incoming datagram size, the MTU, and the incoming
datagram identification. It automatically generates the fragments for you. Click
here to open it in a new window, or select it from the menu bar at the left.

4.4.5: ICMP: Internet Control Message Protocol
We conclude this section with a discussion of the Internet Control Message
Protocol, ICMP, which is used by hosts, routers, and gateways to
communicate network layer information to each other. ICMP is specified in

RFC 792. The most typical use of ICMP is for error reporting. For example,
when running a Telnet, FTP, or HTTP session, you may have encountered an
error message such as "Destination network unreachable." This message had
its origins in ICMP. At some point, an IP router was unable to find a path to the
host specified in your Telnet, FTP, or HTTP application. That router created
and sent a type-3 ICMP message to your host indicating the error. Your host
received the ICMP message and returned the error code to the TCP code that
was attempting to connect to the remote host. TCP, in turn, returned the error
code to your application.
ICMP is often considered part of IP, but architecturally lies just above IP, as
ICMP messages are carried inside IP packets. That is, ICMP messages are
carried as IP payload, just as TCP or UDP segments are carried as IP
payload. Similarly, when a host receives an IP packet with ICMP specified as
the upper-layer protocol, it demultiplexes the packet to ICMP, just as it would
demultiplex a packet to TCP or UDP.
ICMP messages have a type and a code field, and also contain the first eight
bytes of the IP datagram that caused the ICMP message to be generated in
the first place (so that the sender can determine the packet that caused the
error). Selected ICMP messages are shown below in Figure 4.26. Note that
ICMP messages are used not only for signaling error conditions. The well-
known SLQJ program sends an ICMP type 8 code 0 message to the specified
host. The destination host, seeing the echo request, sends back a type 0 code
0 ICMP echo reply. Another interesting ICMP message is the source quench
message. This message is seldom used in practice. Its original purpose was
to perform congestion control--to allow a congested router to send an ICMP
source quench message to a host to force that host to reduce its transmission
rate. We have seen in Chapter 3 that TCP has its own congestion-control
mechanism that operates at the transport layer, without the use of network-
layer feedback such as the ICMP source quench message.

ICMP Type
Code

Description

0
0

echo reply (to ping)

3
0

destination network unreachable

3
1

destination host unreachable

3
2

destination protocol unreachable

3

3
destination port unreachable

3
6

destination network unknown

3
7

destination host unknown

4
0

source quench (congestion control)

8
0

echo request

9
0

router advertisement

10
0

router discovery

11
0

TTL expired

12
0

IP header bad

Figure 4.26: IP Fragmentation

In Chapter 1 we introduced the 7UDFHURXWH program, which enabled you to
trace the route from a few given hosts to any host in the world. Interestingly,
7UDFHURXWH also uses ICMP messages. To determine the names and addresses
of the routers between source and destination, 7UDFHURXWH in the source sends
a series of ordinary IP datagrams to the destination. The first of these
datagrams has a TTL of 1, the second of 2, the third of 3, etc. The source also
starts timers for each of the datagrams. When the nth datagram arrives at the
nth router, the nth router observes that the TTL of the datagram has just
expired. According to the rules of the IP protocol, the router discards the
datagram and sends an ICMP warning message to the source (type 11 code
0). This warning message includes the name of the router and its IP address.
When this ICMP message arrives at the source, the source obtains the round-
trip time from the timer and the name and IP address of the nth router from the
ICMP message. Now that you understand how 7UDFHURXWH works, you may
want to go back and play with it some more.

Online Book

4.5: Routing in the Internet
Having studied Internet addressing and the IP protocol, we now turn our
attention to the Internet’s routing protocols; their job is to determine the path
taken by a datagram between source and destination. We’ll see that the
Internet’s routing protocols embody many of the principles we learned
earlier in this chapter. The link state and distance vector approaches
studied in Section 4.2, and the notion of an autonomous system (AS)
considered in Section 4.3 are all central to how routing is done in today’s
Internet.

Informally, we know that the Internet is a loose confederation of
interconnected "networks" of local, regional, national, and international
ISPs. We’ll now need to make this understanding a bit more precise, given
that we’ve seen that the notion of "network" has a very precise meaning in
terms of IP addressing. Recall from Section 4.3 that a collection of routers
that are under the same administrative and technical control, and that all
run the same routing protocol amongst themselves, is known as an
autonomous system (AS). Each AS, in turn, is typically comprised of
multiple networks (where we use the term "network" in the precise,
addressing sense of Section 4.4). The most important distinction to be
made among Internet routing protocols is whether they are used to route
datagrams within a single AS, or among multiple ASs. We consider the first
class of protocols, known as intra-autonomous system routing protocols, in
Section 4.5.1. We consider the second class of protocols, inter-autonomous
system routing protocols, in Section 4.5.2.

4.5.1: Intra-Autonomous-System Routing in the Internet
An intra-AS routing protocol is used to configure and maintain the routing
tables within an autonomous system (AS). Intra-AS routing protocols are
also known as interior gateway protocols. Historically, three routing
protocols have been used extensively for routing within an autonomous
system in the Internet: RIP (the Routing Information Protocol), OSPF (Open
Shortest Path First), and EIGRP (Cisco’s propriety Enhanced Interior
Gateway Routing Protocol).
RIP: Routing Information Protocol

The Routing Information Protocol (RIP) was one of the earliest intra-AS
Internet routing protocols and is still in widespread use today. It traces its
origins and its name to the Xerox Network Systems (XNS) architecture. The
widespread deployment of RIP was due in great part to its inclusion in 1982
of the Berkeley Software Distribution (BSD) version of UNIX supporting
TCP/IP. RIP version 1 is defined in RFC 1058, with a backwards
compatible version 2 defined in RFC 1723.
RIP is a distance vector protocol that operates in a manner very close to
the idealized protocol we examined in Section 4.2.3. The version of RIP
specified in RFC 1058 uses hop count as a cost metric; that is, each link
has a cost of 1. The maximum cost of a path is limited to 15, thus limiting
the use of RIP to autonomous systems that are less than 15 hops in
diameter. Recall that in distance vector protocols, neighboring routers
exchange routing information with each other. In RIP, routing tables are
exchanged between neighbors approximately every 30 seconds using a so-
called RIP response message. The response message sent by a router or
host contains the sender’s routing table entries for up to 25 destination
networks within the AS. Response messages are also known as RIP
advertisements.
Let’s take a look at a simple example of how RIP advertisements work.
Consider the portion of an AS shown in Figure 4.27. In this figure, lines
connecting the routers denote networks. Only selected routers (A,B,C, and
D) and networks (w,x,y,z) are labeled for visual convenience. Dotted lines
indicate that the AS continues on, and thus this autonomous system has
many more routers and links than are shown in the Figure 4.27.

Figure 4.27: A portion of an autonomous system
Now suppose that the routing table for router D is as shown in Figure 4.28.
Note that the routing table has three columns. The first column is for the
destination network, the second column indicates the identity of the next
router along the shortest path to the destination network, and the third
column indicates the number of hops (that is, the number of networks that
have to be traversed, including the destination network) to get to the
destination network along the shortest path. For this example, the table
indicates that to send a datagram from router D to destination network w,
the datagram should be first sent to neighboring router A; the table also
indicates that destination network w is two hops away along the shortest
path. Similarly, the table indicates that network z is seven hops away via
router B. In principle, a routing table will have one row for each network in
the AS, although RIP version 2 allows routes to networks to be aggregated

using the route aggregation techniques similar to those we examined in
Section 4.4.1. The routing table will also have at least one row for routing to
networks that are outside of the AS. The table in Figure 4.28, and the
subsequent tables to come, are thus only partially complete.

Destination network
Next Router

Number of Hops to Destination

W
A
2

Y
B
2

Z
B
7

X
--
1

....

....

....

Figure 4.28: Routing table in router D before receiving advertisement from router A
Now suppose that 30 seconds later, router D receives from router A the
advertisement shown in Figure 4.29. Note that this advertisement is nothing
other but the routing table in router A! This routing table says, in particular,
that network z is only 4 hops away from router A. Router D, upon receiving
this advertisement, merges the advertisement (Figure 4.29) with the "old"
routing table (Figure 4.28). In particular, router D learns that there is now a
path through router A to network z that is shorter than the path through
router B.

Destination network
Next Router

Number of Hops to Destination

Z
C
4

W
--
1

X
--
1

....

....

....

Figure 4.29: Advertisement from router A
Thus, router D updates its routing table to account for the "shorter" shortest
path, as shown in Figure 4.30. How is it, you might ask, that the shortest
path to network z has become shorter? Possibly, the decentralized distance
vector algorithm was still in the process of converging (see Section 4.2), or
perhaps new links and/or routers were added to the AS, thus changing the
shortest paths in the network.

Destination network
Next Router

Number of Hops to Destination

W
A
2

Y
B
2

Z
A
5

....

....

....

Figure 4.30: Routing table in router D after receiving advertisement from router A
Let’s next consider a few of the implementation aspects of RIP. Recall that
RIP routers exchange advertisements approximately every 30 seconds. If a
router does not hear from its neighbor at least once every 180 seconds,
that neighbor is considered to be no longer reachable; that is, either the
neighbor has died or the connecting link has gone down. When this
happens, RIP modifies its local routing table and then propagates this
information by sending advertisements to its neighboring routers (the ones
that are still reachable). A router can also request information about its
neighbor’s cost to a given destination using RIP’s request message.
Routers send RIP request and response messages to each other over UDP
using port number 520. The UDP packet is carried between routers in a
standard IP packet. The fact that RIP uses a transport-layer protocol (UDP)
on top of a network-layer protocol (IP) to implement network-layer
functionality (a routing algorithm) may seem rather convoluted (it is!).
Looking a little deeper at how RIP is implemented will clear this up.
Figure 4.31 sketches how RIP is typically implemented in a UNIX system,

for example, a UNIX workstation serving as a router. A process called
routed (pronounced "route dee") executes the RIP protocol, that is,
maintains the routing table and exchanges messages with routed
processes running in neighboring routers. Because RIP is implemented as
an application-layer process (albeit a very special one that is able to
manipulate the routing tables within the UNIX kernel), it can send and
receive messages over a standard socket and use a standard transport
protocol. Thus, RIP is an application-layer protocol (see Chapter 2) running
over UDP.

Figure 4.31: Implementation of RIP as the routed daemon
Finally, let us take a quick look at a RIP routing table. The RIP routing table
in Figure 4.32 is taken from a UNIX router JLURIOHH�HXUHFRP�IU��If you give a
QHWVWDW��UQ command on a UNIX system, you can view the routing table for
that host or router. Performing a QHWVWDW command on JLURIOHH�HXUHFRP�IU
yields the routing table in Figure 4.32.
'HVWLQDWLRQ���*DWHZD\���������)ODJV��5HI���8VH�����,QWHUIDFH

���

������������������������������8+��������������������R�

������������������������������8��������������������ID�

������������������������������8��������������������OH�

������������������������������8��������������������TDD�

������������������������������8��������������������OH�

GHIDXOW�����������������������8*�����������������

Figure 4.32: RIP routing table from JLURIOHH�HXUHFRP�IU

The router JLURIOHH is connected to three networks. The second, third, and
fourth rows in the table tell us that these three networks are attached to
JLURIOHH via JLURIOHH’s network interfaces ID�� OH� and TDD�� These giroflee
interfaces have IP addresses 192.168.2.5, 193.55.114.6, and 192.168.3.5,
respectively. To transmit a packet to any host belonging to one of these
three networks, JLURIOHH will simply send the outgoing IP datagram over the
appropriate interface. Of particular interest to us is the default route. Any
IP datagram that is not destined for one of the networks explicitly listed in

the routing table will be forwarded to the router with IP address
193.55.114.129; this router is reached by sending the datagram over the
default network interface. The first entry in the routing table is the so-called
loopback interface. When IP sends a datagram to the loopback interface,
the packet is simply returned back to IP; this is useful for debugging
purposes. The address 224.0.0.0 is a special multicast (Class D) IP
address. We will examine IP multicast in Section 4.8.
OSPF: Open Shortest Path First
Like RIP, Open Shortest Path First (OSPF) routing is used for intra-AS
routing. The "Open" in OSPF indicates that the routing protocol
specification is publicly available (for example, as opposed to Cisco’s
EIGRP protocol). The most recent version of OSPF, version 2, is defined in
RFC 2178--a public document.
OSPF was conceived as the successor to RIP and as such has a number
of advanced features. At its heart, however, OSPF is a link-state protocol
that uses flooding of link-state information and a Dijkstra least-cost-path
algorithm. With OSPF, a router constructs a complete topological map (that
is, a directed graph) of the entire autonomous system. The router then
locally runs Dijkstra’s shortest-path algorithm to determine a shortest-path
tree to all networks with itself as the root node. The router’s routing table is
then obtained from this shortest-path tree. Individual link costs are
configured by the network administrator.
Let us now contrast and compare the advertisements sent by RIP and
OSPF. With OSPF, a router periodically broadcasts routing information to
all other routers in the autonomous system, not just to its neighboring
routers. For an excellent treatment of link state broadcast algorithms, see
[Perlman 1999]. This routing information sent by a router has one entry for
each of the router’s neighbors; the entry gives the distance (that is, link
state) from the router to the neighbor. On the other hand, a RIP
advertisement sent by a router contains information about all the networks
in the autonomous system, although this information is only sent to its
neighboring routers. In a sense, the advertising techniques of RIP and
OSPF are duals of each other.
Some of the advances embodied in OSPF include the following:

• Security. All exchanges between OSPF routers (for example, link-
state updates) are authenticated. This means that only trusted
routers can participate in the OSPF protocol within a domain, thus
preventing malicious intruders (or networking students taking their
newfound knowledge out for a joyride) from injecting incorrect
information into router tables.

• Multiple same-cost paths. When multiple paths to a destination have
the same cost, OSPF allows multiple paths to be used (that is, a
single path need not be chosen for carrying all traffic when multiple
equal-cost paths exist).

• Different cost metrics for different TOS traffic. OSPF allows each link

to have different costs for different TOS (type of service) IP packets.
For example, a high-bandwidth satellite link might be configured to
have a low cost (and hence be attractive) for non-time-critical traffic,
but a very high cost metric for delay-sensitive traffic. In essence,
OSPF sees different network topologies for different classes of traffic
and hence can compute different routes for each type of traffic.

• Integrated support for unicast and multicast routing. Multicast OSPF
[RFC 1584] provides simple extensions to OSPF to provide for
multicast routing (a topic we cover in more depth in Section 4.8).
MOSPF uses the existing OSPF link database and adds a new type
of link-state advertisement to the existing OSPF link-state broadcast
mechanism.

• Support for hierarchy within a single routing domain. Perhaps the
most significant advance in OSPF is the ability to hierarchically
structure an autonomous system. Section 4.3 has already looked at
the many advantages of hierarchical routing structures. We cover the
implementation of OSPF hierarchical routing in the remainder of this
section.

As OSPF autonomous system can be configured into "areas." Each area
runs its own OSPF link-state routing algorithm, with each router in an area
broadcasting its link state to all other routers in that area. The internal
details of an area thus remain invisible to all routers outside the area. Intra-
area routing involves only those routers within the same area.
Within each area, one or more area border routers are responsible for
routing packets outside the area. Exactly one OSPF area in the AS is
configured to be the backbone area. The primary role of the backbone
area is to route traffic between the other areas in the AS. The backbone
always contains all area border routers in the AS and may contain
nonborder routers as well. Inter-area routing within the AS requires that the
packet be first routed to an area border router (intra-area routing), then
routed through the backbone to the area border router that is in the
destination area, and then routed to the final destination.
A diagram of a hierarchically structured OSPF network is shown in Figure
4.33. We can identify four types of OSPF routers in Figure 4.33:

Figure 4.33: Hierarchically structured OSPF AS with four areas

• Internal routers. These routers are in nonbackbone areas and only
perform intra-AS routing.

• Area border routers. These routers belong to both an area and the
backbone.

• Backbone routers (nonborder routers). These routers perform routing
within the backbone but themselves are not area border routers.
Within a nonbackbone area, internal routers learn of the existence of
routes to other areas from information (essentially a link-state
advertisement, but advertising the cost of a route to another area,
rather than a link cost) broadcast within the area by its backbone
routers.

• Boundary routers. A boundary router exchanges routing information
with routers belonging to other autonomous systems. This router
might, for example, use BGP to perform inter-AS routing. It is
through such a boundary router that other routers learn about paths
to external networks.

EIGRP: Enhanced Internal Gateway Routing Protocol
The Enhanced Interior Gateway Routing Protocol (EIGRP) [Cisco IGRP
1997] is a proprietary routing algorithm developed by Cisco Systems, Inc.,
as a successor for RIP. EIGRP is a distance vector protocol. Several cost
metrics (including delay, bandwidth, reliability, and load) can be used in
making routing decisions, with the weight given to each of the metrics being
determined by the network administrator. This ability to use administrator-
defined costs in making route selections is an important difference from
RIP; we will see shortly that so-called policy-based inter-AS Internet routing
protocols such as BGP also allow administratively defined routing decisions
to be made. Other important differences from RIP include the use of a
reliable transport protocol to communicate routing information, the use of
update messages that are sent only when routing table costs change

(rather than periodically), route aggregation, and the use of a distributed
diffusing update routing algorithm [Garcia-Luna 1993] to quickly compute
loop-free routing paths.

4.5.2: Inter-Autonomous System Routing
The Border Gateway Protocol version 4, specified in RFC 1771 (see also
RFC 1772; RFC 1773), is the de facto standard interdomain routing
protocol in today’s Internet. It is commonly referred to as BGP4 or simply as
BGP. As an inter-autonomous system routing protocol, it provides for
routing between autonomous systems (that is, administrative domains).
While BGP has the same general flavor as the distance vector protocol that
we studied in Section 4.2, it is more appropriately characterized as a path
vector protocol. This is because BGP in a router does not propagate cost
information (for example, number of hops to a destination), but instead
propagates path information, such as the sequence of ASs on a route to a
destination AS. We will examine the path information in detail shortly. We
note though that although this information includes the names of the ASs
on a route to the destination, it does not contain cost information. Nor does
BGP specify how a specific route to a particular destination should be
chosen among the routes that have been advertised. That decision is a
policy decision that is left up to the domain’s administrator. Each domain
can thus choose its routes according to whatever criteria it chooses (and
need not even inform its neighbors of its policy!)--allowing a significant
degree of autonomy in route selection. In essence, BGP provides the
mechanisms to distribute path information among the interconnected
autonomous systems, but leaves the policy for making the actual route
selections up to the network administrator.
Let’s begin with a grossly simplified description of how BGP works. This will
help us see the forest through the trees. As discussed in Section 4.3, as far
as BGP is concerned, the whole Internet is a graph of ASs, and each AS is
identified by an AS number. At any instant of time, a given AS X may, or
may not, know of a path of ASs that lead to a given destination AS Z. As an
example, suppose X has a path XY1Y2Y3Z from itself to Z listed in its BGP
table. This means that X knows that it can send datagrams to Z through the
ASs X, Y1, Y2, and Y3, Z. When X sends updates to its BGP neighbors (that
is, the neighbors in the graph), X actually sends the entire path information,
XY1Y2Y3Z, to its neighbors (as well as other paths to other ASs). If, for
example, W is a neighbor of X, and W receives an advertisement that
includes the path XY1Y2Y3Z, then W can list a new entry WXY1Y2Y3Z in its
BGP table. However, we should keep in mind that W may decide to not
create this new entry for one of several reasons. For example, W would not
create this entry if W is equal to (say) Y2, thereby creating an undesirable
loop in the routing; or if W already has a path to Z in its tables, and this
existing path is preferable (with respect to the metric used by BGP at W) to
WXY1Y2Y3Z; or, finally, if W has a policy decision to not forward datagrams
through (say) Y2.
In BGP jargon, the immediate neighbors in the graph of ASs are called

peers. BGP information is propagated through the network by exchanges
of BGP mes -sages between peers. The BGP protocol defines the four
types of messages: 23(1��83'$7(��127,),&$7,21, and .((3$/,9(�

• OPEN. BGP peers communicate using the TCP protocol and port
number 179. TCP thus provides for reliable and congestion-
controlled message exchange between peers. In contrast, recall that
we earlier saw that two RIP peers, for example, the routed’s in
Figure 4.31 communicate via unreliable UDP. When a BGP gateway
wants to first establish contact with a BGP peer (for example, after
the gateway itself or a connecting link has just been booted), an
23(1 message is sent to the peer. The 23(1 message allows a BGP
gateway to identify and authenticate itself, and provide timer
information. If the OPEN is acceptable to the peer, it will send back a
.((3$/,9(message.

• UPDATE. A BGP gateway uses the 83'$7(message to advertise a
path to a given destination (for example, XY1Y2Y3Z) to the BGP peer.
The 83'$7(message can also be used to withdraw routes that had
previously been advertised (that is, to tell a peer that a route that it
had previously advertised is no longer a valid route).

• KEEPALIVE. This BGP message is used to let a peer know that the
sender is alive but that the sender doesn’t have other information to
send. It also serves as an acknowledgment to a received 23(1
message.

• NOTIFICATION. This BGP message is used to inform a peer that an
error has been detected (for example, in a previously transmitted
BGP message) or that the sender is about to close the BGP session.

Recall from our discussion above that BGP provides mechanisms for
distributing path information but does not mandate policies for selecting a
route from those available. Within this framework, it is thus possible for an
AS such as Hatfield.net to implement a policy such as "traffic from my AS
should not cross the AS McCoy.net," since it knows the identities of all AS’s
on the path. (The Hatfields and the McCoys are two famous feuding
families in the U.S.) But what about a policy that would prevent the McCoys
from sending traffic through the Hatfield’s network? The only means for an
AS to control the traffic it passes through its AS (known as "transit" traffic--
traffic that neither originates in, nor is destined for, the network, but instead
is "just passing through") is by controlling the paths that it advertises. For
example, if the McCoys are immediate neighbors of the Hatfields, the
Hatfields could simply not advertise any routes to the McCoys that contain
the Hatfield network. But restricting transit traffic by controlling an AS’s
route advertisement can only be partially effective. For example, if the
Joneses are between the Hatfields and the McCoys, and the Hatfields
advertise routes to the Joneses that pass through the Hatfields, then the

Hatfields cannot prevent (using BGP mechanisms) the Joneses from
advertising these routes to the McCoys.
Very often an AS will have multiple gateway routers that provide
connections to other ASs. Even though BGP is an inter-AS protocol, it can
still be used inside an AS as a pipe to exchange BGP updates among
gateway routers belonging to the same AS. BGP connections inside an AS
are called Internal BGP (IBGP), whereas BGP connections between ASs
are called External BGP (EBGP).
As noted above, BGP is becoming the de facto standard for inter-AS
routing for the public Internet. BGP is used, for example, at the major
network access points (NAPs) where major Internet carriers connect to
each other and exchange traffic. To see the contents of today’s (less than
four hours out of date) BGP routing table (large!) at one of the major NAPs
in the U.S. (which include Chicago and San Francisco), see [IPMA 2000].
This completes our brief introduction of BGP. Although BGP is complex, it
plays a central role in the Internet. We encourage readers to see the
references [Stewart 1999; Labovitz 1997; Halabi 1997; Huitema 1995] to
learn more about BGP.

Why are there Different Inter-AS and Intra-AS Routing Protocols?
Having now studied the details of specific inter-AS and intra-AS routing protocols deployed in today’s Internet, let’s
conclude by considering perhaps the most fundamental question we could ask about these protocols in the first place
(hopefully, you have been wondering this all along, and have not lost the forest for the trees!):

Why are different inter-AS and intra-AS routing protocols used?

The answer to this question gets at the heart of the differences between the goals of routing within an AS and among
ASs:

• Policy. Among ASs, policy issues dominate. It may well be important that traffic originating in a given AS
specifically not be able to pass through another specific AS. Similarly, a given AS may well want to control
what transit traffic it carries between other ASs. We have seen that BGP specifically carries path attributes and
provides for controlled distribution of routing information so that such policy-based routing decisions can be
made. Within an AS, everything is nominally under the same administrative control, and thus policy issues
play a much less important role in choosing routes within the AS.

• Scale. The ability of a routing algorithm and its data structures to scale to handle routing to/among large
numbers of networks is a critical issue in inter-AS routing. Within an AS, scalability is less of a concern. For
one thing, if a single administrative domain becomes too large, it is always possible to divide it into two ASs
and perform inter-AS routing between the two new ASs. (Recall that OSPF allows such a hierarchy to be built
by splitting an AS into "areas.")

• Performance. Because inter-AS routing is so policy-oriented, the quality (for example, performance) of the
routes used is often of secondary concern (that is, a longer or more costly route that satisfies certain policy
criteria may well be taken over a route that is shorter but does not meet that criteria). Indeed, we saw that
among ASs, there is not even the notion of preference or costs associated with routes. Within a single AS,
however, such policy concerns can be ignored, allowing routing to focus more on the level of performance
realized on a route.

Online Book

4.6: What’s Inside a Router?
Our study of the network layer so far has focused on network-layer service
models, the routing algorithms that control the routes taken by packets
through the network, and the protocols that embody these routing
algorithms. These topics, however, are only part (albeit important ones) of
what goes on in the network layer. We have yet to consider the switching
function of a router--the actual transfer of datagrams from a router’s
incoming links to the appropriate outgoing links. Studying just the control
and service aspects of the network layer is like studying a company and
considering only its management (which controls the company but typically
performs very little of the actual "grunt" work that makes a company run!)
and its public relations ("Our product will provide this wonderful service to
you!"). To fully appreciate what really goes on within a company, one needs
to consider the workers. In the network layer, the real work (that is, the
reason the network layer exists in the first place) is the forwarding of
datagrams. A key component in this forwarding process is the transfer of a
datagram from a router’s incoming link to an outgoing link. In this section,
we study how this is accomplished. Our coverage here is necessarily brief,
as an entire course would be needed to cover router design in depth.
Consequently, we’ll make a special effort in this section to provide pointers
to material that covers this topic in more depth.

A high-level view of a generic router architecture is shown in Figure 4.34.
Four components of a router can be identified:

Figure 4.34: Router architecture

• Input ports. The input port performs several functions. It performs the
physical layer functionality (the leftmost box of the input port and the

rightmost box of the output port in Figure 4.34) of terminating an
incoming physical link to a router. It performs the data-link layer
functionality (shown in the middle boxes in the input and output
ports) needed to interoperate with the data link layer functionality
(see Chapter 5) on the other side of the incoming link. It also
performs a lookup and forwarding function (the rightmost box of the
input port and the leftmost box of the output port) so that a packet
forwarded into the switching fabric of the router emerges at the
appropriate output port. Control packets (for example, packets
carrying routing protocol information for RIP, OSPF or BGP) are
forwarded from the input port to the routing processor. In practice,
multiple ports are often gathered together on a single line card
within a router.

• Switching fabric. The switching fabric connects the router’s input
ports to its output ports. This switching fabric is completely contained
within the router--a network inside of a network router!

• Output ports. An output port stores the packets that have been
forwarded to it through the switching fabric, and then transmits the
packets on the outgoing link. The output port thus performs the
reverse data link and physical layer functionality as the input port.

• Routing processor. The routing processor executes the routing
protocols (for example, the protocols we studied in Section 4.5),
maintains the routing tables, and performs network management
functions (see Chapter 8), within the router. Since we cover these
topics elsewhere in this book, we defer discussion of these topics to
elsewhere.

In the following, we’ll take a look at input ports, the switching fabric, and
output ports in more detail. [Turner 1988; Giacopelli 1990; McKeown
1997a; Partridge 1998] provide a discussion of some specific router
architectures. [McKeown 1997b] provides a particularly readable overview
of modern router architectures, using the Cisco 12000 router as an
example.

4.6.1: Input Ports
A more detailed view of input port functionality is given in Figure 4.35. As
discussed above, the input port’s line termination function and data link
processing implement the physical and data link layers associated with an
individual input link to the router. The lookup/forwarding function of the input
port is central to the switching function of the router. In many routers, it is
here that the router determines the output port to which an arriving packet
will be forwarded via the switching fabric. The choice of the output port is
made using the information contained in the routing table. Although the
routing table is computed by the routing processor, a shadow copy of the
routing table is typically stored at each input port and updated, as needed,

by the routing processor. With local copies of the routing table, the
switching decision can be made locally, at each input port, without invoking
the centralized routing processor. Such decen tralized switching avoids
creating a forwarding bottle neck at a single point within the router.

Figure 4.35: Input port processing
In routers with limited processing capabilities at the input port, the input port
may simply forward the packet to the centralized routing processor, which
will then perform the routing table lookup and forward the packet to the
appropriate output port. This is the approach taken when a workstation or
server serves as a router; here, the routing processor is really just the
workstation’s CPU and the input port is really just a network interface card
(for example, an Ethernet card).
Given the existence of a routing table, the routing table lookup is concep
tually simple--we just search through the routing table, looking for a
destination entry that best matches the destination network address of the
packet, or a default route if the destination entry is missing. (Recall from our
discussion in Section 4.4.1 that the best match is the routing table entry
with the longest network prefix that matches the packet’s des tination
address.) In practice, however, life is not so simple. Perhaps the most
important complicating factor is that backbone routers must operate at high
speeds, being capable of performing millions of lookups per second.
Indeed, it is desirable for the input port processing to be able to proceed at
line speed, that is, that a lookup can be done in less than the amount of
time needed to receive a packet at the input port. In this case, input
processing of a received packet can be completed before the next receive
operation is complete. To get an idea of the performance requirements for a
lookup, consider that a so-called OC48 link runs at 2.5 Gbps. With 256-
byte-long packets, this implies a lookup speed of approximately a million
lookups per second.
Given the need to operate at today’s high-link speeds, a linear search
through a large routing table is impossible. A more reasonable technique is
to store the routing table entries in a tree data structure. Each level in the
tree can be thought of as corresponding to a bit in the destination address.
To look up an address, one simply starts at the root node of the tree. If the
first address bit is a zero, then the left subtree will contain the routing table
entry for a destination address; otherwise it will be in the right subtree. The
appropriate subtree is then traversed using the remaining address bits--if
the next address bit is a zero, the left subtree of the initial subtree is
chosen; otherwise, the right subtree of the initial subtree is chosen. In this

manner, one can look up the routing table entry in N steps, where N is the
number of bits in the address. (The reader will note that this is essentially a
binary search through an address space of size 2N.) Refinements of this
approach are discussed in [Doeringer 1996]. An improvement over binary
search techniques is described in [Srinivasan 1999].
But even with N = 32 (for example, a 32-bit IP address) steps, the lookup
speed via binary search is not fast enough for today’s backbone routing
requirements. For example, assuming a memory access at each step, less
than a million address lookups/sec could be performed with 40 ns memory
access times. Several techniques have thus been explored to increase
lookup speeds. Content addressable memories (CAMs) allow a 32-bit IP
address to be presented to the CAM, which then returns the content of the
routing table entry for that address in essentially constant time. The Cisco
8500 series router [Cisco 8500 1999] has a 64K CAM for each input port.
Another technique for speeding lookup is to keep recently accessed routing
table entries in a cache [Feldmeier 1988]. Here, the potential concern is the
size of the cache. Measurements in [Thomson 1997] suggest that even for
an OC-3 speed link, approximately 256,000 source-destination pairs might
be seen in one minute in a backbone router. Most recently, even faster data
structures, which allow routing table entries to be located in log(N) steps
[Waldvogel 1997], or which compress routing tables in novel ways [Brodnik
1997], have been proposed. A hardware-based approach to lookup that is
optimized for the common case that the address being looked up has 24 or
fewer significant bits is discussed in [Gupta 1998].
Once the output port for a packet has been determined via the lookup, the
packet can be forwarded into the switching fabric. However, as we’ll see
below, a packet may be temporarily blocked from entering the switching
fabric (due to the fact that packets from other input ports are currently using
the fabric). A blocked packet must thus be queued at the input port and
then scheduled to cross the switching fabric at a later point in time. We’ll
take a closer look at the blocking, queuing, and scheduling of packets (at
both input ports and output ports) within a router in Section 4.6.4.

Cisco Systems: Dominating the Network Core
As of this writing (January 2000), Cisco Systems employs 23,000 people and has a market
capitalization of $360 billion. Cisco currently dominates the Internet router market, and in
recent years has quickly moved into the Internet telephony market, where it will compete
head-to-head with the telephone equipment companies, such as Lucent, Alcatel, Nothern
Telecom, and Siemens. How did this gorilla of a networking company come to be? It all
started in 1984 (only 16 years ago) in the living room of a house in Silicon Valley
apartment.

Len Bosak and his wife Sandy Lerner were working at Stanford University when they had the idea to build and sell
Internet routers to research and academic institutions. Sandy Lerner came up with the name "Cisco" (an abbreviation for
San Francisco), and she also designed the company’s bridge logo. Corporate headquarters was originally in their living
room, and they originally financed the project with credit cards and moonlighting consulting jobs. At the end of 1986,
Cisco’s revenues reached $250,000 a month--not bad for a business financed on credit cards and without any venture

capital. At the end of 1987, Cisco finally succeeded in attracting venture capital--$2 million dollars from Sequoia Capital in
exchange for one-third of the company. Over the next few years, Cisco continued to grow and grab more and more
market share. At the same time, relations between Bosak/Lerner and Cisco management strained. Cisco went public in
1990, but in the same year Cisco fired Lerner, and Bosak resigned.

4.6.2: Switching Fabrics
The switching fabric is at the very heart of a router. It is through this
switching fabric that the packets are actually moved from an input port to an
output port. Switching can be accomplished in a number of ways, as
indicated in Figure 4.36.

Figure 4.36: Three switching techniques

• Switching via memory. The simplest, earliest routers were often
traditional computers, with switching between input and output port,
being done under direct control of the CPU (routing processor). Input
and output ports functioned as traditional I/O devices in a traditional
operating system. An input port with an arriving packet first signaled
the routing processor via an interrupt. The packet was then copied
from the input port into processor memory. The routing processor
then extracted the destination address from the header, looked up
the appropriate output port in the routing table, and copied the
packet to the output port’s buffers. Note that if the memory
bandwidth is such that B packets/sec can be written into, or read
from, memory, then the overall switch throughput (the total rate at
which packets are transferred from input ports to output ports) must
be less than B/2.

Many modern routers also switch via memory. A major difference
from early routers, however, is that the lookup of the destination

address and the storing (switching) of the packet into the appropriate
memory location is performed by processors on the input line cards.
In some ways, routers that switch via memory look very much like
shared memory multiprocessors, with the processors on a line card
storing packets into the memory of the appropriate output port.
Cisco’s Catalyst 8500 series switches [Cisco 8500 1999] and Bay
Networks Accelar 1200 Series routers switch packets via a shared
memory.

• Switching via a bus. In this approach, the input ports transfer a
packet directly to the output port over a shared bus, without
intervention by the routing processor (Note that when switching via
memory, the packet must also cross the system bus going to/from
memory). Although the routing processor is not involved in the bus
transfer, since the bus is shared, only one packet at a time can be
transferred over the bus. A packet arriving at an input port and
finding the bus busy with the transfer of another packet is blocked
from passing through the switching fabric and is queued at the input
port. Because every packet must cross the single bus, the switching
bandwidth of the router is limited to the bus speed.

Given that bus bandwidths of over a gigabit per second are possible
in today’s technology, switching via a bus is often sufficient for
routers that operate in access and enterprise networks (for example,
local area and corporate networks). Bus-based switching has been
adopted in a number of current router products, including the Cisco
1900 [Cisco Switches 1999], which switches packets over a 1 Gbps
Packet Exchange Bus. 3Com’s CoreBuilder 5000 systems [Kapoor
1997] interconnects ports that reside on different switch modules
over its PacketChannel data bus, with a bandwidth of 2 Gbps.

• Switching via an interconnection network. One way to overcome the
bandwidth limitation of a single, shared bus is to use a more
sophisticated interconnection network, such as those that have been
used in the past to interconnect processors in a multiprocessor
computer architecture. A crossbar switch is an interconnection
network consisting of 2N busses that connect N input ports to N
output ports, as shown in Figure 4.36. A packet arriving at an input
port travels along the horizontal bus attached to the input port until it
intersects with the vertical bus leading to the desired output port. If
the vertical bus leading to the output port is free, the packet is
transferred to the output port. If the vertical bus is being used to
transfer a packet from another input port to this same output port, the
arriving packet is blocked and must be queued at the input port.

Delta and Omega switching fabrics have also been proposed as an
interconnection network between input and output ports. See [Tobagi
1990] for a survey of switch architectures. Cisco 12000 Family

switches [Cisco 12000 1998] use an interconnection network,
providing up to 60 Gbps through the switching fabric. One current
trend in interconnection network design [Keshav 1998] is to fragment
a variable length IP datagram into fixed-length cells, and then tag
and switch the fixed-length cells through the interconnection
network. The cells are then reassembled into the original datagram
at the output port. The fixed-length cell and internal tag can
considerably simplify and speed up the switching of the packet
through the interconnection network.

4.6.3: Output Ports
Output port processing, shown in Figure 4.37, takes the datagrams that
have been stored in the output port’s memory and transmits them over the
outgoing link. The data-link protocol processing and line termination are the
send-side link- and physical-layer functionality that interact with the input
port on the other end of the outgoing link, as discussed above in Section
4.6.1. The queuing and buffer management functionality are needed when
the switch fabric delivers packets to the output port at a rate that exceeds
the output link rate; we’ll cover output port queuing below.

Figure 4.37: Output port processing

4.6.4: Where Does Queuing Occur?
If we look at the input and output port functionality and the configurations
shown in Figure 4.36, it is evident that packet queues can form at both the
input ports and the output ports. It is important to consider these queues in
a bit more detail, since as these queues grow large, the router’s buffer
space will eventually be exhausted and packet loss will occur. Recall that
in our earlier discussions, we said rather vaguely that packets were lost
"within the network" or "dropped at a router." It is here, at these queues
within a router, where such packets are dropped and lost. The actual
location of packet loss (either at the input port queues or the output port
queues) will depend on the traffic load, the relative speed of the switching
fabric and the line speed, as discussed below.
Suppose that the input line speeds and output line speeds are all identical,
and that there are n input ports and n output ports. If the switching fabric
speed is at least n times as fast as the input line speed, then no queuing
can occur at the input ports. This is because even in the worst case that all
n input lines are receiving packets, the switch will be able to transfer n
packets from input port to output port in the time it takes each of the n input

ports to (simultaneously) receive a single packet. But what can happen at
the output ports? Let us suppose still that the switching fabric is at least n
times as fast as the line speeds. In the worst case, the packets arriving at
each of the n input ports will be destined to the same output port. In this
case, in the time it takes to receive (or send) a single packet, n packets will
arrive at this output port. Since the output port can only transmit a single
packet in a unit of time (the packet transmission time), the n arriving
packets will have to queue (wait) for transmission over the outgoing link. n
more packets can then possibly arrive in the time it takes to transmit just
one of the n packets that had previously been queued. And so on.
Eventually, the number of queued packets can grow large enough to
exhaust the memory space at the output port, in which case packets are
dropped.
Output port queuing is illustrated in Figure 4.38. At time t, a packet has
arrived at each of the incoming input ports, each destined for the uppermost
outgoing port. Assuming identical line speeds and a switch operating at
three times the line speed, one time unit later (that is, in the time needed to
receive or send a packet), all three original packets have been transferred
to the outgoing port and are queued awaiting transmission. In the next time
unit, one of these three packets will have been transmitted over the
outgoing link. In our example, two new packets have arrived at the
incoming side of the switch; one of these packets is destined for this
uppermost output port.

Figure 4.38: Ourput port queuing
A consequence of output port queuing is that a packet scheduler at the
output port must choose one packet among those queued for transmission.
This selection might be done on a simple basis such as first-come-first-
served (FCFS) scheduling, or a more sophisticated scheduling discipline
such as weighted fair queuing (WFQ), which shares the outgoing link "fairly"
among the different end-to-end connections that have packets queued for
transmission. Packet scheduling plays a crucial role in providing quality-of-
service guarantees. We will cover this topic extensively in Section 6.6. A
discussion of output port packet scheduling disciplines used in today’s
routers is [Cisco Queue 1995].
If the switch fabric is not fast enough (relative to the input line speeds) to
transfer all arriving packets through the fabric without delay, then packet
queuing will also occur at the input ports, as packets must join input port
queues to wait their turn to be transferred through the switching fabric to the

output port. To illustrate an important consequence of this queuing,
consider a crossbar switching fabric and suppose that (1) all link speeds
are identical, (2) that one packet can be transferred from any one input port
to a given output port in the same amount of time it takes for a packet to be
received on an input link, and (3) packets are moved from a given input
queue to their desired output queue in a FCFS manner. Multiple packets
can be transferred in parallel, as long as their output ports are different.
However, if two packets at the front of two input queues are destined to the
same output queue, then one of the packets will be blocked and must wait
at the input queue--the switching fabric can only transfer one packet to a
given output port at a time.
Figure 4.39 shows an example where two packets (shaded black) at the
front of their input queues are destined for the same upper-right output port.
Suppose that the switch fabric chooses to transfer the packet from the front
of the upper-left queue. In this case, the black packet in the lower-left
queue must wait. But not only must this black packet wait, but so too must
the white packet that is queued behind that packet in the lower-left queue,
even though there is no contention for the middle-right output port (the
destination for the white packet). This phenomenon is known as head-of-
the-line (HOL) blocking in an input-queued switch--a queued packet in an
input queue must wait for transfer through the fabric (even though its output
port is free) because it is blocked by another packet at the head of the line.
[Karol 1987] shows that due to HOL blocking, the input queue will grow to
unbounded length (informally, this is equivalent to saying that significant
packet loss will occur) under certain assumptions as soon as the packet
arrival rate on the input links reaches only 58 percent of their capacity. A
number of solutions to HOL blocking are discussed in [McKeown 1997b].

Figure 4.39: HOL blocking at an input queued switch

Online Book

4.7: IPv6

In the early 1990s, the Internet Engineering Task Force began an effort to
develop a successor to the IPv4 protocol. A prime motivation for this effort
was the realization that the 32-bit IP address space was beginning to be
used up, with new networks and IP nodes being attached to the Internet
(and being allocated unique IP addresses) at a breathtaking rate. To
respond to this need for a large IP address space, a new IP protocol, IPv6,
was developed. The designers of IPv6 also took this opportunity to tweak
and augment other aspects of IPv4, based on the accumulated operational
experience with IPv4.

The point in time when IPv4 addresses would have been completely
allocated (and hence no new networks could have attached to the Internet)
was the subject of considerable debate. Based on current trends in address
allocation at the time, the estimates of the two leaders of the IETF’s
Address Lifetime Expectations working group were that addresses would
become exhausted in 2008 and 2018, respectively [Solensky 1996]. In
1996, the American Registry for Internet Numbers (ARIN) reported that all
of the IPv4 class A addresses had been assigned, 62 percent of the class B
addresses had been assigned, and 37 percent of the class C addresses
had been assigned [ARIN 1996]. Although these estimates and numbers
suggested that a considerable amount of time might be left until the IPv4
address space became exhausted, it was realized that considerable time
would be needed to deploy a new technology on such an extensive scale,
and so the "Next Generation IP" (IPng) effort [Bradner 1996; RFC 1752],
was begun. An excellent online source of information about IPv6 is The IP
Next Generation Homepage [Hinden 1999]. An excellent book is also
available on the subject [Huitema 1997].

4.7.1: IPv6 Packet Format
The format of the IPv6 packet is shown in Figure 4.40. The most important
changes introduced in IPv6 are evident in the packet format:

Figure 4.40: IPv6 packet format

• Expanded addressing capabilities. IPv6 increases the size of the IP

address from 32 to 128 bits. This ensures that the world won’t run
out of IP addresses. Now, every grain of sand on the planet can be
IP-addressable. In addition to unicast and multicast addresses, a
new type of address, called an anycast address, has also been
introduced, which allows a packet addressed to an anycast address
to be delivered to any one of a group of hosts. (This feature could be
used, for example, to send an HTTP GET to the nearest of a number
of mirror sites that contain a given document.)

• A streamlined 40-byte header. As discussed below, a number of
IPv4 fields have been dropped or made optional. The resulting 40-
byte fixed-length header allows for faster processing of the IP
datagram. A new encoding of options allows for more flexible options
processing.

• Flow labeling and priority. IPv6 has an elusive definition of a "flow."
RFC 1752 and RFC 2460 state that this allows "labeling of packets
belonging to particular flows for which the sender requests special
handling, such as a non-default quality of service or real-time
service." For example, audio and video transmission might likely be
treated as a flow. On the other hand, the more traditional
applications, such as file transfer and e-mail might not be treated as
flows. It is possible that the traffic carried by a high-priority user (for
example, someone paying for better service for their traffic) might
also be treated as a flow. What is clear, however, is that the
designers of IPv6 foresee the eventual need to be able to
differentiate among the "flows," even if the exact meaning of a flow
has not yet been determined. The IPv6 header also has eight-bit
Traffic Class field. This field, like the TOS field in IPv4, can be used
to give priority to certain packets within a flow, or it can be used to
give priority to datagrams from certain applications (for example,
ICMP packets) over datagrams from other applications (for example,
network news).

The IPv6 datagram format is shown in Figure 4.40. As noted above, a
comparison of Figure 4.40 with Figure 4.24 reveals the simpler, more
streamlined structure of the IPv6 datagram. The following fields are defined
in IPv6:

• Version. This four-bit field identifies the IP version number. Not
surprisingly, IPv6 carries a value of "6" in this field. Note that putting
a "4" in this field does not create a valid IPv4 datagram. (If it did, life
would be a lot simpler--see the discussion below regarding the
transition from IPv4 to IPv6.)

• Traffic class. This eight-bit field is similar in spirit to the ToS field we
saw in IP version 4.

• Flow label. As discussed above, this 20-bit field is used to identify a

"flow" of datagrams.

• Payload length. This 16-bit value is treated as an unsigned integer
giving the number of bytes in the IPv6 datagram following the fixed-
length, 40-byte packet header.

• Next header. This field identifies the protocol to which the contents
(data field) of this datagram will be delivered (for example, to TCP or
UDP). The field uses the same values as the Protocol field in the
IPv4 header.

• Hop limit. The contents of this field are decremented by one by each
router that forwards the datagram. If the hop limit count reaches
zero, the datagram is discarded.

• Source and destination address. The various formats of the IPv6
128-bit address are described in RFC 2373.

• Data. This is the payload portion of the IPv6 datagram. When the
datagram reaches its destination, the payload will be removed from
the IP datagram and passed on to the protocol specified in the next
header field.

The discussion above identified the purpose of the fields that are included
in the IPv6 datagram. Comparing the IPv6 datagram format in Figure 4.40
with the IPv4 datagram format that we saw earlier in Figure 4.24, we notice
that several fields appearing in the IPv4 datagram are no longer present in
the IPv6 datagram:

• Fragmentation/Reassembly. IPv6 does not allow for fragmentation
and reassembly at intermediate routers; these operations can be
performed only by the source and destination. If an IPv6 datagram
received by a router is too large to be forwarded over the outgoing
link, the router simply drops the datagram and sends a "Packet Too
Big" ICMP error message (see below) back to the sender. The
sender can then resend the data, using a smaller IP datagram size.
Fragmentation and reassembly is a time-consuming operation;
removing this functionality from the routers and placing it squarely in
the end systems considerably speeds up IP forwarding within the
network.

• Checksum. Because the transport layer (for example, TCP and
UDP) and data link (for example, Ethernet) protocols in the Internet
layers perform checksumming, the designers of IP probably felt that
this functionality was sufficiently redundant in the network layer that
it could be removed. Once again, fast processing of IP packets was
a central concern. Recall from our discussion of IPv4 in Section
4.4.1, that since the IPv4 header contains a TTL field (similar to the
hop limit field in IPv6), the IPv4 header checksum needed to be

recomputed at every router. As with fragmentation and reassembly,
this too was a costly operation in IPv4.

• Options. An options field is no longer a part of the standard IP
header. However, it has not gone away. Instead, the options field is
one of the possible "next headers" pointed to from within the IPv6
header. That is, just as TCP or UDP protocol headers can be the
next header within an IP packet, so too can an options field. The
removal of the options field results in a fixed length, 40-byte IP
header.

A New ICMP for IPv6
Recall from our discussion in Section 4.4, that the ICMP protocol is used by
IP nodes to report error conditions and provide limited information (for
example, the echo reply to a ping message) to an end system. A new
version of ICMP has been defined for IPv6 in RFC 2463. In addition to
reorganizing the existing ICMP type and code definitions, ICMPv6 also
added new types and codes required by the new IPv6 functionality. These
include the "Packet Too Big" type, and an "unrecognized IPv6 options" error
code. In addition, ICMPv6 subsumes the functionality of the Internet Group
Management Protocol (IGMP) that we will study in Section 4.8. IGMP,
which is used to manage a host’s joining and leaving of so-called multicast
groups, was previously a separate protocol from ICMP in IPv4.

4.7.2: Transitioning from IPv4 to IPv6
Now that we have seen the technical details of IPv6, let us consider a very
practical matter: how will the public Internet, which is based on IPv4, be
transitioned to IPv6? The problem is that while new IPv6-capable systems
can be made "backwards compatible," that is, can send, route, and receive
IPv4 datagrams, already deployed IPv4-capable systems are not capable of
handling IPv6 datagrams. Several options are possible.
One option would be to declare a "flag day"--a given time and date when all
Internet machines would be turned off and upgraded from IPv4 to IPv6. The
last major technology transition (from using NCP to using TCP for reliable
transport service) occurred almost 20 years ago. Even back then [RFC
801], when the Internet was tiny and still being administered by a small
number of "wizards," it was realized that such a flag day was not possible.
A flag day involving hundreds of millions of machines and millions of
network administrators and users is even more unthinkable today. RFC
1933 describes two approaches (which can be used either alone or
together) for gradually integrating IPv6 hosts and routers into an IPv4 world
(with the long-term goal, of course, of having all IPv4 nodes eventually
transition to IPv6).
Probably the most straightforward way to introduce IPv6-capable nodes is a
dual-stack approach, where IPv6 nodes also have a complete IPv4
implementation as well. Such a node, referred to as an IPv6/IPv4 node in
RFC 1933, has the ability to send and receive both IPv4 and IPv6
datagrams. When interoperating with an IPv4 node, an IPv6/IPv4 node can

use IPv4 datagrams; when interoperating with an IPv6 node, it can speak
IPv6. IPv6/IPv4 nodes must have both IPv6 and IPv4 addresses. They
must furthermore be able to determine whether another node is IPv6-
capable or IPv4-only. This problem can be solved using the DNS (see
Chapter 2), which can return an IPv6 address if the node name being
resolved is IPv6-capable, or otherwise return an IPv4 address. Of course, if
the node issuing the DNS request is only IPv4-capable, the DNS returns
only an IPv4 address.
In the dual-stack approach, if either the sender or the receiver is only IPv4-
capable, an IPv4 datagram must be used. As a result, it is possible that two
IPv6-capable nodes can end up, in essence, sending IPv4 datagrams to
each other. This is illustrated in Figure 4.41. Suppose node A is IPv6
capable and wants to send an IP datagram to node F, which is also IPv6-
capable. Nodes A and B can exchange an IPv6 packet. However, node B
must create an IPv4 datagram to send to C. Certainly, the data field of the
IPv6 packet can be copied into the data field of the IPv4 datagram and
appropriate address mapping can be done. However, in performing the
conversion from IPv6 to IPv4, there will be IPv6-specific fields in the IPv6
datagram (for example, the flow identifier field) that have no counterpart in
IPv4. The information in these fields will be lost. Thus, even though E and F
can exchange IPv6 datagrams, the arriving IPv4 datagrams at E from D do
not contain all of the fields that were in the original IPv6 datagram sent from
A.

Figure 4.41: A dual-stack approach
An alternative to the dual-stack approach, also discussed in RFC 1933, is
known as tunneling. Tunneling can solve the problem noted above,
allowing, for example, E to receive the IPv6 datagram originated by A. The
basic idea behind tunneling is the following. Suppose two IPv6 nodes (for
example, B and E in Figure 4.41) want to interoperate using IPv6
datagrams, but are connected to each other by intervening IPv4 routers.
We refer to the intervening set of IPv4 routers between two IPv6 routers as
a tunnel, as illustrated in Figure 4.42. With tunneling, the IPv6 node on the
sending side of the tunnel (for example, B) takes the entire IPv6 datagram
and puts it in the data (payload) field of an IPv4 datagram. This IPv4
datagram is then addressed to the IPv6 node on the receiving side of the

tunnel (for example, E) and sent to the first node in the tunnel (for example,
C). The intervening IPv4 routers in the tunnel route this IPv4 datagram
among themselves, just as they would any other datagram, blissfully
unaware that the IPv4 datagram itself contains a complete IPv6 datagram.
The IPv6 node on the receiving side of the tunnel eventually receives the
IPv4 datagram (it is the destination of the IPv4 datagram!), determines that
the IPv4 datagram contains an IPv6 datagram, extracts the IPv6 datagram,
and then routes the IPv6 datagram exactly as it would if it had received the
IPv6 datagram from a directly connected IPv6 neighbor.

Figure 4.42: Tunneling
We end this section by mentioning that there is currently some doubt about
whether IPv6 will make significant inroads into the Internet in the near
future (2000-2002) or even ever at all [Garber 1999]. Indeed, at the time of
this writing, a number of North American ISPs have said they don’t plan to
buy IPv6-enabled networking equipment. These ISPs say that there is little
customer demand for IPv6’s capabilities when IPv4, with some patches
(such as CIDR, see Section 4.4.1, and network address translator [RFC
1631] boxes), is working well enough. On the other hand, there appears to
be more interest in IPv6 in Europe and Asia.
One important lesson that we can learn from the IPv6 experience is that it is
enormously difficult to change network-layer protocols. Since the early
1990s, numerous new network-layer protocols have been trumpeted as the
next major revolution for the Internet, but most of these protocols have had
limited penetration to date. These protocols include IPv6, multicast
protocols (Section 4.8), and resource reservation protocols (Section 6.9).

Indeed, introducing new protocols into the network layer is like replacing the
foundation of a house--it is difficult to do without tearing the whole house
down or at least temporarily relocated the house’s residents. On the other
hand, the Internet has witnessed rapid deployment of new protocols at the
application layer. The classic example, of course, is HTTP and the Web;
other examples include audio and video streaming and chat. Introducing
new application layer protocols is like adding a new layer of paint to a
house--it is relatively easy to do, and if you choose an attractive color,
others in the neighborhood will copy you. In summary, in the future we can
expect to see changes in the Internet’s network layer, but these changes
will likely occur on a time scale that is much slower than the changes that
will occur at the application layer.

Online Book

4.8: Multicast Routing
The transport- and network-layer protocols we have studied so far provide
for the delivery of packets from a single source to a single destination.
Protocols involving just one sender and one receiver are often referred to
as unicast protocols.

A number of emerging network applications require the delivery of packets
from one or more senders to a group of receivers. These applications
include bulk data transfer (for example, the transfer of a software upgrade
from the software developer to users needing the upgrade), streaming
continuous media (for example, the transfer of the audio, video, and text of
a live lecture to a set of distributed lecture participants), shared data
applications (for example, a whiteboard or teleconferencing application that
is shared among many distributed participants), data feeds (for example,
stock quotes), WWW cache updating, and interactive gaming (for example,
distributed interactive virtual environments or multiplayer games such as
Quake). For each of these applications, an extremely useful abstraction is
the notion of a multicast: the sending of a packet from one sender to
multiple receivers with a single send operation.

In this section we consider the network-layer aspects of multicast. We
continue our primary focus on the Internet here, as multicast is much more
mature (although it is still undergoing significant development and
evolution) in the Internet than in ATM networks. We will see that as in the
unicast case, routing algorithms again play a central role in the network
layer. We will also see, however, that unlike the unicast case, Internet
multicast is not a connectionless service--state information for a multicast

connection must be established and maintained in routers that handle
multicast packets sent among hosts in a so-called multicast group. This, in
turn, will require a combination of signaling and routing protocols in order to
set up, maintain, and tear down connection state in the routers.

4.8.1: Introduction: The Internet Multicast Abstraction and
Multicast Groups
From a networking standpoint, the multicast abstraction--a single send
operation that results in copies of the sent data being delivered to many
receivers--can be implemented in many ways. One possibility is for the
sender to use a separate unicast transport connection to each of the
receivers. An application-level data unit that is passed to the transport layer
is then duplicated at the sender and transmitted over each of the individual
connections. This approach implements a one-sender-to-many-receivers
multicast abstraction using an underlying unicast network layer [Talpade
1995; Chu 2000]. It requires no explicit multicast support from the network
layer to implement the multicast abstraction; multicast is emulated using
multiple point-to-point unicast connections. This is shown in the left of
Figure 4.43, with network routers shaded in grey to indicate that they are
not actively involved in supporting the multicast. Here, the multicast sender
uses three separate unicast connections to reach the three receivers.

Figure 4.43: Two approaches toward implementing the multicast abstraction
A second alternative is to provide explicit multicast support at the network
layer. In this latter approach, a single datagram is transmitted from the
sending host. This datagram (or a copy of this datagram) is then replicated
at a network router whenever it must be forwarded on multiple outgoing
links in order to reach the receivers. The right side of Figure 4.43 illustrates
this second approach, with certain routers shaded in color to indicate that
they are actively involved in supporting the multicast. Here, a single
datagram is transmitted by the sender. That datagram is then duplicated by
the router within the network; one copy is forwarded to the uppermost
receiver and another copy is forwarded toward the rightmost receivers. At
the rightmost router, the multicast datagram is broadcast over the Ethernet
that connects the two receivers to the rightmost router. Clearly, this second
approach toward multicast makes more efficient use of network bandwidth
in that only a single copy of a datagram will ever traverse a link. On the
other hand, considerable network layer support is needed to implement a
multicast-aware network layer. For the remainder of this section we will

focus on a multicast-aware network layer, as this approach is implemented
in the Internet and poses a number of interesting challenges.
With multicast communication, we are immediately faced with two problems
that are much more complicated than in the case of unicast--how to identify
the receivers of a multicast datagram and how to address a datagram sent
to these receivers.
In the case of unicast communication, the IP address of the receiver
(destination) is carried in each IP unicast datagram and identifies the single
recipient. But in the case of multicast, we now have multiple receivers.
Does it make sense for each multicast datagram to carry the IP addresses
of all of the multiple recipients? While this approach might be workable with
a small number of recipients, it would not scale well to the case of hundreds
or thousands of receivers; the amount of addressing information in the
datagram would swamp the amount of data actually carried in the
datagram’s payload field. Explicit identification of the receivers by the
sender also requires that the sender know the identities and addresses of
all of the receivers. We will see shortly that there are cases where this
requirement might be undesirable.
For these reasons, in the Internet architecture (and the ATM architecture as
well), a multicast datagram is addressed using address indirection. That
is, a single identifier is used for the group of receivers, and a copy of the
datagram that is addressed to the group using this single identifier is
delivered to all of the multicast receivers associated with that group. In the
Internet, the single identifier that represents a group of receivers is a Class
D multicast address, as we saw earlier in Section 4.4. The group of
receivers associated with a class D address is referred to as a multicast
group. The multicast group abstraction is illustrated in Figure 4.44. Here,
four hosts (shown with shaded color screens) are associated with the
multicast group address of 226.17.30.197 and will receive all datagrams
addressed to that multicast address. The difficulty that we must still address
is the fact that each host has a unique IP unicast address that is completely
independent of the address of the multicast group in which it is
participating.

Figure 4.44: The multicast group: a datagram addressed to the group is delivered to all

members of the multicast group
While the multicast group abstraction is simple, it raises a host (pun
intended) of questions. How does a group get started and how does it
terminate? How is the group address chosen? How are new hosts added to
the group (either as senders or receivers)? Can anyone join a group (and
send to, or receive from, that group) or is group membership restricted and
if so, by whom? Do group members know the identities of the other group
members as part of the network-layer protocol? How do the network routers
interoperate with each other to deliver a multicast datagram to all group
members? For the Internet, the answers to all of these questions involve
the Internet Group Management Protocol [RFC 2236]. So, let us next
consider the IGMP protocol and then return to these broader questions.

4.8.2: The IGMP Protocol
The Internet Group Management Protocol, IGMP version 2 [RFC 2236],
operates between a host and its directly attached router (informally, think of
the directly attached router as the "first-hop" router that a host would see on
a path to any other host outside its own local network, or the "last-hop"
router on any path to that host), as shown in Figure 4.45. Figure 4.45
shows three first-hop multicast routers, each connected to its attached
hosts via one outgoing local interface. This local interface is attached to a
LAN in this example, and while each LAN has multiple attached hosts, at
most a few of these hosts will typically belong to a given multicast group at
any given time.

Figure 4.45: The two components of network-layer multicast: IGMP and multicast routing
protocols

IGMP provides the means for a host to inform its attached router that an
application running on the host wants to join a specific multicast group.
Given that the scope of IGMP interaction is limited to a host and its
attached router, another protocol is clearly required to coordinate the
multicast routers (including the attached routers) throughout the Internet, so
that multicast datagrams are routed to their final destinations. This latter
functionalit is accomplished by the network-layer multicast routing
algorithms such as PIM, DVMRP and MOSFP. We will study multicast
routing algorithms in Sections 4.8.3 and 4.8.4. Network-layer multicast in
the Internet thus consists of two complementary components: IGMP and

multicast routing protocols.
Although IGMP is referred to as a "group membership protocol," the term is
a bit misleading since IGMP operates locally, between a host and an
attached router. Despite its name, IGMP is not a protocol that operates
among all the hosts that have joined a multicast group, hosts that may be
spread around the world. Indeed, there is no network-layer multicast group
membership protocol that operates among all the Internet hosts in a group.
There is no network-layer protocol, for example, that allows a host to
determine the identities of all of the other hosts, network-wide, that have
joined the multicast group. (See the homework problems for a further
exploration of the consequences of this design choice.)
IGMP version 2 [RFC 2236] has only three message types, as shown in
Table 4.4. A general membership_query message is sent by a router to all
hosts on an attached interface (for example, to all hosts on a local area
network) to determine the set of all multicast groups that have been joined
by the hosts on that interface. A router can also determine if a specific
multicast group has been joined by hosts on an attached interface using a
specific membership_query. The specific query includes the multicast
address of the group being queried in the multicast group address field of
the IGMP membership_query message, as shown in Figure 4.47.
Table 4.4: IGMP v2 Message types
IGMP Message Types
Sent by
Purpose

Membership query: general
router
Query multicast groups joined by attached hosts

Membership query: specific
router
Query if specific multicast group joined by attached hosts

Membership report
host
Report host wants to join or is joined to given multicast group

Leave group
host
Report leaving given multicast group

Hosts respond to a membership_query message with an IGMP
membership_report message, as illustrated in Figure 4.46.
Membership_report messages can also be generated by a host when an
application first joins a multicast group without waiting for a
membership_query message from the router. Membership_report
messages are received by the router, as well as all hosts on the attached
interface (for example, in the case of a LAN). Each membership_report
contains the multicast address of a single group that the responding host
has joined. Note that an attached router doesn’t really care which hosts

have joined a given multicast group or even how many hosts on the same
LAN have joined the same group. (In either case, the router’s work is the
same--it must run a multicast routing protocol together with other routers to
ensure that it receives the multicast datagrams for the appropriate multicast
groups.) Since a router really only cares about whether one or more of its
attached hosts belong to a given multicast group, it would ideally like to
hear from only one of the attached hosts that belongs to each group (why
waste the effort to receive identical responses from multiple hosts?). IGMP
thus provides an explicit mechanism aimed at decreasing the number of
membership_report messages generated when multiple attached hosts
belong to the same multicast group.

Figure 4.46: IGMP member query and membership report
Specifically, each membership_query message sent by a router also
includes a "maximum response time" value field, as shown in Figure 4.47.
After receiving a membership_query message and before sending a
membership_report message for a given multicast group, a host waits a
random amount of time between zero and the maximum response time
value. If the host observes a membership_report message from some other
attached host for that given multicast group, it suppresses (discards) its
own pending membership_report message, since the host now knows that
the attached router already knows that one or more hosts are joined to that
multicast group. This form of feedback suppression is thus a performance
optimization--it avoids the transmission of unnecessary membership_report
messages. Similar feedback suppression mechanisms have been used in a
number of Internet protocols, including reliable multicast transport protocols
[Floyd 1997].

Figure 4.47: IGMP message format
The final type of IGMP message is the leave_group message. Interestingly,
this message is optional! But if it is optional, how does a router detect that
there are no longer any hosts on an attached interface that are joined to a
given multicast group? The answer to this question lies in the use of the
IGMP membership_query message. The router infers that no hosts are
joined to a given multicast group when no host responds to a

membership_query message with the given group address. This is an
example of what is sometimes called soft state in an Internet protocol. In a
soft-state protocol, the state (in this case of IGMP, the fact that there are
hosts joined to a given multicast group) is removed via a timeout event (in
this case, via a periodic membership_query message from the router) if it is
not explicitly refreshed (in this case, by a membership_report message
from an attached host). It has been argued that soft-state protocols result in
simpler control than hard-state protocols, which not only require state to be
explicitly added and removed, but also require mechanisms to recover from
the situation where the entity responsible for removing state has terminated
prematurely or failed [Sharma 1997]. An excellent discussion of soft state
can be found in [Raman 1999].
The IGMP message format is summarized in Figure 4.47. Like ICMP, IGMP
messages are carried (encapsulated) within an IP datagram, with an IP
protocol number of 2.
Having examined the protocol for joining and leaving multicast groups, we
are now in a better position to reflect on the current Internet multicast
service model, which is based on the work of Steve Deering [RFC 1112;
Deering 1990]. In this multicast service model, any host can join a multicast
group at the network layer. A host simply issues a membership_report
IGMP message to its attached router. That router, working in concert with
other Internet routers, will soon begin delivering multicast datagrams to the
host. Joining a multicast group is thus receiver-driven. A sender need not
be concerned with explicitly adding receivers to the multicast group but
neither can it control who joins the group and therefore who receives
datagrams sent to that group. Similarly, there is no control over who sends
to the multicast group. Datagrams sent by different hosts can be arbitrarily
interleaved at the various receivers (with different interleavings possible at
different receivers). A malicious sender can inject datagrams into the
multicast group datagram flow. Even with benign senders, since there is no
network-layer coordination of the use of multicast addresses, it is possible
that two different multicast groups will choose to use the same multicast
address. From a multicast application viewpoint, this will result in
interleaved extraneous multicast traffic.
These problems may seem to be insurmountable drawbacks for developing
multicast applications. All is not lost, however. Although the network layer
does not provide for filtering, ordering, or privacy of multicast datagrams,
these mechanisms can all be implemented at the application layer. There is
also ongoing work aimed at adding some of this functionality into the
network layer [Cain 1999]. In many ways, the current Internet multicast
service model reflects the same philosophy as the Internet unicast service
model--an extremely simple network layer with additional functionality being
provided in the upper-layer protocols in the hosts at the edges of the
network. This philosophy has been unquestionably successful for the
unicast case; whether the minimalist network layer philosophy will be
equally successful for the multicast service model still remains an open

question. An interesting discussion of an alternate multicast service model
is [Holbrook 1999].

4.8.3: Multicast Routing: The General Case
In the previous section we have seen how the IGMP protocol operates at
the edge of the network between a router and its attached hosts, allowing a
router to determine what multicast group traffic it needs to receive for
forwarding to its attached hosts. We can now focus our attention on just the
multicast routers: how should they route packets amongst themselves in
order to ensure that each router receives the multicast group traffic that it
needs?
Figure 4.48 illustrates the setting for the multicast routing problem. Let us
consider a single multicast group and assume that any router that has an
attached host that has joined this group may either send or receive traffic
addressed to this group. In Figure 4.48, hosts joined to the multicast group
are shaded in color; their immediately attached router is also shaded in
color. As shown in Figure 4.48, among the population of multicast routers,
only a subset of these routers (those with attached hosts that are joined to
the multicast group) actually need to receive the multicast traffic. In Figure
4.48, only routers A, B, E and F need to receive the multicast traffic. Since
none of the attached hosts to router D are joined to the multicast group and
since router C has no attached hosts, neither C nor D need to receive the
multicast group traffic.

Figure 4.48: Multicast hosts, their attached routers, and other routers
The goal of multicast routing then is to find a tree of links that connects all
of the routers that have attached hosts belonging to the multicast group.
Multicast packets will then be routed along this tree from the sender to all of
the hosts belonging to the multicast tree. Of course, the tree may contain
routers that do not have attached hosts belonging to the multicast group
(for example, in Figure 4.48, it is impossible to connect routers A, B, E, and
F in a tree without involving either routers C and/or D).
In practice, two approaches have been adopted for determining the
multicast routing tree. The two approaches differ according to whether a
single tree is used to distribute the traffic for all senders in the group, or
whether a source-specific routing tree is constructed for each individual
sender:

• Group-shared tree. In the group-shared tree approach, only a single

routing tree is constructed for the entire multicast group. For
example, the single multicast tree shown with thicker shaded lines in
the left of Figure 4.49, connects routers A, B, C, E, and F. (Following
our conventions from Figure 4.48, router C is not shaded. Although it
participates in the multicast tree, it has no attached hosts that are
members of the multicast group). Multicast packets will flow only
over those links shaded. Note that the links are bi-directional, since
packets can flow in either direction on a link.

Figure 4.49: A single, shared tree (left), and two source-based trees (right)

• Source-based trees. In a source-based approach, an individual
routing tree is constructed for each sender in the multicast group. In
a multicast group with N hosts, N different routing trees will be
constructed for that single multicast group. Packets will be routed to
multicast group members in a source-specific manner. In the right of
Figure 4.49, two source-specific multicast trees are shown, one
rooted at A and another rooted at B. Note that not only are there
different links than in the group-shared tree case (for example, the
link from BC is used in the source-specific tree routed at B, but not in
the group-shared tree in the left of Figure 4.49), but that some links
may also be used only in a single direction.

Multicast Routing Using a Group-Shared Tree
Let us first consider the case where all packets sent to a multicast group
are to be routed along the same single multicast tree, regardless of the
sender. In this case, the multicast routing problem appears quite simple:
find a tree within the network that connects all routers having an attached
host belonging to that multicast group. In Figure 4.49 (left), the tree
composed of thick links is one such tree. Note that the tree contains routers
that have attached hosts belonging to the multicast group (that is, routers A,
B, E and F) as well as routers that have no attached hosts belonging to the
multicast group. Ideally, one might also want the tree to have minimal
"cost." If we assign a "cost" to each link (as we did for unicast routing in
Section 4.2) then an optimal multicast routing tree is one having the
smallest sum of the tree link costs. For the link costs given in Figure 4.50,
the optimum multicast tree (with a cost of 7) is shown with thick lines.

Figure 4.50: A minimum-cost multicast tree
The problem of finding a minimum cost tree is known as the Steiner tree
problem [Hakimi 1971]. Solving this problem has been shown to be NP-
complete [Garey 1978], but the approximation algorithm in [Kou 1981] has
been proven to be within a constant of the optimal solution. Other studies
have shown that, in general, approximation algorithms for the Steiner tree
problem do quite well in practice [Wall 1980; Waxman 1988; Wei 1993].
Even though good heuristics exist for the Steiner tree problem, it is
interesting to note that none of the existing Internet multicast routing
algorithms have been based on this approach. Why? One reason is that
information is needed about all links in the network. Another reason is that
in order for a minimum-cost tree to be maintained, the algorithm needs to
be rerun whenever link costs change. Finally, we will see that other
considerations, such as the ability to leverage the routing tables that have
already been computed for unicast routing, play an important role in judging
the suitability of a multicast routing algorithm. In the end, performance (and
optimality) is but one of many concerns.
An alternate approach toward determining the group-shared multicast tree,
one that is used in practice by several Internet multicast routing algorithms,
is based on the notion of defining a center node (also known as a
rendezvous point or a core) in the single shared multicast routing tree. In
the center-based approach, a center node is first identified for the
multicast group. Routers with attached hosts belonging to the multicast
group then unicast so-called join messages addressed to the center node.
A join message is forwarded using unicast routing toward the center until it
either arrives at a router that already belongs to the multicast tree or arrives
at the center. In either case, the path that the join message has followed
defines the branch of the routing tree between the edge router that initiated
the join message and the center. One can think of this new path as being
grafted onto the existing multicast tree for the group.
Figure 4.51 illustrates the construction of a center-based multicast routing
tree. Suppose that router E is selected as the center of the tree. Node F
first joins the multicast group and forwards a join message to E. The single
link EF becomes the initial multicast tree. Node B then joins the multicast
tree by sending its join message to E. Suppose that the unicast path route
to E from B is via D. In this case, the join message results in the path BDE
being grafted onto the multicast tree. Finally, node A joins the multicast

group by forwarding its join message toward E. Let us assume that A’s
unicast path to E is through B. Since B has already joined the multicast
tree, the arrival of A’s join message at B will result in the AB link being
immediately grafted onto the multicast tree.

Figure 4.51: Constructing a center-based tree
A critical question for center-based tree multicast routing is the process
used to select the center. Center-selection algorithms are discussed in
[Wall 1980; Thaler 1997; Estrin 1997]. [Wall 1980] shows that centers can
be chosen so that the resulting tree is within a constant factor of optimum
(the solution to the Steiner tree problem).
Multicast Routing Using a Source-Based Tree
While the multicast routing algorithms we have studied above construct a
single, shared routing tree that is used to route packets from all senders,
the second broad class of multicast routing algorithms construct a multicast
routing tree for each source in the multicast group.
We have already studied an algorithm (Dijkstra’s link-state routing
algorithm, in Section 4.2.1) that computes the unicast paths that are
individually the least-cost paths from the source to all destinations. The
union of these paths might be thought of as forming a least unicast-cost
path tree (or a shortest unicast path tree, if all link costs are identical).
Figure 4.52 shows the construction of the least cost path tree rooted at A.
By comparing the tree in Figure 4.52 with that of Figure 4.50, it is evident
that the least-cost path tree is not the same as the minimum overall cost
tree computed as the solution to the Steiner tree problem. The reason for
this difference is that the goals of these two algorithms are different: least
unicast-cost path tree minimizes the cost from the source to each of the
destinations (that is, there is no other tree that has a shorter distance path
from the source to any of the destinations), while the Steiner tree minimizes
the sum of the link costs in the tree. You might also want to convince
yourself that the least unicast-cost path tree often differs from one source to
another (for example, the source tree rooted at A is different from the
source tree rooted at E in Figure 4.52).

Figure 4.52: Construction of a least-cost path routing tree
The least-cost path multicast routing algorithm is a link-state algorithm. It
requires that each router know the state of each link in the network in order
to be able to compute the least-cost path tree from the source to all
destinations. A simpler multicast routing algorithm, one that requires much
less link state information than the least-cost path routing algorithm, is the
reverse path forwarding (RPF) algorithm.
The idea behind reverse path forwarding is simple, yet elegant. When a
router receives a multicast packet with a given source address, it transmits
the packet on all of its outgoing links (except the one on which it was
received) only if the packet arrived on the link that is on its own shortest
path back to the sender. Otherwise, the router simply discards the incoming
packet without forwarding it on any of its outgoing links. Such a packet can
be dropped because the router knows it either will receive, or has already
received, a copy of this packet on the link that is on its own shortest path
back to the sender. (You might want to convince yourself that this will, in
fact, happen.) Note that reverse path forwarding does not require that a
router know the complete shortest path from itself to the source; it need
only know the next hop on its unicast shortest path to the sender.
Figure 4.53 illustrates RPF. Suppose that the links with thicker lines
represent the least cost paths from the receivers to the source (A). Router
A initially multicasts a source-S packet to routers C and B. Router B will
forward the source-S packet it has received from A (since A is on its least-
cost path to A) to both C and D. B will ignore (drop, without forwarding) any
source-S packets it receives from any other routers (for example, from
routers C or D).

Figure 4.53: Reverse path forwarding
Let us now consider router C, which will receive a source-S packet directly
from A as well as from B. Since B is not on C’s own shortest path back to A,
C will ignore (drop) any source-S packets it receives from B. On the other
hand, when C receives a source-S packet directly from A, it will forward the
packet to routers B, E, and F.
RPF is a nifty idea. But consider what happens at router D in Figure 4.53. It
will forward packets to router G, even though router G has no attached
hosts that are joined to the multicast group. While this is not so bad for this
case where D has only a single downstream router, G, imagine what would
happen if there were thousands of routers downstream from D! Each of
these thousands of routers would receive unwanted multicast packets.
(This scenario is not as far-fetched as it might seem. The initial MBone
[Casner 1992; Macedonia 1994], the first global multicast network suffered
from precisely this problem at first!)
The solution to the problem of receiving unwanted multicast packets under
RPF is known as pruning. A multicast router that receives multicast
packets and has no attached hosts joined to that group will send a prune
message to its upstream router. If a router receives prune messages from
each of its downstream routers, then it can forward a prune message
upstream. Pruning is illustrated in Figure 4.54.

Figure 4.54: Pruning an RPF tree
While pruning is conceptually straightforward, two subtle issues arise. First,
pruning requires that a router know which routers downstream are

dependent on it for receiving their multicast packets. This requires
additional information beyond that required for RPF alone. A second
complication is more fundamental: if a router sends a prune message
upstream, then what should happen if a router later needs to join that
multicast group? Recall that under RPF, multicast packets are "pushed"
down the RPF tree to all routers. If a prune message removes a branch
from that tree, then some mechanism is needed to restore that branch. One
possibility is to add a graft message that allows a router to "unprune" a
branch. Another option is to allow pruned branches to time-out and be
added again to the multicast RPF tree; a router can then re-prune the
added branch if the multicast traffic is still not wanted.

4.8.4: Multicast Routing in the Internet
Having now studied multicast routing algorithms in the abstract, let’s now
consider how these algorithms are put into practice in today’s Internet by
examining the three currently standardized Internet multicast routing
protocols: DVMRP, MOSPF, CBT, and PIM.
DVMRP: Distance Vector Multicast Routing Protocol
The first multicast routing protocol used in the Internet and the most widely
supported multicast routing algorithm [IP Multicast Initiative 1998] is the
Distance Vector Multicast Routing Protocol (DVMRP) [RFC 1075]. DVMRP
implements source-based trees with reverse path forwarding, pruning, and
grafting. DVMRP uses a distance vector algorithm (see Section 4.2) that
allows each router to compute the outgoing link (next hop) that is on its
shortest path back to each possible source. This information is then used in
the RPF algorithm, as discussed above. A public copy of DVMRP software
is available at [mrouted 1996].
In addition to computing next-hop information, DVMRP also computes a list
of dependent downstream routers for pruning purposes. When a router has
received a prune message from all of its dependent downstream routers for
a given group, it will propagate a prune message upstream to the router
from which it receives its multicast traffic for that group. A DVMRP prune
message contains a prune lifetime (with a default value of two hours) that
indicates how long a pruned branch will remain pruned before being
automatically restored. DVMRP graft messages are sent by a router to its
upstream neighbor to force a previously pruned branch to be added back
on to the multicast tree.
Before examining other multicast routing algorithms, let us consider how
multicast routing can be deployed in the Internet. The crux of the problem is
that only a small fraction of the Internet routers are multicast-capable. If one
router is multicast-capable but all of its immediate neighbors are not, is this
lone island of multicast-routing lost in a sea of unicast routers? Most
decidedly not! Tunneling, a technique we examined earlier in the context of
IP version 6 (Section 4.7), can be used to create a virtual network of
multicast-capable routers on top of a physical network that contains a mix
of unicast and multicast routers. This is the approach taken in the Internet
MBone.

Multicast tunnels are illustrated in Figure 4.55. Suppose that multicast
router A wants to forward a multicast datagram to multicast router B.
Suppose that A and B are not physically connected to each other and that
the intervening routers between A and B are not multicast capable. To
implement tunneling, router A takes the multicast datagram and
"encapsulates" it [RFC 2003] inside a standard unicast datagram. That is,
the entire multicast datagram (including source and multicast address
fields) is carried as the payload of an IP unicast datagram--a complete
multicast IP datagram inside of a unicast IP datagram! The unicast
datagram is then addressed to the unicast address of router B and
forwarded toward B by router A. The unicast routers between A and B
dutifully forward the unicast packet to B, blissfully unaware that the unicast
datagram itself contains a multicast datagram. When the unicast datagram
arrives at B, B then extracts the multicast datagram. B may then forward
the multicast datagram on to one of its attached hosts, forward the packet
to a directly attached neighboring router that is multicast-capable, or
forward the multicast datagram to another logical multicast neighbor via
another tunnel.

Figure 4.55: Multicast tunnels
MOSPF: Multicast Open Shortest Path First
The Multicast Open Shortest Path First protocol (MOSPF) [RFC 1584]
operates in an autonomous system (AS) that uses the OSPF protocol (see
Section 4.5) for unicast routing. MOSPF extends OSPF by having routers
add their multicast group membership to the link state advertisements that
are broadcast by routers as part of the OSPF protocol. With this extension,
all routers have not only complete topology information, but also know
which edge routers have attached hosts belonging to various multicast
groups. With this information, the routers within the AS can build source-
specific, pre-pruned, shortest-path trees for each multicast group.
CBT: Core-Based Trees
The core-based tree (CBT) multicast routing protocol [RFC 2201; RFC
2189] builds a bi-directional, group-shared tree with a single "core" (center).
A CBT edge router unicasts a JOIN_REQUEST message toward the tree
core. The core, or the first router that receives this JOIN_REQUEST and
itself has already successfully joined the tree, will respond with a
JOIN_ACK message to the edge router. Once a multicast routing tree has
been built, it is maintained by having a downstream router send keepalive
messages (ECHO_REQUEST) to its immediate upstream router. The

immediate upstream router responds with an ECHO_REPLY message.
These messages are exchanged at a time granularity of minutes. If a
downstream router receives no reply to its ECHO_REQUEST, it will retry
sending the ECHO_REQUEST for a small number of times. If no
ECHO_REPLY is received, the router will dissolve the downstream tree by
sending a FLUSH_TREE message downstream.
PIM: Protocol Independent Multicast
The Protocol Independent Multicast (PIM) routing protocol [Deering 1996;
RFC 2362; Estrin 1998b] explicitly envisions two different multicast
distribution scenarios. In so-called dense mode, multicast group members
are densely located, that is, many or most of the routers in the area need to
be involved in routing multicast datagrams. In sparse mode, the number of
routers with attached group members is small with respect to the total
number of routers; group members are widely dispersed.
The PIM designers noted several consequences of the sparse-dense
dichotomy. In dense mode, since most routers will be involved in multicast
(for example, have attached group members), it is reasonable to assume
that each and every router should be involved in multicast. Thus, an
approach like RPF that floods datagrams to every multicast router (unless a
router explicitly prunes itself), is well-suited to this scenario. On the other
hand, in sparse mode, the routers that need to be involved in multicast
forwarding are few and far between. In this case, a data-driven multicast
technique like RPF, which forces a router to constantly do work (prune)
simply to avoid receiving multicast traffic, is much less satisfactory. In
sparse mode, the default assumption should be that a router is not involved
in a multicast distribution; the router should not have to do any work unless
it wants to join a multicast group. This argues for a center-based approach,
where routers send explicit join messages, but are otherwise uninvolved in
multicast forwarding. One can think of the sparse-mode approach as being
receiver-driven (that is, nothing happens until a receiver explicitly joins a
group) versus the dense-mode approach as being data-driven (that is, that
datagrams are multicast everywhere, unless explicitly pruned).
PIM accommodates this dense versus sparse dichotomy by offering two
explicit modes of operation: dense mode and sparse mode. PIM Dense
Mode is a flood-and-prune reverse-path-forwarding technique similar in
spirit to DVMRP. Recall that PIM is protocol-independent, that is,
independent of the underlying unicast routing protocol. A better description
might be that it can interoperate with any underlying unicast routing
protocol. Because PIM makes no assumptions about the underlying routing
protocol, its reverse path forwarding algorithm is slightly simpler, although
slightly less efficient than DVMRP.
PIM Sparse Mode is a center-based approach. PIM routers send JOIN
messages toward a rendezvous point (center) to join the tree. As with CBT,
intermediate routers set up multicast state and forward the JOIN message
toward the rendezvous point. Unlike CBT, there is no acknowledgment
generated in response to a JOIN message. JOIN messages are periodically

sent upstream to refresh/maintain the PIM routing tree. One novel feature
of PIM is the ability to switch from a group-shared tree to a source-specific
tree after joining the rendezvous point. A source-specific tree may be
preferred due to the decreased traffic concentration that occurs when
multiple source-specific trees are used (see homework problems).
In PIM Sparse Mode, the router that receives a datagram to send from one
of its attached hosts will unicast the datagram to the rendezvous point. The
rendezvous point then multicasts the datagram via the group-shared tree. A
sender is notified by the RP that it must stop sending to the RP whenever
there are no routers joined to the tree (that is, no one is listening!).
PIM is implemented in numerous router platforms [IP Multicast Initiative
1998] and has been deployed in UUnet as part of their streaming
multimedia delivery effort [LaPolla 1997].
Inter-Autonomous System Multicast Routing
In our discussion above, we have implicitly assumed that all routers are
running the same multicast routing protocol. As we saw with unicasting, this
will typically be the case within a single autonomous system (AS). However,
different ASs may choose to run different multicast routing protocols. One
AS might choose to run PIM within its autonomous system, while another
may choose to run MOSPF. Interoperability rules have been defined for all
of the major Internet multicast routing protocols. (This is a particularly
messy issue due to the very different approaches taken to multicast routing
by sparse and dense mode protocols.) What is still missing, however, is an
inter-AS multicast routing protocol to route multicast datagrams among
different AS’s.
DVMRP has been the de facto inter-AS multicast routing protocol.
However, as a dense-mode protocol, it is not particularly well-suited to the
rather sparse set of routers participating in today’s Internet MBone. The
development of an inter-AS multicast protocol is an active area of research
and development being carried out by the idmr working group of the IETF
[IDMR 1998].
Having now considered the multicast routing problem and a number of
multicast protocols embodying the group-shared tree and source-based
tree approaches, let us conclude by enumerating some of the factors
involved in evaluating a multicast protocol:

• Scalability. What is the amount of state required in the routers by a
multicast routing protocol? How does the amount of state change as
the number of groups, or number of senders in a group, change?

• Reliance on underlying unicast routing. To what extent does a
multicast protocol rely on information maintained by an underlying
unicast routing protocol? We have seen solutions that range from
reliance on one specific underlying unicast routing protocol
(MOSPF), to a solution that is completely independent of the
underlying unicast routing (PIM), to a solution that implements much
of the same distance vector functionality that we saw earlier for the

unicast case (DVMRP).

• Excess (un-needed) traffic received. We have seen solutions where
a router receives data only if it has an attached host in the multicast
group (MOSPF, PIM-Sparse Mode) to solutions where the default is
for a router to receive all traffic for all multicast groups (DVMRP, PIM
Dense Mode).

• Traffic concentration. The group-shared tree approach tends to
concentrate traffic on a smaller number of links (those in the single
tree), whereas source-specific trees tend to distribute multicast traffic
more evenly.

• Optimality of forwarding paths. We have seen that determining the
minimum cost multicast tree (that is, solving the Steiner problem) is
difficult and that this approach has not been adopted in practice.
Instead, heuristic approaches, based on either using the tree of
shortest paths, or selecting a center router from which to "grow" the
routing multicast tree, have been adopted in practice.

Online Book

4.9: Summary
In this chapter, we began our journey into the network core. We learned
that the network layer involves each and every host and router in the
network. Because of this, network-layer protocols are among the most
challenging in the protocol stack.

We learned that one of the biggest challenges in the network layer is
routing datagrams through a network of millions of hosts and routers. We
saw that this scaling problem is solved by partitioning large networks into
independent administrative domains called autonomous systems (ASs).
Each AS independently routes its datagrams through the AS, just as each
country independently routes its postal mail through the country. In the
Internet, two popular protocols for intra-AS routing are currently RIP and
OSPF. To route packets among ASs, an inter-AS routing protocol is
needed. The dominant inter-AS protocol today is BGP4.

Performing routing on two levels--one level for within each of the ASs and
another level for among the ASs--is referred to as hierarchical routing. The
scaling problem is largely solved by a hierarchical organization of the

routing infrastructure. This is a general principle we should keep in mind
when designing protocols, particularly for network-layer protocols: scaling
problems can often be solved by hierarchical organization. It is interesting
to note that this principle has been applied throughout the ages to many
other disciplines besides computer networking, including corporate,
government, religious, and military organizations.

In this chapter, we also learned about a second scaling issue: For large
computer networks, a router may need to process millions of flows of
packets between different source-destination pairs at the same time. To
permit a router to process such a large number of flows, network designers
have learned over the years that the router’s tasks should be as simple as
possible. Many measures can be taken to make the router’s job easier,
including using a datagram network layer rather than a virtual-circuit
network layer, using a streamlined and fixed-sized header (as in IPv6),
eliminating fragmentation (also done in IPv6) and providing the one and
only best-effort service. Perhaps the most important trick here is to not keep
track of individual flows, but instead base routing decisions solely on
hierarchical-structured destination addresses in the packets. It is interesting
to note that the postal service has been using this same trick for many
years.

In this chapter, we also looked at the underlying principles of routing
algorithms. We learned that designers of routing algorithms abstract the
computer network to a graph with nodes and links. With this abstraction, we
can exploit the rich theory of shortest-path routing in graphs, which has
been developed over the past 40 years in the operations research and
algorithms communities. We saw that there are two broad approaches, a
centralized approach in which each node obtains a complete map of the
network and independently applies a shortest-path routing algorithm; and a
decentralized approach, in which individual nodes only have a partial
picture of the entire network, yet the nodes work together to deliver packets
along the shortest routes. Routing algorithms in computer networks have
been an active research area for many years, and will undoubtedly remain
so.

At the end of this chapter, we examined two advanced subjects, reflecting
current trends in computer networking and the Internet. The first subject is
IPv6, which provides a streamlined network layer and resolves the IPv4
address space problem. The second subject is multicast routing, which can
potentially save tremendous amounts of bandwidth, router, and server
resources in a computer network. It will be interesting to see how the
deployment of IPv6 and multicast routing protocols play out over the next
decade.

Having completed our study of the network layer, our journey now takes us
one further step down the protocol stack, namely, to the link layer. Like the
network layer, the link layer is also part of the network core. But we will see

in the next chapter that the link layer has the much more localized task of
moving packets between nodes on the same link or LAN. Although this task
may appear on the surface to be trivial compared to that of the network
layer’s tasks, we will see that the link layer involves a number of important
and fascinating issues that can keep us busy for a long time.

