
Chapter 3: Transport Layer

We begin this chapter by examining the services that the transport layer can
provide to network applications. The Internet provides applications a choice of
two transport protocols, UDP (User Datagram Protocol) and TCP (Transmission
Control Protocol). We will see that UDP is a no-frills protocol, providing only
minimal services to applications, whereas TCP is a more complex protocol, and
offers a rich set of services, including reliable data transfer. We examine the
fundamental principles of reliable data transfer, and study how a transport layer
protocol can provide reliable data transfer even when the underlying network
layer is unreliable. We also look at the fundamental principles of congestion
control, which limits the amount of data an application can send into the network
so as to prevent network grid lock. We study the TCP transport protocol in depth,
and carefully examine how TCP provides reliable data transfer, flow control and
congestion control.

Online Book

3.1: Transport-Layer Services and Principles
Residing between the application and network layers, the transport layer is
a central piece of the layered network architecture. It has the critical role of
providing communication services directly to the application processes
running on different hosts. In this chapter we’ll examine the possible
services provided by a transport-layer protocol and the principles underlying
various approaches toward providing these services. We’ll also look at how
these services are implemented and instantiated in existing protocols; as
usual, particular emphasis will be given to the Internet protocols, namely,
the TCP and UDP transport-layer protocols.

In the previous two chapters we touched on the role of the transport layer
and the services that it provides. Let’s quickly review what we have already
learned about the transport layer:

A transport-layer protocol provides for logical communication between
application processes running on different hosts. By logical communication,
we mean that although the communicating application processes are not
physically connected to each other (indeed, they may be on different sides
of the planet, connected via numerous routers and a wide range of link
types), from the applications’ viewpoint, it is as if they were physically
connected. Application processes use the logical communication provided
by the transport layer to send messages to each other, free from the worry
of the details of the physical infrastructure used to carry these messages.
Figure 3.1 illustrates the notion of logical communication.

Figure 3.1: The transport layer provides logical rather than physical communication
between applications.

As shown in Figure 3.1, transport-layer protocols are implemented in the
end systems but not in network routers. Network routers only act on the
network-layer fields of the layer-3 PDUs; they do not act on the transport-
layer fields.

On the sending side, the transport layer converts the messages it receives
from a sending application process into 4-PDUs (that is, transport-layer
protocol data units). This is done by (possibly) breaking the application
messages into smaller chunks and adding a transport-layer header to each
chunk to create 4-PDUs. The transport layer then passes the 4-PDUs to the
network layer, where each 4-PDU is encapsulated into a 3-PDU. On the
receiving side, the transport layer receives the 4-PDUs from the network
layer, removes the transport header from the 4-PDUs, reassembles the
messages, and passes them to a receiving application process.

A computer network can make more than one transport-layer protocol
available to network applications. For example, the Internet has two
protocols--TCP and UDP. Each of these protocols provides a different set
of transport-layer services to the invoking application.

All transport-layer protocols provide an application
multiplexing/demultiplexing service. This service will be described in detail
in the next section. As discussed in Section 2.1, in addition to a
multiplexing/demultiplexing service, a transport protocol can possibly
provide other services to invoking applications, including reliable data
transfer, bandwidth guarantees, and delay guarantees.

3.1.1: Relationship between Transport and Network Layers
The transport layer lies just above the network layer in the protocol stack.
Whereas a transport-layer protocol provides logical communication
between processes running on different hosts, a network-layer protocol
provides logical communication between hosts. This distinction is subtle but
important. Let’s examine this distinction with the aid of a household
analogy.
Consider two houses, one on the East Coast and the other on the West
Coast, with each house being home to a dozen kids. The kids in the East
Coast household are cousins of the kids in the West Coast household. The
kids in the two households love to write to each other--each kid writes each
cousin every week, with each letter delivered by the traditional postal
service in a separate envelope. Thus, each household sends 144 letters to
the other household every week. (These kids would save a lot of money if
they had e-mail!) In each of the households there is one kid--Ann in the
West Coast house and Bill in the East Coast house--responsible for mail
collection and mail distribution. Each week Ann visits all her brothers and
sisters, collects the mail, and gives the mail to a postal-service mail person
who makes daily visits to the house. When letters arrive at the West Coast
house, Ann also has the job of distributing the mail to her brothers and
sisters. Bill has a similar job on the East Coast.
In this example, the postal service provides logical communication between
the two houses--the postal service moves mail from house to house, not
from person to person. On the other hand, Ann and Bill provide logical
communication among the cousins--Ann and Bill pick up mail from and
deliver mail to their brothers and sisters. Note that from the cousins’
perspective, Ann and Bill are the mail service, even though Ann and Bill are
only a part (the end system part) of the end-to-end delivery process. This
household example serves as a nice analogy for explaining how the
transport layer relates to the network layer:

hosts (also called end systems) = houses
processes = cousins
application messages = letters in envelopes
network-layer protocol = postal service (including mail
persons)
transport-layer protocol = Ann and Bill

Continuing with this analogy, observe that Ann and Bill do all their work
within their respective homes; they are not involved, for example, in sorting

mail in any intermediate mail center or in moving mail from one mail center
to another. Similarly, transport-layer protocols live in the end systems.
Within an end system, a transport protocol moves messages from
application processes to the network edge (that is, the network layer) and
vice versa; but it doesn’t have any say about how the messages are moved
within the network core. In fact, as illustrated in Figure 3.1, intermediate
routers neither act on, nor recognize, any information that the transport
layer may have appended to the application messages.
Continuing with our family saga, suppose now that when Ann and Bill go on
vacation, another cousin pair--say, Susan and Harvey--substitute for them
and provide the household-internal collection and delivery of mail.
Unfortunately for the two families, Susan and Harvey do not do the
collection and delivery in exactly the same way as Ann and Bill. Being
younger kids, Susan and Harvey pick up and drop off the mail less
frequently and occasionally lose letters (which are sometimes chewed up
by the family dog). Thus, the cousin-pair Susan and Harvey do not provide
the same set of services (that is, the same service model) as Ann and Bill.
In an analogous manner, a computer network may make available multiple
transport protocols, with each protocol offering a different service model to
applications.
The possible services that Ann and Bill can provide are clearly constrained
by the possible services that the postal service provides. For example, if the
postal service doesn’t provide a maximum bound on how long it can take to
deliver mail between the two houses (for example, three days), then there
is no way that Ann and Bill can guarantee a maximum delay for mail
delivery between any of the cousin pairs. In a similar manner, the services
that a transport protocol can provide are often constrained by the service
model of the underlying network-layer protocol. If the network-layer protocol
cannot provide delay or bandwidth guarantees for 4-PDUs sent between
hosts, then the transport-layer protocol cannot provide delay or bandwidth
guarantees for messages sent between processes.
Nevertheless, certain services can be offered by a transport protocol even
when the underlying network protocol doesn’t offer the corresponding
service at the network layer. For example, as we’ll see in this chapter, a
transport protocol can offer reliable data transfer service to an application
even when the underlying network protocol is unreliable, that is, even when
the network protocol loses, garbles, and duplicates packets. As another
example (which we’ll explore in Chapter 7 when we discuss network
security), a transport protocol can use encryption to guarantee that
application messages are not read by intruders, even when the network
layer cannot guarantee the secrecy of 4-PDUs.

3.1.2: Overview of the Transport Layer in the Internet
Recall that the Internet, and more generally a TCP/IP network, makes
available two distinct transport-layer protocols to the application layer. One
of these protocols is UDP (User Datagram Protocol), which provides an
unreliable, connectionless service to the invoking application. The second

of these protocols is TCP (Transmission Control Protocol), which provides a
reliable, connection-oriented service to the invoking application. When
designing a network application, the application developer must specify one
of these two transport protocols. As we saw in Sections 2.6 and 2.7, the
application developer selects between UDP and TCP when creating
sockets.
To simplify terminology, when in an Internet context, we refer to the 4-PDU
as a segment. We mention, however, that the Internet literature (for
example, the RFCs) also refers to the PDU for TCP as a segment but often
refers to the PDU for UDP as a datagram. But this same Internet literature
also uses the terminology datagram for the network-layer PDU! For an
introductory book on computer networking such as this, we believe that it is
less confusing to refer to both TCP and UDP PDUs as segments, and
reserve the terminology datagram for the network-layer PDU.
Before preceding with our brief introduction of UDP and TCP, it is useful to
say a few words about the Internet’s network layer. (The network layer is
examined in detail in Chapter 4.) The Internet’s network-layer protocol has
a name--IP, for Internet Protocol. IP provides logical communication
between hosts. The IP service model is a best-effort delivery service.
This means that IP makes its "best effort" to deliver segments between
communicating hosts, but it makes no guarantees. In particular, it does not
guarantee segment delivery, it does not guarantee orderly delivery of
segments, and it does not guarantee the integrity of the data in the
segments. For these reasons, IP is said to be an unreliable service. We
also mention here that every host has an IP address. We will examine IP
addressing in detail in Chapter 4; for this chapter we need only keep in
mind that each host has a unique IP address.
Having taken a glimpse at the IP service model, let’s now summarize the
service model of UDP and TCP. The most fundamental responsibility of
UDP and TCP is to extend IP’s delivery service between two end systems
to a delivery service between two processes running on the end systems.
Extending host-to-host delivery to process-to-process delivery is called
application multiplexing and demultiplexing. We’ll discuss application
multiplexing and demultiplexing in the next section. UDP and TCP also
provide integrity checking by including error-detection fields in their
headers. These two minimal transport-layer services--process-to-process
data delivery and error checking--are the only two services that UDP
provides! In particular, like IP, UDP is an unreliable service--it does not
guarantee that data sent by one process will arrive intact to the destination
process. UDP is discussed in detail in Section 3.3.
TCP, on the other hand, offers several additional services to applications.
First and foremost, it provides reliable data transfer. Using flow control,
sequence numbers, acknowledgments, and timers (techniques we’ll explore
in detail in this chapter), TCP ensures that data is delivered from sending
process to receiving process, correctly and in order. TCP thus converts IP’s
unreliable service between end systems into a reliable data transport

service between processes. TCP also uses congestion control.
Congestion control is not so much a service provided to the invoking
application as it is a service for the Internet as a whole, a service for the
general good. In loose terms, TCP congestion control prevents any one
TCP connection from swamping the links and switches between
communicating hosts with an excessive amount of traffic. In principle, TCP
permits TCP connections traversing a congested network link to equally
share that link’s bandwidth. This is done by regulating the rate at which the
sending-side TCPs can send traffic into the network. UDP traffic, on the
other hand, is unregulated. An application using UDP transport can send at
any rate it pleases, for as long as it pleases.
A protocol that provides reliable data transfer and congestion control is
necessarily complex. We will need several sections to cover the principles
of reliable data transfer and congestion control, and additional sections to
cover the TCP protocol itself. These topics are investigated in Sections 3.4
through 3.8. The approach taken in this chapter is to alternate between
basic principles and the TCP protocol. For example, we first discuss reliable
data transfer in a general setting and then discuss how TCP specifically
provides reliable data transfer. Similarly, we first discuss congestion control
in a general setting and then discuss how TCP uses congestion control. But
before getting into all this good stuff, let’s first look at application
multiplexing and demultiplexing in the next section.

Online Book

3.2: Multiplexing and Demultiplexing Apps
In this section we discuss multiplexing and demultiplexing network
applications. In order to keep the discussion concrete, we’ll discuss this
basic transport-layer service in the context of the Internet. We emphasize,
however, that a multiplexing/demultiplexing service is needed for all
computer networks.

Although the multiplexing/demultiplexing service is not among the most ex
citing services that can be provided by a transport-layer protocol, it is
absolutely critical. To understand why it is so critical, consider the fact that
IP delivers data between two end systems, with each end system identified
with a unique IP address. IP does not deliver data between the application
processes that run on these end systems. Extending host-to-host delivery
to process-to-process delivery is the job of application multiplexing and
demultiplexing.

At the destination host, the transport layer receives segments (that is,

transport-layer PDUs) from the network layer just below. The transport layer
has the responsibility of delivering the data in these segments to the
appropriate application process running in the host. Let’s take a look at an
example. Suppose you are sitting in front of your computer, and you are
downloading Web pages while running one FTP session and two Telnet
sessions. You therefore have four network application processes running--
two Telnet processes, one FTP process, and one HTTP process. When the
transport-layer in your computer receives data from the network layer
below, it needs to direct the received data to one of these four processes.
Let’s now examine how this is done.

Each transport-layer segment has a set of fields that determine the process
to which the segment’s data is to be delivered. At the receiving end, the
transport layer can then examine these fields to determine the receiving
process and then direct the segment to that process. This job of delivering
the data in a transport-layer segment to the correct application process is
called demultiplexing. The job of gathering data at the source host from
different application processes, enveloping the data with header information
(that will later be used in demultiplexing) to create segments, and passing
the segments to the network layer is called multiplexing. Multiplexing and
demultiplexing are illustrated in Figure 3.2.

Figure 3.2: Multiplexing and demultiplexing

To illustrate the demultiplexing job, let us return to the household saga in
the previous section. Each of the kids is distinguished by his or her name.
When Bill receives a batch of mail from the mail person, he performs a
demultiplexing operation by observing to whom the letters are addressed
and then hand delivering the mail to his brothers and sisters. Ann performs
a multiplexing operation when she collects letters from her brothers and
sisters and gives the collected mail to the mail person.

UDP and TCP perform the demultiplexing and multiplexing jobs by
including two special fields in the segment headers: the source port-
number field and the destination port-number field. These two fields are
illustrated in Figure 3.3. When taken together, the fields uniquely identify an
application process running on the destination host. (The UDP and TCP
segments have other fields as well, and they will be addressed in the

subsequent sections of this chapter.)

Figure 3.3: Source and destination port-number fields in a transport layer segment

The notion of port numbers was briefly introduced in Sections 2.6-2.7, in
which we studied application development and socket programming. The
port number is a 16-bit number, ranging from 0 to 65535. The port numbers
ranging from 0 to 1023 are called well-known port numbers and are
restricted, which means that they are reserved for use by well-known
application protocols such as HTTP and FTP. HTTP uses port number 80;
FTP uses port number 21. The list of well-known port numbers is given in
RFC 1700. When we develop a new application (such as one of the
applications developed in Sections 2.6-2.8), we must assign the application
a port number.

Given that each type of application running on an end system has a unique
port number, then why is it that the transport-layer segment has fields for
two port numbers, a source port number and a destination port number?
The answer is simple: An end system may be running two processes of the
same type at the same time, and thus the port destination number of an
application may not suffice to identify a specific process. For example, a
Web server may spawn a new HTTP process for every request it
processes; whenever such a Web server is servicing more than one
request (which is by no means uncommon), the server is running more than
one process with port number 80. Therefore, in order to uniquely identify
the process to which data is destined, a second port number is needed.

How is this second port number created? Which port number goes in the
source port-number field of a segment? Which goes in the destination port-
number field of a segment? To answer these questions, recall from Section
2.1 that networking applications are organized around the client/server
model. Typically, the host that initiates the application is the client and the
other host is the server. Now let us look at a specific example. Suppose the
application has port number 23 (the port number for Telnet). Consider a
transport-layer segment leaving the client (that is, the host that initiated the
Telnet session) and destined for the server. What are the destination and
source port numbers for this segment? For the destination port number, this
segment has the port number of the application, namely, 23. For the source

port number, the client uses a number that is not being used by any other
host processes. (This is done automatically by the transport-layer software
running on the client and is transparent to the application developer.) Let’s
say the client chooses port number x. Then each segment that this process
sends to the Telnet server will have its source port number set to x and
destination port number set to 23. When the segment arrives at the server,
the source and destination port numbers in the segment enable the server
host to pass the segment’s data to the correct application process. The
destination port number 23 identifies a Telnet process and the source port
number x identifies the specific Telnet process.

The situation is reversed for the segments flowing from the server to the
client. The source port number is now the application port number, 23. The
destination port number is now x (the same x used for the source port
number for the segments sent from client to server). When a segment
arrives at the client, the source and destination port numbers in the
segment will enable the client host to pass the data of the segment to the
correct application process, which is identified by the port number pair.
Figure 3.4 summarizes the discussion.

Figure 3.4: Use of source and destination port numbers in a client/server application

Now you may be wondering, what happens if two different clients establish
a session to a server and each of these clients choose the same source
port number x? This might well happen with a busy www server that
handles many Web clients simultaneously. How will the server be able to
demultiplex the segments when the two sessions have exactly the same
port-number pair? The answer to this question is that the server also uses
the IP addresses in the IP datagrams carrying these segments. (We will
discuss IP datagrams and addressing in detail in Chapter 4.) The situation
is illustrated in Figure 3.5, in which host C initiates two HTTP sessions to
server B, and host A initiates one HTTP session to B. Hosts A, C, and
server B each have their own unique IP address, A, C, and B, respectively.
Host C assigns two different source port (SP) numbers (x and y) to the two
HTTP connections emanating from host A. But because host A is choosing
source port numbers independently from C, it can also assign SP = x to its
HTTP connection. Nevertheless, server B is still able to correctly
demultiplex the two connections since the two connections have different

source IP addresses. In summary, we see that when a destination host
receives data from the network layer, the triplet (source IP address, source
port number, destination port number) is used to forward the data to the
appropriate process.

Figure 3.5: Two clients, using the same port numbers to communicate with the same
server application

Now that we’ve shown how the transport layer can multiplex and
demultiplex network applications, let’s move on and discuss one of the
Internet’s transport protocols, UDP. In the next section we’ll see that UDP
adds little more to the network-layer protocol than a
multiplexing/demultiplexing service.

Online Book

3.3: Connectionless Transport: UDP
In this section, we take a close look at UDP, how UDP works, and what it
does. The reader is encouraged to refer back to material in Section 2.1,
which includes an overview of the UDP service model, and to the material
in Section 2.7, which discusses socket programming over UDP.

To motivate our discussion about UDP, suppose you were interested in
designing a no-frills, bare-bones transport protocol. How might you go

about doing this? You might first consider using a vacuous transport
protocol. In particular, on the sending side, you might consider taking the
messages from the application process and passing them directly to the
network layer; and on the receiving side, you might consider taking the
messages arriving from the network layer and passing them directly to the
application process. But as we learned in the previous section, we have to
do a little more than nothing. At the very least, the transport layer has to
provide a multiplexing/demultiplexing service in order to pass data between
the network layer and the correct process.

UDP, defined in RFC 768, does just about as little as a transport protocol
can do. Aside from the multiplexing/demultiplexing function and some light
error checking, it adds nothing to IP. In fact, if the application developer
chooses UDP instead of TCP, then the application is almost directly talking
with IP. UDP takes messages from the application process, attaches
source and destination port number fields for the
multiplexing/demultiplexing service, adds two other small fields, and passes
the resulting segment to the network layer. The network layer encapsulates
the segment into an IP datagram and then makes a best-effort attempt to
deliver the segment to the receiving host. If the segment arrives at the
receiving host, UDP uses the port numbers and the IP destination address
to deliver the segment’s data to the correct application process. Note that
with UDP there is no handshaking between sending and receiving
transport-layer entities before sending a segment. For this reason, UDP is
said to be connectionless.

DNS is an example of an application-layer protocol that uses UDP. When
the DNS application in a host wants to make a query, it constructs a DNS
query message and passes the message to a UDP socket (see Section
2.7). Without performing any handshaking, UDP adds header fields to the
message and passes the resulting segment to the network layer. The
network layer encapsulates the UDP segment into a datagram and sends
the datagram to a name server. The DNS application at the querying host
then waits for a reply to its query. If it doesn’t receive a reply (possibly
because the underlying network lost the query or the reply), it either tries
sending the query to another nameserver, or it informs the invoking
application that it can’t get a reply. We mention that the DNS specification
permits DNS to run over TCP instead of UDP; in practice, however, DNS
almost always runs over UDP.

Now you might be wondering why an application developer would ever
choose to build an application over UDP rather than over TCP. Isn’t TCP
always preferable to UDP since TCP provides a reliable data transfer
service and UDP does not? The answer is no, as many applications are
better suited for UDP for the following reasons:

• No connection establishment. As we’ll discuss later, TCP uses a
three-way handshake before it starts to transfer data. UDP just

blasts away without any formal preliminaries. Thus UDP does not
introduce any delay to establish a connection. This is probably the
principal reason why DNS runs over UDP rather than TCP--DNS
would be much slower if it ran over TCP. HTTP uses TCP rather
than UDP, since reliability is critical for Web pages with text. But, as
we briefly discussed in Section 2.2, the TCP connection-
establishment delay in HTTP is an important contributor to the "world
wide wait."

• No connection state. TCP maintains connection state in the end
systems. This connection state includes receive and send buffers,
congestion-control parameters, and sequence and acknowledgment
number parameters. We will see in Section 3.5 that this state
information is needed to implement TCP’s reliable data transfer
service and to provide congestion control. UDP, on the other hand,
does not maintain connection state and does not track any of these
parameters. For this reason, a server devoted to a particular
application can typically support many more active clients when the
application runs over UDP rather than TCP.

• Small packet header overhead. The TCP segment has 20 bytes of
header overhead in every segment, whereas UDP only has 8 bytes
of overhead.

• Unregulated send rate. TCP has a congestion control mechanism
that throttles the sender when one or more links between sender and
receiver become excessively congested. This throttling can have a
severe impact on real-time applications, which can tolerate some
packet loss but require a minimum send rate. On the other hand, the
speed at which UDP sends data is only constrained by the rate at
which the application generates data, the capabilities of the source
(CPU, clock rate, and so on) and the access bandwidth to the
Internet. We should keep in mind, however, that the receiving host
does not necessarily receive all the data. When the network is
congested, some of the data could be lost due to router buffer
overflow. Thus, the receive rate can be limited by network
congestion even if the sending rate is not constrained.

Figure 3.6 lists popular Internet applications and the transport protocols that
they use. As we expect, e-mail, remote terminal access, the Web, and file
transfer run over TCP--all these applications need the reliable data transfer
service of TCP. Nevertheless, many important applications run over UDP
rather than TCP. UDP is used for RIP routing table updates (see Chapter 4
on the network layer), because the updates are sent periodically (typically
every five minutes), so that lost updates are replaced by more recent
updates. UDP is used to carry network management (SNMP; see Chapter
8) data. UDP is preferred to TCP in this case, since network management
applications must often run when the network is in a stressed state--

precisely when reliable, congestion-controlled data transfer is difficult to
achieve. Also, as we mentioned earlier, DNS runs over UDP, thereby
avoiding TCP’s connection-establishment delays.
Application
Application-layer protocol
Underlying transport protocol

Electronic mail
SMTP
TCP

Remote terminal access
Telnet
TCP

Web
HTTP
TCP

File transfer
FTP
TCP

Remote file server
NFS
typically UDP

Streaming multimedia
proprietary
typically UDP

Internet telephony
proprietary
typically UDP

Network management
SNMP
typically UDP

Routing protocol
RIP
typically UDP

Name translation
DNS
typically UDP

Figure 3.6: Popular Internet applications and their underlying transport protocols
As shown in Figure 3.6, UDP is also commonly used today with multimedia
applications, such as Internet phone, real-time video conferencing, and
streaming of stored audio and video. We’ll take a close look at these
applications in Chapter 6. We just mention now that all of these applications
can tolerate a small fraction of packet loss, so that reliable data transfer is

not absolutely critical for the success of the application. Furthermore, real-
time applications, like Internet phone and video conferencing, react very
poorly to TCP’s congestion control. For these reasons, developers of
multimedia applications often choose to run their applications over UDP
instead of TCP. Finally, because TCP cannot be employed with multicast,
multicast applications run over UDP.
Although commonly done today, running multimedia applications over UDP
is controversial to say the least. As we mentioned above, UDP has no
congestion control. But congestion control is needed to prevent the network
from entering a state in which very little useful work is done. If everyone
were to start streaming high-bit-rate video without using any congestion
control, there would be so much packet overflow at routers that no one
would see anything. Thus, the lack of congestion control in UDP is a
potentially serious problem [Floyd 1999]. Many researchers have proposed
new mechanisms to force all sources, including UDP sources, to perform
adaptive congestion control [Mahdavi 1997; Floyd 2000].
Before discussing the UDP segment structure, we mention that it is
possible for an application to have reliable data transfer when using UDP.
This can be done if reliability is built into the application itself (for example,
by adding acknowledgment and retransmission mechanisms, such as those
we shall study in the next section). But this is a nontrivial task that would
keep an application developer busy debugging for a long time.
Nevertheless, building reliability directly into the application allows the
application to "have its cake and eat it too." That is, application processes
can communicate reliably without having to succumb to the transmission-
rate constraints imposed by TCP’s congestion-control mechanism. Many of
today’s proprietary streaming applications do just this--they run over UDP,
but they have built acknowledgments and retransmissions into the
application in order to reduce packet loss; see, for example, [Rhee 1998].

3.3.1: UDP Segment Structure
The UDP segment structure, shown in Figure 3.7, is defined in RFC 768.
The application data occupies the data field of the UDP datagram. For
example, for DNS, the data field contains either a query message or a
response message. For a streaming audio application, audio samples fill
the data field. The UDP header has only four fields, each consisting of two
bytes. As discussed in the previous section, the port numbers allow the
destination host to pass the application data to the correct process running
on the destination (that is, the demultiplexing function). The checksum is
used by the receiving host to check if errors have been introduced into the
segment. In truth, the checksum is also calculated over a few of the fields in
the IP header in addition to the UDP segment. But we ignore this detail in
order to see the forest through the trees. We shall discuss the checksum
calculation below. Basic principles of error detection are described in
Section 5.1. The length field specifies the length of the UDP segment,
including the header, in bytes.

Figure 3.7: UDP segment structure

3.3.2: UDP Checksum
The UDP checksum provides for error detection. UDP at the sender side
performs the one’s complement of the sum of all the 16-bit words in the
segment. This result is put in the checksum field of the UDP segment. Here
we give a simple example of the checksum calculation. You can find details
about efficient implementation of the calculation in the RFC 1071 and
performance over real data in [Stone 1998 and Stone 2000]. As an
example, suppose that we have the following three 16-bit words:

0110011001100110
0101010101010101
0000111100001111

The sum of first of these 16-bit words is

0110011001100110
0101010101010101
1011101110111011

Adding the third word to the above sum gives

1011101110111011
0000111100001111
1100101011001010

The 1’s complement is obtained by converting all the 0s to 1s and
converting all the 1s to 0s. Thus the 1’s complement of the sum
���������������� is ����������������, which becomes the checksum. At
the receiver, all four 16-bit words are added, including the checksum. If no
errors are introduced into the packet, then clearly the sum at the receiver
will be 1111111111111111. If one of the bits is a zero, then we know that
errors have been introduced into the packet.
You may wonder why UDP provides a checksum in the first place, as many
link-layer protocols (including the popular Ethernet protocol) also provide
error checking. The reason is that there is no guarantee that all the links
between source and destination provide error checking--one of the links
may use a protocol that does not provide error checking. Because IP is
supposed to run over just about any layer-2 protocol, it is useful for the

transport layer to provide error checking as a safety measure. Although
UDP provides error checking, it does not do anything to recover from an
error. Some implementations of UDP simply discard the damaged segment;
others pass the damaged segment to the application with a warning.
That wraps up our discussion of UDP. We will soon see that TCP offers
reliable data transfer to its applications as well as other services that UDP
doesn’t offer. Naturally, TCP is also more complex than UDP. Before
discussing TCP, however, it will be useful to step back and first discuss the
underlying principles of reliable data transfer, which we do in the
subsequent section. We will then explore TCP in Section 3.5, where we will
see that TCP has its foundations in these underlying principles.

Online Book

3.4: Principles of Reliable Data Transfer
In this section, we consider the problem of reliable data transfer in a
general context. This is appropriate since the problem of implementing
reliable data transfer occurs not only at the transport layer, but also at the
link layer and the application layer as well. The general problem is thus of
central importance to networking. Indeed, if one had to identify a "top-10"
list of fundamentally important problems in all of networking, this would be a
top candidate to lead that list. In the next section we will examine TCP and
show, in particular, that TCP exploits many of the principles that we are
about to describe.

Figure 3.8 illustrates the framework for our study of reliable data transfer.
The service abstraction provided to the upper layer entities is that of a
reliable channel through which data can be transferred. With a reliable
channel, no transferred data bits are corrupted (flipped from 0 to 1, or vice
versa) or lost, and all are delivered in the order in which they were sent.
This is precisely the service model offered by TCP to the Internet
applications that invoke it.

Figure 3.8: Reliable data transfer: Service model and service implementation

It is the responsibility of a reliable data transfer protocol to implement this
service abstraction. This task is made difficult by the fact that the layer
below the reliable data transfer protocol may be unreliable. For example,
TCP is a reliable data transfer protocol that is implemented on top of an
unreliable (IP) end-end network layer. More generally, the layer beneath the
two reliably communicating endpoints might consist of a single physical link
(for example, as in the case of a link-level data transfer protocol) or a global
internetwork (for example, as in the case of a transport-level protocol). For
our purposes, however, we can view this lower layer simply as an
unreliable point-to-point channel.

In this section, we will incrementally develop the sender and receiver sides
of a reliable data transfer protocol, considering increasingly complex
models of the underlying channel. Figure 3.8(b) illustrates the interfaces for
our data transfer protocol. The sending side of the data transfer protocol will
be invoked from above by a call to UGWBVHQG��. It will be passed the data to
be delivered to the upper layer at the receiving side. (Here UGW stands for
"reliable data transfer" protocol and BVHQG indicates that the sending side of
UGW is being called. The first step in developing any protocol is to choose a
good name!) On the receiving side, UGWBUFY�� will be called when a packet
arrives from the receiving side of the channel. When the UGW protocol wants
to deliver data to the upper layer, it will do so by calling GHOLYHUBGDWD��. In the
following we use the terminology "packet" rather than "segment" for the
protocol data unit. Because the theory developed in this section applies to
computer networks in general and not just to the Internet transport layer,
the generic term "packet" is perhaps more appropriate here.

In this section we consider only the case of unidirectional data transfer,
that is, data transfer from the sending to receiving side. The case of reliable
bidirectional (that is, full duplex) data transfer is conceptually no more
difficult but considerably more tedious to explain. Although we consider only
unidirectional data transfer, it is important to note that the sending and

receiving sides of our protocol will nonetheless need to transmit packets in
both directions, as indicated in Figure 3.8. We will see shortly that, in
addition to exchanging packets containing the data to be transferred, the
sending and receiving sides of UGW will also need to exchange control
packets back and forth. Both the send and receive sides of UGW send
packets to the other side by a call to XGWBVHQG�� (where XGW stands for
unreliable data transfer).

3.4.1: Building a Reliable Data-Transfer Protocol
We now step through a series of protocols, each one becoming more
complex, arriving at a flawless reliable data transfer protocol.
Reliable Data Transfer Over a Perfectly Reliable Channel: UGW���

We first consider the simplest case in which the underlying channel is
completely reliable. The protocol itself, which we’ll call UGW���, is trivial. The
finite-state machine (FSM) definitions for the UGW��� sender and receiver
are shown in Figure 3.9. The sender and receiver FSMs in Figure 3.9 each
have just one state. The arrows in the FSM description indicate the
transition of the protocol from one state to another. (Since each FSM in
Figure 3.9 has just one state, a transition is necessarily from the one state
back to itself; we’ll see more complicated state diagrams shortly.) The event
causing the transition is shown above the horizontal line labeling the
transition, and the action(s) taken when the event occurs are shown below
the horizontal line.

Figure 3.9: UGW���--A protocol for a completely reliable channel

The sending side of UGW simply accepts data from the upper layer via the
UGWBVHQG�GDWD� event, puts the data into a packet (via the action PDNHBSNW
�SDFNHW�GDWD�� and sends the packet into the channel. In practice, the
UGWBVHQG�GDWD� event would result from a procedure call (for example, to
UGWBVHQG��� by the upper-layer application.
On the receiving side, UGW receives a packet from the underlying channel via
the UGWBUFY�SDFNHW� event, removes the data from the packet (via the action
H[WUDFW�SDFNHW�GDWD�� and passes the data up to the upper layer. In practice,
the UGWBUFY�SDFNHW� event would result from a procedure call (for example, to
UGWBUFY��� from the lower-layer protocol.
In this simple protocol, there is no difference between a unit of data and a
packet. Also, all packet flow is from the sender to receiver; with a perfectly
reliable channel there is no need for the receiver side to provide any
feedback to the sender since nothing can go wrong! Note that we have also
assumed that the receiver is able to receive data as fast as the sender

happens to send data. Thus, there is no need for the receiver to ask the
sender to "slow down!"
Reliable Data Transfer Over a Channel with Bit Errors: UGW���

A more realistic model of the underlying channel is one in which bits in a
packet may be corrupted. Such bit errors typically occur in the physical
components of a network as a packet is transmitted, propagates, or is
buffered. We’ll continue to assume for the moment that all transmitted
packets are received (although their bits may be corrupted) in the order in
which they were sent.
Before developing a protocol for reliably communicating over such a
channel, first consider how people might deal with such a situation.
Consider how you yourself might dictate a long message over the phone. In
a typical scenario, the message taker might say "OK" after each sentence
has been heard, understood, and recorded. If the message taker hears a
garbled sentence, you’re asked to repeat the garbled sentence. This
message-dictation protocol uses both positive acknowledgments ("OK")
and negative acknowledgments ("Please repeat that."). These control
messages allow the receiver to let the sender know what has been received
correctly, and what has been received in error and thus requires repeating.
In a computer network setting, reliable data transfer protocols based on
such retransmission are known ARQ (Automatic Repeat reQuest)
protocols.
Fundamentally, three additional protocol capabilities are required in ARQ
protocols to handle the presence of bit errors:

• Error detection. First, a mechanism is needed to allow the receiver to
detect when bit errors have occurred. Recall from the previous
section that UDP uses the Internet checksum field for exactly this
purpose. In Chapter 5 we’ll examine error detection and correction
techniques in greater detail; these techniques allow the receiver to
detect and possibly correct packet bit errors. For now, we need only
know that these techniques require that extra bits (beyond the bits of
original data to be transferred) be sent from the sender to receiver;
these bits will be gathered into the packet checksum field of the
UGW��� data packet.

• Receiver feedback. Since the sender and receiver are typically
executing on different end systems, possibly separated by
thousands of miles, the only way for the sender to learn of the
receiver’s view of the world (in this case, whether or not a packet
was received correctly) is for the receiver to provide explicit feedback
to the sender. The positive (ACK) and negative (NAK)
acknowledgment replies in the message dictation scenario are
examples of such feedback. Our UGW��� protocol will similarly send
ACK and NAK packets back from the receiver to the sender. In
principle, these packets need only be one bit long; for example, a 0
value could indicate a NAK and a value of 1 could indicate an ACK.

• Retransmission. A packet that is received in error at the receiver will
be retransmitted by the sender.

Figure 3.10 shows the FSM representation of UGW���, a data transfer
protocol employing error detection, positive acknowledgments, and
negative acknowledgments.

Figure 3.10: UGW���--A protocol for a channel with bit errors

The send side of UGW��� has two states. In one state, the send-side protocol
is waiting for data to be passed down from the upper layer. In the other
state, the sender protocol is waiting for an ACK or a NAK packet from the
receiver. If an ACK packet is received (the notation UGWBUFY�UFYSNW��		�LV$&.
�UFYSNW��in Figure 3.10 corresponds to this event), the sender knows the
most recently transmitted packet has been received correctly and thus the
protocol returns to the state of waiting for data from the upper layer. If a
NAK is received, the protocol retransmits the last packet and waits for an
ACK or NAK to be returned by the receiver in response to the retransmitted
data packet. It is important to note that when the receiver is in the wait-for-
ACK-or-NAK state, it cannot get more data from the upper layer; that will

only happen after the sender receives an ACK and leaves this state. Thus,
the sender will not send a new piece of data until it is sure that the receiver
has correctly received the current packet. Because of this behavior,
protocols such as UGW��� are known as stop-and-wait protocols.
The receiver-side FSM for UGW��� still has a single state. On packet arrival,
the receiver replies with either an ACK or a NAK, depending on whether or
not the received packet is corrupted. In Figure 3.10, the notation
UGWBUFY�UFYSNW��		�FRUUXSW�UFYSNW� corresponds to the event in which a packet
is received and is found to be in error.
Protocol UGW��� may look as if it works but, unfortunately, it has a fatal flaw.
In particular, we haven’t accounted for the possibility that the ACK or NAK
packet could be corrupted! (Before proceeding on, you should think about
how this problem may be fixed.) Unfortunately, our slight oversight is not as
innocuous as it may seem. Minimally, we will need to add checksum bits to
ACK/NAK packets in order to detect such errors. The more difficult question
is how the protocol should recover from errors in ACK or NAK packets. The
difficulty here is that if an ACK or NAK is corrupted, the sender has no way
of knowing whether or not the receiver has correctly received the last piece
of transmitted data.
Consider three possibilities for handling corrupted ACKs or NAKs:

• For the first possibility, consider what a human might do in the
message dictation scenario. If the speaker didn’t understand the
"OK" or "Please repeat that" reply from the receiver, the speaker
would probably ask "What did you say?" (thus introducing a new type
of sender-to-receiver packet to our protocol). The speaker would
then repeat the reply. But what if the speaker’s "What did you say?"
is corrupted? The receiver, having no idea whether the garbled
sentence was part of the dictation or a request to repeat the last
reply, would probably then respond with "What did you say?" And
then, of course, that response might be garbled. Clearly, we’re
heading down a difficult path.

• A second alternative is to add enough checksum bits to allow the
sender to not only detect, but to recover from, bit errors. This solves
the immediate problem for a channel that can corrupt packets but not
lose them.

• A third approach is for the sender to simply resend the current data
packet when it receives a garbled ACK or NAK packet. This method,
however, introduces duplicate packets into the sender-to-receiver
channel. The fundamental difficulty with duplicate packets is that the
receiver doesn’t know whether the ACK or NAK it last sent was
received correctly at the sender. Thus, it cannot know a priori
whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all
existing data-transfer protocols including TCP) is to add a new field to the

data packet and have the sender number its data packets by putting a
sequence number into this field. The receiver then need only check this
sequence number to determine whether or not the received packet is a
retransmission. For this simple case of a stop-and-wait protocol, a one-bit
sequence number will suffice, since it will allow the receiver to know
whether the sender is resending the previously transmitted packet (the
sequence number of the received packet has the same sequence number
as the most recently received packet) or a new packet (the sequence
number changes, moving "forward" in modulo-2 arithmetic). Since we are
currently assuming a channel that does not lose packets, ACK and NAK
packets do not themselves need to indicate the sequence number of the
packet they are acknowledging. The sender knows that a received ACK or
NAK packet (whether garbled or not) was generated in response to its most
recently transmitted data packet.
Figures 3.11 and 3.12 show the FSM description for UGW���, our fixed
version of UGW���. The UGW��� sender and receiver FSM’s each now have
twice as many states as before. This is because the protocol state must
now reflect whether the packet currently being sent (by the sender) or
expected (at the receiver) should have a sequence number of 0 or 1. Note
that the actions in those states where a 0-numbered packet is being sent or
expected are mirror images of those where a 1-numbered packet is being
sent or expected; the only differences have to do with the handling of the
sequence number.

Figure 3.11: UGW��� sender

Figure 3.12: UGW��� receiver

Protocol UGW��� uses both positive and negative acknowledgments from the
receiver to the sender. A negative acknowledgment is sent whenever a
corrupted packet or an out-of-order packet is received. We can accomplish
the same effect as a NAK if, instead of sending a NAK, we instead send an
ACK for the last correctly received packet. A sender that receives two ACKs
for the same packet (that is, receives duplicate ACKs) knows that the
receiver did not correctly receive the packet following the packet that is
being ACKed twice. Many TCP implementations use the receipt of so-called
"triple duplicate ACKs" (three ACK packets all acknowledging the same
already-acknowledged packet) to trigger a retransmission at the sender.
Our NAK-free reliable data transfer protocol for a channel with bit errors is
UGW���, shown in Figures 3.13 and 3.14.

Figure 3.13: UGW��� sender

Figure 3.14: UGW��� receiver
Reliable Data Transfer Over a Lossy Channel with Bit Errors: UGW���

Suppose now that in addition to corrupting bits, the underlying channel can
lose packets as well, a not-uncommon event in today’s computer networks
(including the Internet). Two additional concerns must now be addressed by
the protocol: how to detect packet loss and what to do when packet loss
occurs. The use of checksumming, sequence numbers, ACK packets, and
retransmissions--the techniques already developed in UGW���--will allow us to
answer the latter concern. Handling the first concern will require adding a

new protocol mechanism.
There are many possible approaches toward dealing with packet loss
(several more of which are explored in the exercises at the end of the
chapter). Here, we’ll put the burden of detecting and recovering from lost
packets on the sender. Suppose that the sender transmits a data packet
and either that packet, or the receiver’s ACK of that packet, gets lost. In
either case, no reply is forthcoming at the sender from the receiver. If the
sender is willing to wait long enough so that it is certain that a packet has
been lost, it can simply retransmit the data packet. You should convince
yourself that this protocol does indeed work.
But how long must the sender wait to be certain that something has been
lost? The sender must clearly wait at least as long as a round-trip delay
between the sender and receiver (which may include buffering at
intermediate routers or gateways) plus whatever amount of time is needed
to process a packet at the receiver. In many networks, this worst-case
maximum delay is very difficult to even estimate, much less know with
certainty. Moreover, the protocol should ideally recover from packet loss as
soon as possible; waiting for a worst-case delay could mean a long wait
until error recovery is initiated. The approach thus adopted in practice is for
the sender to "judiciously" choose a time value such that packet loss is
likely, although not guaranteed, to have happened. If an ACK is not
received within this time, the packet is retransmitted. Note that if a packet
experiences a particularly large delay, the sender may retransmit the
packet even though neither the data packet nor its ACK have been lost.
This introduces the possibility of duplicate data packets in the sender-to-
receiver channel. Happily, protocol UGW��� already has enough functionality
(that is, sequence numbers) to handle the case of duplicate packets.
From the sender’s viewpoint, retransmission is a panacea. The sender does
not know whether a data packet was lost, an ACK was lost, or if the packet
or ACK was simply overly delayed. In all cases, the action is the same:
retransmit. In order to implement a time-based retransmission mechanism,
a countdown timer will be needed that can interrupt the sender after a
given amount of timer has expired. The sender will thus need to be able to
(1) start the timer each time a packet (either a first-time packet, or a
retransmission) is sent, (2) respond to a timer interrupt (taking appropriate
actions), and (3) stop the timer.
The existence of sender-generated duplicate packets and packet (data,
ACK) loss also complicates the sender’s processing of any ACK packet it
receives. If an ACK is received, how is the sender to know if it was sent by
the receiver in response to its (sender’s) own most recently transmitted
packet, or is a delayed ACK sent in response to an earlier transmission of a
different data packet? The solution to this dilemma is to augment the ACK
packet with an acknowledgment field. When the receiver generates an
ACK, it will copy the sequence number of the data packet being
acknowledged into this acknowledgment field. By examining the contents of
the acknowledgment field, the sender can determine the sequence number

of the packet being positively acknowledged.
Figure 3.15 shows the sender FSM for UGW���, a protocol that reliably
transfers data over a channel that can corrupt or lose packets. Figure 3.16
shows how the protocol operates with no lost or delayed packets, and how
it handles lost data packets.

Figure 3.15: UGW��� sender FSM

Figure 3.16: Operation of UGW���, the alternating-bit protocol
In Figure 3.16, time moves forward from the top of the diagram toward the
bottom of the diagram; note that a receive time for a packet is necessarily
later than the send time for a packet as a result of transmission and
propagation delays. In Figures 3.16b-d, the send-side brackets indicate the
times at which a timer is set and later times out. Several of the more subtle
aspects of this protocol are explored in the exercises at the end of this
chapter. Because packet sequence numbers alternate between 0 and 1,
protocol UGW��� is sometimes known as the alternating-bit protocol. We
have now assembled the key elements of a data-transfer protocol.
Checksums, sequence numbers, timers, and positive and negative
acknowledgment packets each play a crucial and necessary role in the
operation of the protocol. We now have a working reliable data-transfer
protocol!

3.4.2: Pipelined Reliable Data Transfer Protocols

Protocol UGW��� is a functionally correct protocol, but it is unlikely that
anyone would be happy with its performance, particularly in today’s high-
speed networks. At the heart of UGW���’s performance problem is the fact
that it is a stop-and-wait protocol.

To appreciate the performance impact of this stop-and-wait behavior,
consider an idealized case of two end hosts, one located on the West
Coast of the United States and the other located on the East Coast. The
speed-of-light propagation delay, Tprop, between these two end systems is
approximately 15 milliseconds. Suppose that they are connected by a
channel with a capacity, C, of 1 gigabit (109 bits) per second. With a packet
size, SP, of 1 Kbytes per packet including both header fields and data, the
time needed to actually transmit the packet into the 1Gbps link is

With our stop-and-wait protocol, if the sender begins sending the packet at t
= 0, then at t = 8 microseconds, the last bit enters the channel at the sender
side. The packet then makes its 15-msec cross-country journey, as
depicted in Figure 3.17a, with the last bit of the packet emerging at the
receiver at t = 15.008 msec.

Figure 3.17: Stop-and-wait versus pipelined protocol
Assuming for simplicity that ACK packets are the same size as data
packets and that the receiver can begin sending an ACK packet as soon as
the last bit of a data packet is received, the last bit of the ACK packet
emerges back at the receiver at t = 30.016 msec. Thus, in 30.016 msec, the
sender was busy (sending or receiving) for only 0.016 msec. If we define
the utilization of the sender (or the channel) as the fraction of time the
sender is actually busy sending bits via the channel, we have a rather
dismal sender utilization, Usender, of

That is, the sender was busy only 1.5 hundredths of one percent of the
time. Viewed another way, the sender was only able to send 1 kilobyte in
30.016 milliseconds, an effective throughput of only 33 kilobytes per
second--even though a 1 gigabit per second link was available! Imagine the
unhappy network manager who just paid a fortune for a gigabit capacity link
but manages to get a throughput of only 33 kilobytes per second! This is a
graphic example of how network protocols can limit the capabilities
provided by the underlying network hardware. Also, we have neglected
lower-layer protocol-processing times at the sender and receiver, as well as
the processing and queuing delays that would occur at any intermediate
routers between the sender and receiver. Including these effects would only

serve to further increase the delay and further accentuate the poor
performance.
The solution to this particular performance problem is a simple one: rather
than operate in a stop-and-wait manner, the sender is allowed to send
multiple packets without waiting for acknowledgments, as shown in Figure
3.17(b). Since the many in-transit sender-to-receiver packets can be
visualized as filling a pipeline, this technique is known as pipelining.
Pipelining has several consequences for reliable data transfer protocols:

• The range of sequence numbers must be increased, since each in-
transit packet (not counting retransmissions) must have a unique
sequence number and there may be multiple, in-transit,
unacknowledged packets.

• The sender and receiver sides of the protocols may have to buffer
more than one packet. Minimally, the sender will have to buffer
packets that have been transmitted, but not yet acknowledged.
Buffering of correctly received packets may also be needed at the
receiver, as discussed below.

The range of sequence numbers needed and the buffering requirements
will depend on the manner in which a data transfer protocol responds to
lost, corrupted, and overly delayed packets. Two basic approaches toward
pipelined error recovery can be identified: Go-Back-N and selective
repeat.

3.4.3: Go-Back-N (GBN)
In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple
packets (when available) without waiting for an acknowledgment, but is
constrained to have no more than some maximum allowable number, N, of
unacknowledged packets in the pipeline. Figure 3.18 shows the sender’s
view of the range of sequence numbers in a GBN protocol. If we define EDVH
to be the sequence number of the oldest unacknowledged packet and
QH[WVHTQXP to be the smallest unused sequence number (that is, the
sequence number of the next packet to be sent), then four intervals in the
range of sequence numbers can be identified. Sequence numbers in the
interval >��EDVH-1] correspond to packets that have already been transmitted
and acknowledged. The interval >EDVH�QH[WVHTQXP-�@ corresponds to
packets that have been sent but not yet acknowledged. Sequence numbers
in the interval >QH[WVHTQXP�EDVH+1-�] can be used for packets that can be
sent immediately, should data arrive from the upper layer. Finally,
sequence numbers greater than or equal to EDVH+1 cannot be used until an
unacknowledged packet currently in the pipeline has been acknowledged.

Figure 3.18: Sender’s view of sequence numbers in Go-Back-N
As suggested by Figure 3.18, the range of permissible sequence numbers
for transmitted but not-yet-acknowledged packets can be viewed as a
"window" of size N over the range of sequence numbers. As the protocol
operates, this window slides forward over the sequence number space. For
this reason, N is often referred to as the window size and the GBN
protocol itself as a sliding-window protocol. You might be wondering why
we would even limit the number of outstanding, unacknowledged packets to
a value of N in the first place. Why not allow an unlimited number of such
packets? We will see in Section 3.5 that flow control is one reason to
impose a limit on the sender. We’ll examine another reason to do so in
Section 3.7, when we study TCP congestion control.
In practice, a packet’s sequence number is carried in a fixed-length field in
the packet header. If k is the number of bits in the packet sequence number
field, the range of sequence numbers is thus [0,2k - 1]. With a finite range of
sequence numbers, all arithmetic involving sequence numbers must then
be done using modulo 2k arithmetic. (That is, the sequence number space
can be thought of as a ring of size 2k, where sequence number 2k - 1 is
immediately followed by sequence number 0.) Recall that UGW��� had a one-
bit sequence number and a range of sequence numbers of [0,1]. Several of
the problems at the end of this chapter explore consequences of a finite
range of sequence numbers. We will see in Section 3.5 that TCP has a 32-
bit sequence-number field, where TCP sequence numbers count bytes in
the byte stream rather than packets.
Figures 3.19 and 3.20 give an extended-FSM description of the sender and
receiver sides of an ACK-based, NAK-free, GBN protocol. We refer to this
FSM description as an extended FSM since we have added variables
(similar to programming language variables) for EDVH and QH[WVHTQXP and
also added operations on these variables and conditional actions involving
these variables. Note that the extended FSM specification is now beginning
to look somewhat like a programming language specification. [Bochman
1984] provides an excellent survey of additional extensions to FSM
techniques as well as other programming language-based techniques for

specifying protocols.

Figure 3.19: Extended FSM description of GBN sender

Figure 3.20: Extended FSM description of GBN receiver
The GBN sender must respond to three types of events:

• Invocation from above. When UGWBVHQG�� is called from above, the
sender first checks to see if the window is full, that is, whether there
are N outstanding, unacknowledged packets. If the window is not
full, a packet is created and sent, and variables are appropriately
updated. If the window is full, the sender simply returns the data
back to the upper layer, an implicit indication that the window is full.
The upper layer would presumably then have to try again later. In a
real implementation, the sender would more likely have either
buffered (but not immediately sent) this data, or would have a
synchronization mechanism (for example, a semaphore or a flag)
that would allow the upper layer to call UGWBVHQG�� only when the
window is not full.

• Receipt of an ACK. In our GBN protocol, an acknowledgment for
packet with sequence number n will be taken to be a cumulative
acknowledgment, indicating that all packets with a sequence
number up to and including n have been correctly received at the
receiver. We’ll come back to this issue shortly when we examine the
receiver side of GBN.

• A timeout event. The protocol’s name, "Go-Back-N," is derived from
the sender’s behavior in the presence of lost or overly delayed
packets. As in the stop-and-wait protocol, a timer will again be used
to recover from lost data or acknowledgment packets. If a timeout
occurs, the sender resends all packets that have been previously
sent but that have not yet been acknowledged. Our sender in Figure
3.19 uses only a single timer, which can be thought of as a timer for
the oldest transmitted-but-not-yet-acknowledged packet. If an ACK is
received but there are still additional transmitted-but-yet-to-be-
acknowledged packets, the timer is restarted. If there are no
outstanding unacknowledged packets, the timer is stopped.

The receiver’s actions in GBN are also simple. If a packet with sequence
number n is received correctly and is in order (that is, the data last
delivered to the upper layer came from a packet with sequence number n -
1), the receiver sends an ACK for packet n and delivers the data portion of
the packet to the upper layer. In all other cases, the receiver discards the
packet and resends an ACK for the most recently received in-order packet.
Note that since packets are delivered one-at-a-time to the upper layer, if
packet k has been received and delivered, then all packets with a sequence
number lower than k have also been delivered. Thus, the use of cumulative
acknowledgments is a natural choice for GBN.
In our GBN protocol, the receiver discards out-of-order packets. Although it
may seem silly and wasteful to discard a correctly received (but out-of-
order) packet, there is some justification for doing so. Recall that the
receiver must deliver data, in order, to the upper layer. Suppose now that
packet n is expected, but packet n + 1 arrives. Since data must be delivered
in order, the receiver could buffer (save) packet n + 1 and then deliver this
packet to the upper layer after it had later received and delivered packet n.
However, if packet n is lost, both it and packet n + 1 will eventually be
retransmitted as a result of the GBN retransmission rule at the sender.
Thus, the receiver can simply discard packet n + 1. The advantage of this
approach is the simplicity of receiver buffering--the receiver need not buffer
any out-of-order packets. Thus, while the sender must maintain the upper
and lower bounds of its window and the position of QH[WVHTQXP within this
window, the only piece of information the receiver need maintain is the
sequence number of the next in-order packet. This value is held in the
variable H[SHFWHGVHTQXP, shown in the receiver FSM in Figure 3.20. Of
course, the disadvantage of throwing away a correctly received packet is
that the subsequent retransmission of that packet might be lost or garbled
and thus even more retransmissions would be required.
Figure 3.21 shows the operation of the GBN protocol for the case of a
window size of four packets. Because of this window size limitation, the
sender sends packets 0 through 3 but then must wait for one or more of
these packets to be acknowledged before proceeding. As each successive
ACK (for example, ACK0 and ACK1) is received, the window slides forward

and the sender can transmit one new packet (pkt4 and pkt5, respectively).
On the receiver side, packet 2 is lost and thus packets 3, 4, and 5 are found
to be out-of-order and are discarded.

Figure 3.21: Go-Back-N in operation
Before closing our discussion of GBN, it is worth noting that an
implementation of this protocol in a protocol stack would likely be structured
similar to that of the extended FSM in Figure 3.19. The implementation
would also likely be in the form of various procedures that implement the
actions to be taken in response to the various events that can occur. In
such event-based programming, the various procedures are called
(invoked) either by other procedures in the protocol stack, or as the result of
an interrupt. In the sender, these events would be (1) a call from the upper-
layer entity to invoke UGWBVHQG��, (2) a timer interrupt, and (3) a call from the
lower layer to invoke UGWBUFY�� when a packet arrives. The programming
exercises at the end of this chapter will give you a chance to actually
implement these routines in a simulated, but realistic, network setting.
We note here that the GBN protocol incorporates almost all of the
techniques that we will encounter when we study the reliable data-transfer
components of TCP in Section 3.5. These techniques include the use of
sequence numbers, cumulative acknowledgments, checksums, and a time-
out/retransmit operation. In this sense, TCP has a number of elements of a
GBN-style protocol. There are, however, some differences between GBN

and TCP. Many TCP implementations will buffer correctly received but out-
of-order segments [Stevens 1994]. A proposed modification to TCP, the so-
called selective acknowledgment [RFC 2581], will also allow a TCP receiver
to selectively acknowledge a single out-of-order packet rather than
cumulatively acknowledge the last correctly received packet. The notion of
a selective acknowledgment is at the heart of the second broad class of
pipelined protocols: the so-called selective-repeat protocols that we study
below. TCP is thus probably best categorized as a hybrid of Go-Back-N and
selective-repeat protocols.

3.4.4: Selective Repeat (SR)
The GBN protocol allows the sender to potentially "fill the pipeline" in Figure
3.17 with packets, thus avoiding the channel utilization problems we noted
with stop-and-wait protocols. There are, however, scenarios in which GBN
itself will suffer from performance problems. In particular, when the window
size and bandwidth-delay product are both large, many packets can be in
the pipeline. A single packet error can thus cause GBN to retransmit a large
number of packets, many of which may be unnecessary. As the probability
of channel errors increases, the pipeline can become filled with these
unnecessary retransmissions. Imagine in our message dictation scenario, if
every time a word was garbled, the surrounding 1,000 words (for example,
a window size of 1,000 words) had to be repeated. The dictation would be
slowed by all of the reiterated words.
As the name suggests, Selective-Repeat (SR) protocols avoid unnecessary
retransmissions by having the sender retransmit only those packets that it
suspects were received in error (that is, were lost or corrupted) at the
receiver. This individual, as-needed, retransmission will require that the
receiver individually acknowledge correctly received packets. A window
size of N will again be used to limit the number of outstanding,
unacknowledged packets in the pipeline. However, unlike GBN, the sender
will have already received ACKs for some of the packets in the window.
Figure 3.22 shows the SR sender’s view of the sequence number space.
Figure 3.23 details the various actions taken by the SR sender.

Figure 3.22: Selective Repeat (SR) sender and receiver views of sequence-number space

1. Data received from above. When data is received from above, the
SR sender checks the next available sequence number for the
packet. If the sequence number is within the sender’s window, the
data is packetized and sent; otherwise it is either buffered or
returned to the upper layer for later transmission, as in GBN.

2. Timeout. Timers are again used to protect against lost packets.
However, each packet must now have its own logical timer, since
only a single packet will be transmitted on timeout. A single
hardware timer can be used to mimic the operation of multiple logical
timers [Varghese 1997].

3. ACK received. If an ACK is received, the SR sender marks that
packet as having been received, provided it is in the window. If the
packet’s sequence number is equal to VHQG�EDVH, the window base is
moved forward to the unacknowledged packet with the smallest
sequence number. If the window moves and there are untransmitted
packets with sequence numbers that now fall within the window,
these packets are transmitted.

Figure 3.23: Selective Repeat (SR) sender events and actions

The SR receiver will acknowledge a correctly received packet whether or
not it is in-order. Out-of-order packets are buffered until any missing
packets (that is, packets with lower sequence numbers) are received, at
which point a batch of packets can be delivered in-order to the upper layer.
Figure 3.24 itemizes the various actions taken by the SR receiver. Figure
3.25 shows an example of SR operation in the presence of lost packets.
Note that in Figure 3.25, the receiver initially buffers packets 3 and 4, and
delivers them together with packet 2 to the upper layer when packet 2 is
finally received.

1. Packet with sequence number in >UFYBEDVH��UFYBEDVH�1��@ is correctly
received. In this case, the received packet falls within the receiver’s
window and a selective ACK packet is returned to the sender. If the
packet was not previously received, it is buffered. If this packet has a
sequence number equal to the base of the receive window (UFYBEDVH
in Figure 3.22), then this packet, and any previously buffered and
consecutively numbered (beginning with UFYBEDVH) packets are
delivered to the upper layer. The receive window is then moved
forward by the number of packets delivered to the upper layer. As an
example, consider Figure 3.25. When a packet with a sequence
number of UFYBEDVH � is received, it and packets UFYBEDVH���DQG
UFYBEDVH�� can be delivered to the upper layer.

2. Packet with sequence number in >UFYBEDVH�1��UFYBEDVH��@ is received.
In this case, an ACK must be generated, even though this is a
packet that the receiver has previously acknowledged.

3. Otherwise. Ignore the packet.

Figure 3.24: Selective Repeat (SR) receiver events and actions

Figure 3.25: SR operation
It is important to note that in step 2 in Figure 3.24, the receiver re-
acknowledges (rather than ignores) already received packets with certain
sequence numbers below the current window base. You should convince
yourself that this re-acknowledgment is indeed needed. Given the sender
and receiver sequence-number spaces in Figure 3.22 for example, if there
is no ACK for packet VHQGBEDVH propagating from the receiver to the sender,
the sender will eventually retransmit packet VHQGBEDVH, even though it is
clear (to us, not the sender!) that the receiver has already received that
packet. If the receiver were not to acknowledge this packet, the sender’s
window would never move forward! This example illustrates an important
aspect of SR protocols (and many other protocols as well). The sender and
receiver will not always have an identical view of what has been received
correctly and what has not. For SR protocols, this means that the sender
and receiver windows will not always coincide.
The lack of synchronization between sender and receiver windows has
important consequences when we are faced with the reality of a finite range
of sequence numbers. Consider what could happen, for example, with a
finite range of four packet sequence numbers, 0, 1, 2, 3 and a window size
of three. Suppose packets 0 through 2 are transmitted and correctly
received and acknowledged at the receiver. At this point, the receiver’s
window is over the fourth, fifth, and sixth packets, which have sequence
numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first
scenario, shown in Figure 3.26a, the ACKs for the first three packets are
lost and the sender retransmits these packets. The receiver thus next
receives a packet with sequence number 0--a copy of the first packet sent.

Figure 3.26: SR receiver dilemma with too-large windows: A new packet or
retransmission?

In the second scenario, shown in Figure 3.26b, the ACKs for the first three
packets are all delivered correctly. The sender thus moves its window
forward and sends the fourth, fifth, and sixth packets, with sequence
numbers 3, 0, 1, respectively. The packet with sequence number 3 is lost,
but the packet with sequence number 0 arrives--a packet containing new
data.
Now consider the receiver’s viewpoint in Figure 3.26, which has a figurative
curtain between the sender and the receiver, since the receiver cannot
"see" the actions taken by the sender. All the receiver observes is the

sequence of messages it receives from the channel and sends into the
channel. As far as it is concerned, the two scenarios in Figure 3.26 are
identical. There is no way of distinguishing the retransmission of the first
packet from an original transmission of the fifth packet. Clearly, a window
size that is 1 less than the size of the sequence number space won’t work.
But how small must the window size be? A problem at the end of the
chapter asks you to show that the window size must be less than or equal
to half the size of the sequence-number space for SR protocols.
Let us conclude our discussion of reliable data transfer protocols by
considering one remaining assumption in our underlying channel model.
Recall that we have assumed that packets cannot be reordered within the
channel between the sender and receiver. This is generally a reasonable
assumption when the sender and receiver are connected by a single
physical wire. However, when the "channel" connecting the two is a
network, packet reordering can occur. One manifestation of packet ordering
is that old copies of a packet with a sequence or acknowledgment number
of x can appear, even though neither the sender’s nor the receiver’s window
contains x. With packet reordering, the channel can be thought of as
essentially buffering packets and spontaneously emitting these packets at
any point in the future. Because sequence numbers may be reused, some
care must be taken to guard against such duplicate packets. The approach
taken in practice is to ensure that a sequence number is not reused until
the sender is relatively "sure" than any previously sent packets with
sequence number x are no longer in the network. This is done by assuming
that a packet cannot "live" in the network for longer than some fixed
maximum amount of time. A maximum packet lifetime of approximately
three minutes is assumed in the TCP extensions for high-speed networks
[RFC 1323]. [Sunshine 1978] describes a method for using sequence
numbers such that reordering problems can be completely avoided.

Online Book

3.5: Connection-Oriented Transport: TCP
Now that we have covered the underlying principles of reliable data transfer,
let’s turn to TCP--the Internet’s transport-layer, connection-oriented, reliable
transport protocol. In this section, we’ll see that in order to provide reliable
data transfer, TCP relies on many of the underlying principles discussed in the
previous section, including error detection, retransmissions, cumulative
acknowledgments, timers, and header fields for sequence and
acknowledgment numbers. TCP is defined in RFC 793, RFC 1122, RFC 1323,
RFC 2018, and RFC 2581.

3.5.1: The TCP Connection
TCP provides multiplexing, demultiplexing, and error detection in exactly the
same manner as UDP. Nevertheless, TCP and UDP differ in many ways. The
most fundamental difference is that UDP is connectionless, while TCP is
connection-oriented. UDP is connectionless because it sends data without
ever establishing a connection. TCP is connection-oriented because before
one application process can begin to send data to another, the two processes
must first "handshake" with each other--that is, they must send some
preliminary segments to each other to establish the parameters of the ensuing
data transfer. As part of the TCP connection establishment, both sides of the
connection will initialize many TCP "state variables" (many of which will be
discussed in this section and in Section 3.7) associated with the TCP
connection.
The TCP "connection" is not an end-to-end TDM or FDM circuit as in a circuit-
switched network. Nor is it a virtual circuit (see Chapter 1), as the connection
state resides entirely in the two end systems. Because the TCP protocol runs
only in the end systems and not in the intermediate network elements (routers
and bridges), the intermediate network elements do not maintain TCP
connection state. In fact, the intermediate routers are completely oblivious to
TCP connections; they see datagrams, not connections.
A TCP connection provides for full duplex data transfer. If there is a TCP
connection between process A on one host and process B on another host,
then application-level data can flow from A to B at the same time as
application-level data flows from B to A. A TCP connection is also always
point-to-point, that is, between a single sender and a single receiver. So
called "multicasting" (see Section 4.8)--the transfer of data from one sender to
many receivers in a single send operation--is not possible with TCP. With
TCP, two hosts are company and three are a crowd!
Let’s now take a look at how a TCP connection is established. Suppose a
process running in one host wants to initiate a connection with another
process in another host. Recall that the process that is initiating the
connection is called the client process, while the other process is called the
server process. The client application process first informs the client TCP that
it wants to establish a connection to a process in the server. Recall from
Section 2.6, a Java client program does this by issuing the command:
6RFNHW�FOLHQW6RFNHW� �QHZ�6RFNHW��KRVWQDPH���SRUW�QXPEHU��

The transport layer in the client then proceeds to establish a TCP connection
with the TCP in the server. We will discuss in some detail the connection
establishment procedure at the end of this section. For now it suffices to know
that the client first sends a special TCP segment; the server responds with a
second special TCP segment; and finally the client responds again with a third
special segment. The first two segments contain no "payload," that is, no
application-layer data; the third of these segments may carry a payload.
Because three segments are sent between the two hosts, this connection
establishment procedure is often referred to as a three-way handshake.

Once a TCP connection is established, the two application processes can
send data to each other; because TCP is full-duplex they can send data at the
same time. Let us consider the sending of data from the client process to the
server process. The client process passes a stream of data through the socket
(the door of the process), as described in Section 2.6. Once the data passes
through the door, the data is now in the hands of TCP running in the client. As
shown in Figure 3.27, TCP directs this data to the connection’s send buffer,
which is one of the buffers that is set aside during the initial three-way
handshake. From time to time, TCP will "grab" chunks of data from the send
buffer. Interestingly, the TCP specification [RFC 793] is very "laid back" about
specifying when TCP should actually send buffered data, stating that TCP
should "send that data in segments at its own convenience." The maximum
amount of data that can be grabbed and placed in a segment is limited by the
maximum segment size (MSS). The MSS depends on the TCP
implementation (determined by the operating system) and can often be
configured; common values are 1,500 bytes, 536 bytes, and 512 bytes.
(These segment sizes are often chosen in order to avoid IP fragmentation,
which will be discussed in the next chapter.) Note that the MSS is the
maximum amount of application-level data in the segment, not the maximum
size of the TCP segment including headers. (This terminology is confusing,
but we have to live with it, as it is well entrenched.)

Figure 3.27: TCP send and receive buffers
TCP encapsulates each chunk of client data with a TCP header, thereby
forming TCP segments. The segments are passed down to the network layer,
where they are separately encapsulated within network-layer IP datagrams.
The IP datagrams are then sent into the network. When TCP receives a
segment at the other end, the segment’s data is placed in the TCP
connection’s receive buffer. The application reads the stream of data from
this buffer. Each side of the connection has its own send buffer and its own
receive buffer. The send and receive buffers for data flowing in one direction
are shown in Figure 3.27.
We see from this discussion that a TCP connection consists of buffers,
variables, and a socket connection to a process in one host, and another set
of buffers, variables, and a socket connection to a process in another host. As
mentioned earlier, no buffers or variables are allocated to the connection in
the network elements (routers, bridges, and repeaters) between the hosts.

Vinton Cerf, Robert Kahn, and TCP/IP
In the early 1970s, packet-switched networks began to proliferate, with the ARPAnet--the
precursor of the Internet--being just one of many networks. Each of these networks had its
own protocol. Two researchers, Vinton Cerf and Robert Kahn, recognized the importance of
interconnecting these networks, and invented a cross-network protocol called TCP/IP, which
stands for Transmission Control Protocol/ Internet Protocol. Although Cerf and Kahn began by
seeing the protocol as a single entity, it was later split into its two parts, TCP and IP, which
operated separately. Cerf and Kahn published a paper on TCP/IP in May 1974 in IEEE
Transactions on Communications Technology.

The TCP/IP protocol, which is the bread and butter of today’s Internet, was devised before PCs and workstations, before the
proliferation of Ethernets and other local area network technologies, before the Web, streaming audio, and chat. Cerf and
Kahn saw the need for a networking protocol that, on the one hand, provides broad support for yet-to-be-defined applications,
and, on the other hand, allows arbitrary hosts and link layer protocols to interoperate.

3.5.2: TCP Segment Structure
Having taken a brief look at the TCP connection, let’s examine the TCP
segment structure. The TCP segment consists of header fields and a data
field. The data field contains a chunk of application data. As mentioned above,
the MSS limits the maximum size of a segment’s data field. When TCP sends
a large file, such as an encoded image as part of a Web page, it typically
breaks the file into chunks of size MSS (except for the last chunk, which will
often be less than the MSS). Interactive applications, however, often transmit
data chunks that are smaller than the MSS; for example, with remote login
applications like Telnet, the data field in the TCP segment is often only one
byte. Because the TCP header is typically 20 bytes (12 bytes more than the
UDP header), segments sent by Telnet may only be 21 bytes in length.
Figure 3.28 shows the structure of the TCP segment. As with UDP, the header
includes source and destination port numbers, that are used for
multiplexing/ demultiplexing data from/to upper layer applications. Also, as
with UDP, the header includes a checksum field.

Figure 3.28: TCP segment structure
A TCP segment header also contains the following fields:

• The 32-bit sequence number field and the 32-bit acknowledgment
number field are used by the TCP sender and receiver in
implementing a reliable data-transfer service, as discussed below.

• The 16-bit window-size field is used for flow control. We will see
shortly that it is used to indicate the number of bytes that a receiver is
willing to accept.

• The 4-bit length field specifies the length of the TCP header in 32-bit
words. The TCP header can be of variable length due to the TCP
options field, discussed below. (Typically, the options field is empty, so
that the length of the typical TCP header is 20 bytes.)

• The optional and variable length options field is used when a sender
and receiver negotiate the maximum segment size (MSS) or as a
window scaling factor for use in high-speed networks. A timestamping
option is also defined. See RFC 854 and RFC 1323 for additional
details.

• The flag field contains 6 bits. The ACK bit is used to indicate that the
value carried in the acknowledgment field is valid. The RST, SYN, and
FIN bits are used for connection setup and teardown, as we will discuss
at the end of this section. When the PSH bit is set, this is an indication
that the receiver should pass the data to the upper layer immediately.

Finally, the URG bit is used to indicate that there is data in this segment
that the sending-side upper layer entity has marked as "urgent." The
location of the last byte of this urgent data is indicated by the 16-bit
urgent data pointer. TCP must inform the receiving-side upper-layer
entity when urgent data exists and pass it a pointer to the end of the
urgent data. (In practice, the PSH, URG, and pointer to urgent data are
not used. However, we mention these fields for completeness.)

3.5.3: Sequence Numbers and Acknowledgment Numbers
Two of the most important fields in the TCP segment header are the sequence
number field and the acknowledgment number field. These fields are a critical
part of TCP’s reliable data transfer service. But before discussing how these
fields are used to provide reliable data transfer, let us first explain what exactly
TCP puts in these fields.
TCP views data as an unstructured, but ordered, stream of bytes. TCP’s use
of sequence numbers reflects this view in that sequence numbers are over the
stream of transmitted bytes and not over the series of transmitted segments.
The sequence number for a segment is the byte-stream number of the first
byte in the segment. Let’s look at an example. Suppose that a process in host
A wants to send a stream of data to a process in host B over a TCP
connection. The TCP in host A will implicitly number each byte in the data
stream. Suppose that the data stream consists of a file consisting of 500,000
bytes, that the MSS is 1,000 bytes, and that the first byte of the data stream is
numbered zero. As shown in Figure 3.29, TCP constructs 500 segments out
of the data stream. The first segment gets assigned sequence number 0, the
second segment gets assigned sequence number 1000, the third segment
gets assigned sequence number 2000, and so on. Each sequence number is
inserted in the sequence number field in the header of the appropriate TCP
segment.

Figure 3.29: Dividing file data into TCP segments
Now let us consider acknowledgment numbers. These are a little trickier than
sequence numbers. Recall that TCP is full-duplex, so that host A may be
receiving data from host B while it sends data to host B (as part of the same
TCP connection). Each of the segments that arrive from host B have a
sequence number for the data flowing from B to A. The acknowledgment
number that host A puts in its segment is the sequence number of the next
byte host A is expecting from host B. It is good to look at a few examples to
understand what is going on here. Suppose that host A has received all bytes
numbered 0 through 535 from B and suppose that it is about to send a
segment to host B. In other words, host A is waiting for byte 536 and all the
subsequent bytes in host B’s data stream. So host A puts 536 in the

acknowledgment number field of the segment it sends to B.
As another example, suppose that host A has received one segment from
host B containing bytes 0 through 535 and another segment containing bytes
900 through 1,000. For some reason host A has not yet received bytes 536
through 899. In this example, host A is still waiting for byte 536 (and beyond)
in order to recreate B’s data stream. Thus, A’s next segment to B will contain
536 in the acknowledgment number field. Because TCP only acknowledges
bytes up to the first missing byte in the stream, TCP is said to provide
cumulative acknowledgments.
This last example also brings up an important but subtle issue. Host A
received the third segment (bytes 900 through 1,000) before receiving the
second segment (bytes 536 through 899). Thus, the third segment arrived out
of order. The subtle issue is: What does a host do when it receives out-of-
order segments in a TCP connection? Interestingly, the TCP RFCs do not
impose any rules here and leave the decision up to the people programming a
TCP implementation. There are basically two choices: either (1) the receiver
immediately discards out-of-order bytes; or (2) the receiver keeps the out-of-
order bytes and waits for the missing bytes to fill in the gaps. Clearly, the latter
choice is more efficient in terms of network bandwidth, whereas the former
choice simplifies the TCP code. Throughout the remainder of this introductory
discussion of TCP, we focus on the former implementation, that is, we assume
that the TCP receiver discards out-of-order segments.
In Figure 3.29 we assumed that the initial sequence number was zero. In
truth, both sides of a TCP connection randomly choose an initial sequence
number. This is done to minimize the possibility that a segment that is still
present in the network from an earlier, already-terminated connection between
two hosts is mistaken for a valid segment in a later connection between these
same two hosts (who also happen to be using the same port numbers as the
old connection) [Sunshine 1978].

3.5.4: Telnet: A Case Study for Sequence and Acknowledgment
Numbers
Telnet, defined in RFC 854, is a popular application-layer protocol used for
remote login. It runs over TCP and is designed to work between any pair of
hosts. Unlike the bulk-data transfer applications discussed in Chapter 2,
Telnet is an interactive application. We discuss a Telnet example here, as it
nicely illustrates TCP sequence and acknowledgment numbers.
Suppose host A initiates a Telnet session with host B. Because host A initiates
the session, it is labeled the client, and host B is labeled the server. Each
character typed by the user (at the client) will be sent to the remote host; the
remote host will send back a copy of each character, which will be displayed
on the Telnet user’s screen. This "echo back" is used to ensure that
characters seen by the Telnet user have already been received and
processed at the remote site. Each character thus traverses the network twice
between the time the user hits the key and the time the character is displayed
on the user’s monitor.

Now suppose the user types a single letter, ’C’, and then grabs a coffee. Let’s
examine the TCP segments that are sent between the client and server. As
shown in Figure 3.30, we suppose the starting sequence numbers are 42 and
79 for the client and server, respectively. Recall that the sequence number of
a segment is the sequence number of the first byte in the data field. Thus, the
first segment sent from the client will have sequence number 42; the first
segment sent from the server will have sequence number 79. Recall that the
acknowledgment number is the sequence number of the next byte of data that
the host is waiting for. After the TCP connection is established but before any
data is sent, the client is waiting for byte 79 and the server is waiting for byte
42.

Figure 3.30: Sequence and acknowledgement numbers for simple Telnet application over
TCP

As shown in Figure 3.30, three segments are sent. The first segment is sent
from the client to the server, containing the one-byte ASCII representation of
the letter ’C’ in its data field. This first segment also has 42 in its sequence
number field, as we just described. Also, because the client has not yet
received any data from the server, this first segment will have 79 in its
acknowledgment number field.
The second segment is sent from the server to the client. It serves a dual
purpose. First it provides an acknowledgment for the data the server has
received. By putting 43 in the acknowledgment field, the server is telling the
client that it has successfully received everything up through byte 42 and is
now waiting for bytes 43 onward. The second purpose of this segment is to
echo back the letter ’C’. Thus, the second segment has the ASCII
representation of ’C’ in its data field. This second segment has the sequence
number 79, the initial sequence number of the server-to-client data flow of this
TCP connection, as this is the very first byte of data that the server is sending.

Note that the acknowledgment for client-to-server data is carried in a segment
carrying server-to-client data; this acknowledgment is said to be piggybacked
on the server-to-client data segment.
The third segment is sent from the client to the server. Its sole purpose is to
acknowledge the data it has received from the server. (Recall that the second
segment contained data--the letter ’C’--from the server to the client.) This
segment has an empty data field (that is, the acknowledgment is not being
piggybacked with any client-to-server data). The segment has 80 in the
acknowledgment number field because the client has received the stream of
bytes up through byte sequence number 79 and it is now waiting for bytes 80
onward. You might think it odd that this segment also has a sequence number
since the segment contains no data. But because TCP has a sequence
number field, the segment needs to have some sequence number.

3.5.5: Reliable Data Transfer
Recall that the Internet’s network layer service (IP service) is unreliable. IP
does not guarantee datagram delivery, does not guarantee in-order delivery of
datagrams, and does not guarantee the integrity of the data in the datagrams.
With IP service, datagrams can overflow router buffers and never reach their
destination, datagrams can arrive out of order, and bits in the datagram can
get corrupted (flipped from 0 to 1 and vice versa). Because transport-layer
segments are carried across the network by IP datagrams, transport-layer
segments can also suffer from these problems as well.
TCP creates a reliable data-transfer service on top of IP’s unreliable best-
effort service. TCP’s reliable data-transfer service ensures that the data
stream that a process reads out of its TCP receive buffer is uncorrupted,
without gaps, without duplication, and in sequence, that is, the byte stream is
exactly the same byte stream that was sent by the end system on the other
side of the connection. In this subsection, we provide an overview of how TCP
provides a reliable data transfer. We’ll see that the reliable data transfer
service of TCP uses many of the principles that we studied in Section 3.4.
Figure 3.31 shows the three major events related to data transmission/
retransmission at a simplified TCP sender. Let’s consider a TCP connection
between host A and B and focus on the data stream being sent from host A to
host B. At the sending host (A), TCP is passed application-layer data, which it
frames into segments and then passes on to IP. The passing of data from the
application to TCP and the subsequent framing and transmission of a
segment is the first important event that the TCP sender must handle. Each
time TCP releases a segment to IP, it starts a timer for that segment. If this
timer expires, an interrupt event is generated at host A. TCP responds to the
timeout event, the second major type of event that the TCP sender must
handle, by retransmitting the segment that caused the timeout.
�
DVVXPH�VHQGHU�LV�QRW�FRQVWUDLQHG�E\�7&3�IORZ�RU�FRQJHVWLRQ�FRQWURO�

���WKDW�GDWD�IURP�DERYH�LV�OHVV�WKDQ�066�LQ�VL]H��DQG�WKDW�GDWD

���WUDQVIHU�LV�LQ�RQH�GLUHFWLRQ�RQO\

�

���VHQGEDVH LQLWLDOBVHTXHQFH�QXPEHU��
VHH�)LJXUH�����
�

���QH[WVHTQXP LQLWLDOBVHTXHQFH�QXPEHU

���ORRS��IRUHYHU��^

�����VZLWFK�HYHQW�

��������HYHQW��GDWD�UHFHLYHG�IURP�DSSOLFDWLRQ�DERYH

�����������FUHDWH�7&3�VHJPHQW�ZLWK�VHTXHQFH�QXPEHU�QH[WVHTQXP

�����������VWDUW�WLPHU�IRU�VHJPHQW�QH[WVHTQXP

�����������SDVV�VHJPHQW�WR�,3

�����������QH[WVHTQXP QH[WVHTQXP�OHQJWK�GDWD�

�����������EUHDN����
�HQG�RI�HYHQW�GDWD�UHFHLYHG�IURP�DERYH�
�

��������HYHQW��WLPHU�WLPHRXW�IRU�VHJPHQW�ZLWK�VHTXHQFH�QXPEHU�\

�����������UHWUDQVPLW�VHJPHQW�ZLWK�VHTXHQFH�QXPEHU�\

�����������FRPSXWH�QHZ�WLPHRXW�LQWHUYDO�IRU�VHJPHQW�\

�����������UHVWDUW�WLPHU�IRU�VHTXHQFH�QXPEHU�\

�����������EUHDN����
�HQG�RI�WLPHRXW�HYHQW�
�

��������HYHQW��$&.�UHFHLYHG��ZLWK�$&.�ILHOG�YDOXH�RI�\

�����������LI��\�!�VHQGEDVH��^�
�FXPXODWLYH�$&.�RI�DOO�GDWH�XS�WR�\�
�

��������������FDQFHO�DOO�WLPHUV�IRU�VHJPHQWV�ZLWK�VHTXHQFH�QXPEHUV���\

��������������VHQGEDVH \

��������������`

�����������HOVH�^��
�D�GXSOLFDWH�$&.�IRU�DOUHDG\�$&.HG�VHJPHQW�
�

��������������LQFUHPHQW�QXPEHU�RI�GXSOLFDWH�$&.V�UHFHLYHG�IRU�\

��������������LI��QXPEHU�RI�GXSOLFDWH�$&.V�UHFHLYHG�IRU�\ ���^

������������������
�7&3�IDVW�UHWUDQVPLW�
�

�����������������UHVHQG�VHJPHQW�ZLWK�VHTXHQFH�QXPEHU�\

�����������������UHVWDUW�WLPHU�IRU�VHJPHQW�\

��������������`

��������������EUHDN���
�HQG�RI�$&.�UHFHLYHG�HYHQW�
�

`��
�HQG�RI�ORRS�IRUHYHU�
�

Figure 3.31: Simplified TCP sender
The third major event that must be handled by the TCP sender is the arrival of
an acknowledgment segment (ACK) from the receiver (more specifically, a
segment containing a valid ACK field value). Here, the sender’s TCP must
determine whether the ACK is a first-time ACK for a segment for which the
sender has yet to receive an acknowledgment, or a so-called duplicate ACK
that re-acknowledges a segment for which the sender has already received an
earlier acknowledgment. In the case of the arrival of a first-time ACK, the
sender now knows that all data up to the byte being acknowledged has been
received correctly at the receiver. The sender can thus update its TCP state

variable that tracks the sequence number of the last byte that is known to
have been received correctly and in order at the receiver.
To understand the sender’s response to a duplicate ACK, we must look at why
the receiver sends a duplicate ACK in the first place. Table 3.1 summarizes
the TCP receiver’s ACK generation policy. When a TCP receiver receives a
segment with a sequence number that is larger than the next, expected, in-
order sequence number, it detects a gap in the data stream--that is, a missing
segment. Since TCP does not use negative acknowledgments, the receiver
cannot send an explicit negative acknowledgment back to the sender. Instead,
it simply re-acknowledges (that is, generates a duplicate ACK for) the last in-
order byte of data it has received. If the TCP sender receives three duplicate
ACKs for the same data, it takes this as an indication that the segment
following the segment that has been ACKed three times has been lost. In this
case, TCP performs a fast retransmit [RFC 2581], retransmitting the missing
segment before that segment’s timer expires.
Table 3.1: TCP ACK generation recommendations [RFC 1122, RFC 2581]

Event
TCP receiver action

Arrival of in-order segment with expected sequence number. All data up to expected
sequence number already acknowledged. No gaps in the received data.
Delayed ACK. Wait up to 500 ms for arrival of another in-order segment. If next in-order
segment does not arrive in this interval, send an ACK.

Arrival of in-order segment with expected sequence number. One other in-order segment
waiting for ACK transmission. No gaps in the received data.
Immediately send single cumulative ACK. ACKing both in-order segments

Arrival of out-of-order segment with higher-than-expected sequence number. Gap detected.
Immediately send duplicate ACK, indicating sequence number of next expected byte.

Arrival of segment that partially or completely fills in gap in received data.
Immediately send ACK, provided that segment starts at the lower end of gap.

TCP provides reliable data transfer by using positive acknowledgments and timers in much
the same way that we studied in Section 3.4. TCP acknowledges data that has been received
correctly, and it then retransmits segments when segments or their corresponding
acknowledgments are thought to be lost or corrupted. Certain versions of TCP also have an
implicit NAK mechanism--with TCP’s fast retransmit mechanism, the receipt of three duplicate
ACKs for a given segment serves as an implicit NAK for the following segment, triggering
retransmission of that segment before timeout. TCP uses sequences of numbers to allow the
receiver to identify lost or duplicate segments. Just as in the case of our reliable data transfer

protocol, UGW���, TCP cannot itself tell for certain if a segment, or its ACK, is lost, corrupted,
or overly delayed. At the sender, TCP’s response will be the same: retransmit the segment in

question.

TCP also uses pipelining, allowing the sender to have multiple transmitted but yet-to-be-acknowledged segments outstanding
at any given time. We saw earlier that pipelining can greatly improve a session’s throughput when the ratio of the segment
size to round-trip delay is small. The specific number of outstanding unacknowledged segments that a sender can have is
determined by TCP’s flow-control and congestion-control mechanisms. TCP flow control is discussed at the end of this
section; TCP congestion control is discussed in Section 3.7. For the time being, we must simply be aware that the TCP
sender uses pipelining.

A Few Interesting Scenarios
We end this discussion by looking at a few simple scenarios. Figure 3.32
depicts the scenario in which host A sends one segment to host B. Suppose
that this segment has sequence number 92 and contains 8 bytes of data. After
sending this segment, host A waits for a segment from B with
acknowledgment number 100. Although the segment from A is received at B,
the acknowledgment from B to A gets lost. In this case, the timer expires, and
host A retransmits the same segment. Of course, when host B receives the
retransmission, it will observe from the sequence number that the segment
contains data that has already been received. Thus, TCP in host B will discard
the bytes in the retransmitted segment.

Figure 3.32: Retransmission due to a lost acknowledgement
In a second scenario, host A sends two segments back to back. The first
segment has sequence number 92 and 8 bytes of data, and the second
segment has sequence number 100 and 20 bytes of data. Suppose that both
segments arrive intact at B, and B sends two separate acknowledgments for
each of these segments. The first of these acknowledgments has
acknowledgment number 100; the second has acknowledgment number 120.
Suppose now that neither of the acknowledgments arrive at host A before the

timeout of the first segment. When the timer expires, host A resends the first
segment with sequence number 92. Now, you may ask, does A also resend
the second segment? According to the rules described above, host A resends
the segment only if the timer expires before the arrival of an acknowledgment
with an acknowledgment number of 120 or greater. Thus, as shown in Figure
3.33, if the second acknowledgment does not get lost and arrives before the
timeout of the second segment, A does not resend the second segment.

Figure 3.33: Segment is not retransmitted because its acknowledgement arrives before the
timeout

In a third and final scenario, suppose host A sends the two segments, exactly
as in the second example. The acknowledgment of the first segment is lost in
the network, but just before the timeout of the first segment, host A receives
an acknowledgment with acknowledgment number 120. Host A therefore
knows that host B has received everything up through byte 119; so host A
does not resend either of the two segments. This scenario is illustrated in the
Figure 3.34.

Figure 3.34: A cumulative acknowledgement avoids retransmission of first segment
Recall that in the previous section we said that TCP is a Go-Back-N style
protocol. This is because acknowledgments are cumulative and correctly
received but out-of-order segments are not individually ACKed by the receiver.
Consequently, as shown in Figure 3.31 (see also Figure 3.18), the TCP
sender need only maintain the smallest sequence number of a transmitted but
unacknowledged byte (VHQGEDVH) and the sequence number of the next byte to
be sent (QH[WVHTQXP). But the reader should keep in mind that although the
reliable data-transfer component of TCP resembles Go-Back-N, it is by no
means a pure implementation of Go-Back-N. To see that there are some
striking differences between TCP and Go-Back-N, consider what happens
when the sender sends a sequence of segments 1, 2, . . ., N, and all of the
segments arrive in order without error at the receiver. Further suppose that the
acknowledgment for packet n < N gets lost, but the remaining N - 1
acknowledgments arrive at the sender before their respective timeouts. In this
example, Go-Back-N would retransmit not only packet n, but also all of the
subsequent packets n + 1, n + 2, . . ., N. TCP, on the other hand, would
retransmit at most, one segment, namely, segment n. Moreover, TCP would
not even retransmit segment n if the acknowledgment for segment n + 1
arrives before the timeout for segment n.
There have recently been several proposals [RFC 2018; Fall 1996; Mathis
1996] to extend the TCP ACKing scheme to be more similar to a selective
repeat protocol. The key idea in these proposals is to provide the sender with
explicit information about which segments have been received correctly, and
which are still missing at the receiver.

3.5.6: Flow Control

Recall that the hosts on each side of a TCP connection each set aside a
receive buffer for the connection. When the TCP connection receives bytes
that are correct and in sequence, it places the data in the receive buffer. The
associated application process will read data from this buffer, but not
necessarily at the instant the data arrives. Indeed, the receiving application
may be busy with some other task and may not even attempt to read the data
until long after it has arrived. If the application is relatively slow at reading the
data, the sender can very easily overflow the connection’s receive buffer by
sending too much data too quickly. TCP thus provides a flow-control service
to its applications to eliminate the possibility of the sender overflowing the
receiver’s buffer. Flow control is thus a speed matching service--matching the
rate at which the sender is sending to the rate at which the receiving
application is reading. As noted earlier, a TCP sender can also be throttled
due to congestion within the IP network; this form of sender control is referred
to as congestion control, a topic we will explore in detail in Sections 3.6 and
3.7. Even though the actions taken by flow and congestion control are similar
(the throttling of the sender), they are obviously taken for very different
reasons. Unfortunately, many authors use the term interchangeably, and the
savvy reader would be careful to distinguish between the two cases. Let’s now
discuss how TCP provides its flow-control service.
TCP provides flow control by having the sender maintain a variable called the
receive window. Informally, the receive window is used to give the sender an
idea about how much free buffer space is available at the receiver. In a full-
duplex connection, the sender at each side of the connection maintains a
distinct receive window. The receive window is dynamic; that is, it changes
throughout a connection’s lifetime. Let’s investigate the receive window in the
context of a file transfer. Suppose that host A is sending a large file to host B
over a TCP connection. Host B allocates a receive buffer to this connection;
denote its size by 5FY%XIIHU� From time to time, the application process in host
B reads from the buffer. Define the following variables:

/DVW%\WH5HDG�= the number of the last byte in the data stream
read from the buffer by the application process in B.

/DVW%\WH5FYG�= the number of the last byte in the data stream that
has arrived from the network and has been placed in the receive
buffer at B.

Because TCP is not permitted to overflow the allocated buffer, we must have:
/DVW%\WH5FYG���/DVW%\WH5HDG�� �5FY%XIIHU

The receive window, denoted 5FY:LQGRZ, is set to the amount of spare room in
the buffer:

5FY:LQGRZ� �5FY%XIIHU���>/DVW%\WH5FYG���/DVW%\WH5HDG@

Because the spare room changes with time, 5FY:LQGRZ is dynamic. The
variable 5FY:LQGRZ is illustrated in Figure 3.35.

Figure 3.35: The receive window (5FY:LQGRZ) and the receive buffer (5FY%XIIHU)

How does the connection use the variable 5FY:LQGRZ to provide the flow
control service? Host B tells host A how much spare room it has in the
connection buffer by placing its current value of 5FY:LQGRZ in the window field
of every segment it sends to A. Initially, host B sets 5FY:LQGRZ = 5FY%XIIHU�
Note that to pull this off, host B must keep track of several connection-specific
variables.
Host A in turn keeps track of two variables, /DVW%\WH6HQW and /DVW%\WH$FNHG,
which have obvious meanings. Note that the difference between these two
variables, /DVW%\WH6HQW - /DVW%\WH$FNHG, is the amount of unacknowledged data
that A has sent into the connection. By keeping the amount of
unacknowledged data less than the value of 5FY:LQGRZ, host A is assured that
it is not overflowing the receive buffer at host B. Thus, host A makes sure
throughout the connection’s life that

/DVW%\WH6HQW���/DVW%\WH$FNHG� 5FY:LQGRZ

There is one minor technical problem with this scheme. To see this, suppose
host B’s receive buffer becomes full so that 5FY:LQGRZ = 0. After advertising
5FY:LQGRZ = 0 to host A, also suppose that B has nothing to send to A. As the
application process at B empties the buffer, TCP does not send new
segments with new 5FY:LQGRZV to host A--TCP will send a segment to host A
only if it has data to send or if it has an acknowledgment to send. Therefore,
host A is never informed that some space has opened up in host B’s receive
buffer: host A is blocked and can transmit no more data! To solve this
problem, the TCP specification requires host A to continue to send segments
with one data byte when B’s receive window is zero. These segments will be
acknowledged by the receiver. Eventually the buffer will begin to empty and
the acknowledgments will contain a nonzero 5FY:LQGRZ value.
Having described TCP’s flow-control service, we briefly mention here that
UDP does not provide flow control. To understand the issue here, consider
sending a series of UDP segments from a process on host A to a process on
host B. For a typical UDP implementation, UDP will append the segments
(more precisely, the data in the segments) in a finite-size queue that

"precedes" the corresponding socket (that is, the door to the process). The
process reads one entire segment at a time from the queue. If the process
does not read the segments fast enough from the queue, the queue will
overflow and segments will get lost.
Following this section we provide an interactive Java applet that should
provide significant insight into the TCP receive window. Click here to open it in
a new window, or select it from the menu bar at the left.

3.5.7: Round Trip Time and Timeout
Recall that when a host sends a segment into a TCP connection, it starts a
timer. If the timer expires before the host receives an acknowledgment for the
data in the segment, the host retransmits the segment. The time from when
the timer is started until when it expires is called the timeout of the timer. A
natural question is, how large should timeout be? Clearly, the timeout should
be larger than the connection’s round-trip time, that is, the time from when a
segment is sent until it is acknowledged. Otherwise, unnecessary
retransmissions would be sent. But the timeout should not be much larger
than the round-trip time; otherwise, when a segment is lost, TCP would not
quickly retransmit the segment, and it would thereby introduce significant data
transfer delays into the application. Before discussing the timeout interval in
more detail, let’s take a closer look at the round-trip time (RTT). The
discussion below is based on the TCP work in [Jacobson 1988].
Estimating the Average Round-Trip Time
The sample RTT, denoted 6DPSOH577, for a segment is the amount of time
from when the segment is sent (that is, passed to IP) until an acknowledgment
for the segment is received. Each segment sent will have its own associated
6DPSOH577. Obviously, the 6DPSOH577 values will fluctuate from segment to
segment due to congestion in the routers and to the varying load on the end
systems. Because of this fluctuation, any given 6DPSOH577 value may be
atypical. In order to estimate a typical RTT, it is therefore natural to take some
sort of average of the 6DPSOH577 values. TCP maintains an average, called
(VWLPDWHG577, of the 6DPSOH577 values. Upon receiving an acknowledgment
and obtaining a new 6DPSOH577, TCP updates (VWLPDWHG577 according to the
following formula:

(VWLPDWHG577� ������[����(VWLPDWHG577���[���6DPSOH577�

The above formula is written in the form of a programming language
statement--the new value of (VWLPDWHG577 is a weighted combination of the
previous value of (VWLPDWHG577 and the new value for 6DPSOH577. A typical
value of [is [= 0.125 (i.e., 1/8), in which case the above formula becomes:

(VWLPDWHG577� �������(VWLPDWHG577�����������6DPSOH577�

Note that (VWLPDWHG577 is a weighted average of the 6DPSOH577 values. As we
will see in the homework, this weighted average puts more weight on recent
samples than on old samples, This is natural, as the more recent samples
better reflect the current congestion in the network. In statistics, such an
average is called an exponential weighted moving average (EWMA). The

word "exponential" appears in EWMA because the weight of a given
6DPSOH577 decays exponentially fast as the updates proceed. In the homework
problems you will be asked to derive the exponential term in (VWLPDWHG577.
Figure 3.36 shows the 6DPSOH577 values (dotted line) and (VWLPDWHG577 (solid
line) for a value of x = 1/8 for a TCP connection between void.cs.umass.edu
(in Amherst, Massachusetts) to maria.wustl.edu (in St. Louis, Missouri).
Clearly, the variations in the 6DPSOH577 are smoothed out in the computation
of the (VWLPDWHG577.

Figure 3.36: RTT samples and RTT estimate
Setting the Timeout
The timeout should be set so that a timer expires early (that is, before the
delayed arrival of a segment’s ACK) only on rare occasions. It is therefore
natural to set the timeout equal to the (VWLPDWHG577 plus some margin. The
margin should be large when there is a lot of fluctuation in the 6DPSOH577
values; it should be small when there is little fluctuation. TCP uses the
following formula:

7LPHRXW� �(VWLPDWHG577�����'HYLDWLRQ�

where 'HYLDWLRQ is an estimate of how much 6DPSOH577 typically deviates from
(VWLPDWHG577:

'HYLDWLRQ� ������[����'HYLDWLRQ���[��

������������_�6DPSOH577���(VWLPDWHG577�_

Note that 'HYLDWLRQ is an EWMA of how much 6DPSOH577 deviates from
(VWLPDWHG577. If the 6DPSOH577 values have little fluctuation, then 'HYLDWLRQ is
small and 7LPHRXW is hardly more than (VWLPDWHG577; on the other hand, if there
is a lot of fluctuation, 'HYLDWLRQ will be large and 7LPHRXW will be much larger
than (VWLPDWHG577. "A Quick Tour around TCP" [Cela 2000] provides nifty
interactive applets illustrating RTT variance estimation.

3.5.8: TCP Connection Management
In this subsection, we take a closer look at how a TCP connection is
established and torn down. Although this topic may not seem particularly
exciting, it is important because TCP connection establishment can
significantly add to perceived delays (for example, when surfing the Web).

Let’s now take a look at how a TCP connection is established. Suppose a
process running in one host (client) wants to initiate a connection with another
process in another host (server). The client application process first informs
the client TCP that it wants to establish a connection to a process in the
server. The TCP in the client then proceeds to establish a TCP connection
with the TCP in the server in the following manner:

• Step 1. The client-side TCP first sends a special TCP segment to the
server-side TCP. This special segment contains no application-layer
data. It does, however, have one of the flag bits in the segment’s
header (see Figure 3.28), the so-called SYN bit, set to 1. For this
reason, this special segment is referred to as a SYN segment. In
addition, the client chooses an initial sequence number (FOLHQWBLVQ��and
puts this number in the sequence number field of the initial TCP SYN
segment. This segment is encapsulated within an IP datagram and sent
to the server.

• Step 2. Once the IP datagram containing the TCP SYN segment
arrives at the server host (assuming it does arrive!), the server extracts
the TCP SYN segment from the datagram, allocates the TCP buffers
and variables to the connection, and sends a connection-granted
segment to client TCP. This connection-granted segment also contains
no application-layer data. However, it does contain three important
pieces of information in the segment header. First, the SYN bit is set to
1. Second, the acknowledgment field of the TCP segment header is set
to FOLHQWBLVQ��. Finally, the server chooses its own initial sequence
number (VHUYHUBLVQ) and puts this value in the sequence number field of
the TCP segment header. This connection granted segment is saying,
in effect, "I received your SYN packet to start a connection with your
initial sequence number, FOLHQWBLVQ. I agree to establish this connection.
My own initial sequence number is VHUYHUBLVQ." The connection-granted
segment is sometimes referred to as a SYNACK segment.

• Step 3. Upon receiving the connection-granted segment, the client also
allocates buffers and variables to the connection. The client host then
sends the server yet another segment; this last segment acknowledges
the server’s connection-granted segment (the client does so by putting
the value VHUYHUBLVQ�� in the acknowledgment field of the TCP segment
header). The SYN bit is set to 0, since the connection is established.

Once the previous three steps have been completed, the client and server
hosts can send segments containing data to each other. In each of these
future segments, the SYN bit will be set to zero. Note, that in order to establish
the connection, three packets are sent between the two hosts, as illustrated in
Figure 3.37. For this reason, this connection establishment procedure is often
referred to as a three-way handshake. Several aspects of the TCP three-way
handshake are explored in the homework problems (Why are initial sequence

numbers needed? Why is a three-way handshake, as opposed to a two-way
handshake, needed?)

Figure 3.37: TCP three-way handshake: segment exchange
All good things must come to an end, and the same is true with a TCP
connection. Either of the two processes participating in a TCP connection can
end the connection. When a connection ends, the "resources" (that is, the
buffers and variables) in the hosts are de-allocated. As an example, suppose
the client decides to close the connection, as shown in Figure 3.38. The client
application process issues a close command. This causes the client TCP to
send a special TCP segment to the server process. This special segment has
a flag bit in the segment’s header, the so-called FIN bit (see Figure 3.38), set
to 1. When the server receives this segment, it sends the client an
acknowledgment segment in return. The server then sends its own shut-down
segment, which has the FIN bit set to 1. Finally, the client acknowledges the
server’s shut-down segment. At this point, all the resources in the two hosts
are now de-allocated.

Figure 3.38: Closing a TCP connection
During the life of a TCP connection, the TCP protocol running in each host
makes transitions through various TCP states. Figure 3.39 illustrates a typical
sequence of TCP states that are visited by the client TCP. The client TCP
begins in the closed state. The application on the client side initiates a new
TCP connection (by creating a Socket object in our Java examples from
Chapter 2). This causes TCP in the client to send a SYN segment to TCP in
the server. After having sent the SYN segment, the client TCP enters the
SYN_SENT state. While in the SYN_SENT state, the client TCP waits for a
segment from the server TCP that includes an acknowledgment for the client’s
previous segment as well as the SYN bit set to 1. Once having received such
a segment, the client TCP enters the ESTABLISHED state. While in the
ESTABLISHED state, the TCP client can send and receive TCP segments
containing payload (that is, application-generated) data.

Figure 3.39: A typical sequence of TCP states visited by a client TCP
Suppose that the client application decides it wants to close the connection.
(Note that the server could also choose to close the connection.) This causes
the client TCP to send a TCP segment with the FIN bit set to 1 and to enter
the FIN_WAIT_1 state. While in the FIN_WAIT_1 state, the client TCP waits
for a TCP segment from the server with an acknowledgment. When it receives
this segment, the client TCP enters the FIN_WAIT_2 state. While in the
FIN_WAIT_2 state, the client waits for another segment from the server with
the FIN bit set to 1; after receiving this segment, the client TCP acknowledges
the server’s segment and enters the TIME_WAIT state. The TIME_WAIT state
lets the TCP client resend the final acknowledgment in case the ACK is lost.
The time spent in the TIME_WAIT state is implementation-dependent, but
typical values are 30 seconds, 1 minute, and 2 minutes. After the wait, the
connection formally closes and all resources on the client side (including port
numbers) are released.
Figure 3.40 illustrates the series of states typically visited by the server-side
TCP, assuming the client begins connection tear down. The transitions are
self-explanatory. In these two state-transition diagrams, we have only shown
how a TCP connection is normally established and shut down. We have not
described what happens in certain pathological scenarios, for example, when
both sides of a connection want to shut down at the same time. If you are
interested in learning about this and other advanced issues concerning TCP,
you are encouraged to see Stevens’ comprehensive book [Stevens 1994].

Figure 3.40: A typical sequence of TCP states visited by a server-side TCP
This completes our introduction to TCP. In Section 3.7 we will return to TCP
and look at TCP congestion control in some depth. Before doing so, however,
we first step back and examine congestion-control issues in a broader context.

Online Book

3.6: Principles of Congestion Control
In the previous sections, we’ve examined both the general principles and
specific TCP mechanisms used to provide for a reliable data-transfer
service in the face of packet loss. We mentioned earlier that, in practice,
such loss typically results from the overflowing of router buffers as the
network becomes congested. Packet retransmission thus treats a symptom
of network congestion (the loss of a specific transport-layer segment) but
does not treat the cause of network congestion--too many sources
attempting to send data at too high a rate. To treat the cause of network
congestion, mechanisms are needed to throttle senders in the face of
network congestion.

In this section, we consider the problem of congestion control in a general
context, seeking to understand why congestion is a "bad thing," how
network congestion is manifested in the performance received by upper-
layer applications, and various approaches that can be taken to avoid, or
react to, network congestion. This more general study of congestion control

is appropriate since, as with reliable data transfer, it is high on the "top-10"
list of fundamentally important problems in networking. We conclude this
section with a discussion of congestion control in the ABR service in
asynchronous transfer mode (ATM) networks. The following section
contains a detailed study of TCP’s congestion-control algorithm.

3.6.1: The Causes and the Costs of Congestion
Let’s begin our general study of congestion control by examining three
increasingly complex scenarios in which congestion occurs. In each case,
we’ll look at why congestion occurs in the first place and at the cost of
congestion (in terms of resources not fully utilized and poor performance
received by the end systems).
Scenario 1: Two Senders, a Router with Infinite Buffers
We begin by considering perhaps the simplest congestion scenario
possible: two hosts (A and B) each have a connection that shares a single
hop between source and destination, as shown in Figure 3.41.

Figure 3.41: Congestion scenario 1: Two connections sharing a single hop with infinite
buffers

Let’s assume that the application in Host A is sending data into the
connection (for example, passing data to the transport-level protocol via a
socket) at an average rate of in bytes/sec. These data are "original" in the
sense that each unit of data is sent into the socket only once. The
underlying transport-level protocol is a simple one. Data is encapsulated
and sent; no error recovery (for example, retransmission), flow control, or
congestion control is performed. Host B operates in a similar manner, and
we assume for simplicity that it too is sending at a rate of in bytes/sec.
Packets from hosts A and B pass through a router and over a shared
outgoing link of capacity R. The router has buffers that allow it to store
incoming packets when the packet-arrival rate exceeds the outgoing link’s
capacity. In this first scenario, we’ll assume that the router has an infinite
amount of buffer space.
Figure 3.42 plots the performance of Host A’s connection under this first
scenario. The left graph plots the per-connection throughput (number of
bytes per second at the receiver) as a function of the connection sending
rate. For a sending rate between 0 and R/2, the throughput at the receiver
equals the sender’s sending rate--everything sent by the sender is received

at the receiver with a finite delay. When the sending rate is above R/2,
however, the throughput is only R/2. This upper limit on throughput is a
consequence of the sharing of link capacity between two connections. The
link simply cannot deliver packets to a receiver at a steady-state rate that
exceeds R/2. No matter how high Hosts A and B set their sending rates,
they will each never see a throughput higher than R/2.

Figure 3.42: Congestion scenario 1: Throughput and delay as a function of host sending
rate

Achieving a per-connection throughput of R/2 might actually appear to be a
"good thing," as the link is fully utilized in delivering packets to their
destinations. The right-hand graph in Figure 3.42, however, shows the
consequences of operating near link capacity. As the sending rate
approaches R/2 (from the left), the average delay becomes larger and
larger. When the sending rate exceeds R/2, the average number of queued
packets in the router is unbounded, and the average delay between source
and destination becomes infinite (assuming that the connections operate at
these sending rates for an infinite period of time). Thus, while operating at
an aggregate throughput of near R may be ideal from a throughput
standpoint, it is far from ideal from a delay standpoint. Even in this
(extremely) idealized scenario, we’ve already found one cost of a
congested network--large queuing delays are experienced as the packet-
arrival rate nears the link capacity.
Scenario 2: Two Senders, a Router with Finite Buffers
Let us now slightly modify scenario 1 in the following two ways (see Figure
3.43). First, the amount of router buffering is assumed to be finite. Second,
we assume that each connection is reliable. If a packet containing a
transport-level segment is dropped at the router, it will eventually be
retransmitted by the sender. Because packets can be retransmitted, we
must now be more careful with our use of the term "sending rate."
Specifically, let us again denote the rate at which the application sends
original data into the socket by in bytes/sec. The rate at which the
transport layer sends segments (containing original data or retransmitted
data) into the network will be denoted in’ bytes/sec. in’ is sometimes
referred to as the offered load to the network.

Figure 3.43: Scenario 2: Two hosts (with retransmissions) and a router with finite
buffers

The performance realized under scenario 2 will now depend strongly on
how retransmission is performed. First, consider the unrealistic case that
Host A is able to somehow (magically!) determine whether or not a buffer is
free in the router and thus sends a packet only when a buffer is free. In this
case, no loss would occur, in would be equal to in’, and the throughput of
the connection would be equal to in. This case is shown by the upper
curve in Figure 3.44(a). From a throughput standpoint, performance is
ideal--everything that is sent is received. Note that the average host
sending rate cannot exceed R/2 under this scenario, since packet loss is
assumed never to occur.

Figure 3.44: Scenario 2 performance
Consider next the slightly more realistic case that the sender retransmits
only when a packet is known for certain to be lost. (Again, this assumption
is a bit of a stretch. However, it is possible that the sending host might set
its timeout large enough to be virtually assured that a packet that has not
been acknowledged has been lost.) In this case, the performance might
look something like that shown in Figure 3.44(b). To appreciate what is
happening here, consider the case that the offered load, in’ (the rate of
original data transmission plus retransmissions), equals 0.5R. According to
Figure 3.44(b), at this value of the offered load, the rate at which data are
delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and

0.266R bytes per second (on average) are retransmitted data. We see here
another cost of a congested network--the sender must perform
retransmissions in order to compensate for dropped (lost) packets due to
buffer overflow.
Finally, let us consider the case that the sender may timeout prematurely
and retransmit a packet that has been delayed in the queue, but not yet
lost. In this case, both the original data packet and the retransmission may
both reach the receiver. Of course, the receiver needs but one copy of this
packet and will discard the retransmission. In this case, the "work" done by
the router in forwarding the retransmitted copy of the original packet was
"wasted," as the receiver will have already received the original copy of this
packet. The router would have better used the link transmission capacity to
send a different packet instead. Here then is yet another cost of a
congested network--unneeded retransmissions by the sender in the face of
large delays may cause a router to use its link bandwidth to forward
unneeded copies of a packet. The lower curve in Figure 3.44(a) shows the
throughput versus offered load when each packet is assumed to be
forwarded (on average) twice by the router. Since each packet is forwarded
twice, the throughput achieved will be given by the line segment in Figure
3.44(a) with the asymptotic value of R/4.
Scenario 3: Four Senders, Routers with Finite Buffers, and Multihop
Paths
In our final congestion scenario, four hosts transmit packets, each over
overlapping two-hop paths, as shown in Figure 3.45. We again assume that
each host uses a timeout/ retransmission mechanism to implement a
reliable data transfer service, that all hosts have the same value of in, and
that all router links have capacity R bytes/sec.

Figure 3.45: Four senders, routers with finite buffers, and multihop paths
Let us consider the connection from Host A to Host C, passing through
Routers R1 and R2. The A-C connection shares router R1 with the D-B
connection and shares router R2 with the B-D connection. For extremely
small values of in, buffer overflows are rare (as in congestion scenarios 1

and 2), and the throughput approximately equals the offered load. For
slightly larger values of in, the corresponding throughput is also larger, as
more original data is being transmitted into the network and delivered to the
destination, and overflows are still rare. Thus, for small values of in, an
increase in in results in an increase in out.
Having considered the case of extremely low traffic, let us next examine the
case that in (and hence in’) is extremely large. Consider router R2. The
A-C traffic arriving to router R2 (which arrives at R2 after being forwarded
from R1) can have an arrival rate at R2 that is at most R, the capacity of the
link from R1 to R2, regardless of the value of in. If in’ is extremely large
for all connections (including the B-D connection), then the arrival rate of B-
D traffic at R2 can be much larger than that of the A-C traffic. Because the
A-C and B-D traffic must compete at router R2 for the limited amount of
buffer space, the amount of A-C traffic that successfully gets through R2
(that is, is not lost due to buffer overflow) becomes smaller and smaller as
the offered load from B-D gets larger and larger. In the limit, as the offered
load approaches infinity, an empty buffer at R2 is immediately filled by a B-
D packet, and the throughput of the A-C connection at R2 goes to zero.
This, in turn, implies that the A-C end-end throughput goes to zero in the
limit of heavy traffic. These considerations give rise to the offered load
versus throughput tradeoff shown in Figure 3.46.

Figure 3.46: Scenario 3 performance with finite buffers and multihop paths
The reason for the eventual decrease in throughput with increasing offered
load is evident when one considers the amount of wasted "work" done by
the network. In the high-traffic scenario outlined above, whenever a packet
is dropped at a second-hop router, the "work" done by the first-hop router in
forwarding a packet to the second-hop router ends up being "wasted." The
network would have been equally well off (more accurately, equally bad off)
if the first router had simply discarded that packet and remained idle. More
to the point, the transmission capacity used at the first router to forward the
packet to the second router could have been much more profitably used to
transmit a different packet. (For example, when selecting a packet for
transmission, it might be better for a router to give priority to packets that

have already traversed some number of upstream routers.) So here we see
yet another cost of dropping a packet due to congestion--when a packet is
dropped along a path, the transmission capacity that was used at each of
the upstream routers to forward that packet to the point at which it is
dropped ends up having been wasted.

3.6.2: Approaches toward Congestion Control
In Section 3.7, we’ll examine TCP’s specific approach towards congestion
control in great detail. Here, we identify the two broad approaches that are
taken in practice toward congestion control, and discuss specific network
architectures and congestion-control protocols embodying these
approaches.
At the broadest level, we can distinguish among congestion-control
approaches based on whether or not the network layer provides any explicit
assistance to the transport layer for congestion-control purposes:

• End-end congestion control. In an end-end approach toward
congestion control, the network layer provides no explicit support to
the transport layer for congestion-control purposes. Even the
presence of congestion in the network must be inferred by the end
systems based only on observed network behavior (for example,
packet loss and delay). We will see in Section 3.7 that TCP must
necessarily take this end-end approach toward congestion control,
since the IP layer provides no feedback to the end systems
regarding network congestion. TCP segment loss (as indicated by a
timeout or a triple duplicate acknowledgment) is taken as an
indication of network congestion and TCP decreases its window size
accordingly. We will also see that new proposals for TCP use
increasing round-trip delay values as indicators of increased network
congestion.

• Network-assisted congestion control. With network-assisted
congestion control, network-layer components (that is, routers)
provide explicit feedback to the sender regarding the congestion
state in the network. This feedback may be as simple as a single bit
indicating congestion at a link. This approach was taken in the early
IBM SNA [Schwartz 1982] and DEC DECnet [Jain 1989;
Ramakrishnan 1990] architectures, was recently proposed for
TCP/IP networks [Floyd TCP 1994; RFC 2481], and is used in ATM
available bit-rate (ABR) congestion control as well, as discussed
below. More sophisticated network-feedback is also possible. For
example, one form of ATM ABR congestion control that we will study
shortly allows a router to explicitly inform the sender of the
transmission rate it (the router) can support on an outgoing link.

For network-assisted congestion control, congestion information is typically
fed back from the network to the sender in one of two ways, as shown in
Figure 3.47. Direct feedback may be sent from a network router to the

sender. This form of notification typically takes the form of a choke packet
(essentially saying, "I’m congested!"). The second form of notification
occurs when a router marks/updates a field in a packet flowing from sender
to receiver to indicate congestion. Upon receipt of a marked packet, the
receiver then notifies the sender of the congestion indication. Note that this
latter form of notification takes at least a full round-trip time.

Figure 3.47: Two feedback pathways for network-indicated congestion information

3.6.3: ATM ABR Congestion Control
Our detailed study of TCP congestion control in Section 3.7 will provide an
in-depth case study of an end-end approach toward congestion control. We
conclude this section with a brief case study of the network-assisted
congestion-control mechanisms used in ATM ABR service. ABR has been
designed as an elastic data transfer service in a manner reminiscent of
TCP. When the network is underloaded, ABR service should be able to
take advantage of the spare available bandwidth; when the network is
congested, ABR service should throttle its transmission rate to some
predetermined minimum transmission rate. A detailed tutorial on ATM ABR
congestion control and traffic management is provided in [Jain 1996].
Figure 3.48 shows the framework for ATM ABR congestion control. In our
discussion below we adopt ATM terminology (for example, using the term
"switch" rather than "router," and the term "cell" rather than "packet"). With
ATM ABR service, data cells are transmitted from a source to a destination
through a series of intermediate switches. Interspersed with the data cells
are so-called resource-management cells, RM cells; we will see shortly
that these RM cells can be used to convey congestion-related information
among the hosts and switches. When an RM cell is at a destination, it will
be "turned around" and sent back to the sender (possibly after the
destination has modified the contents of the RM cell). It is also possible for
a switch to generate an RM cell itself and send this RM cell directly to a
source. RM cells can thus be used to provide both direct network feedback
and network-feedback-via-the-receiver, as shown in Figure 3.48.

Figure 3.48: Congestion control framework for ATM ABR service
ATM ABR congestion control is a rate-based approach. That is, the sender
explicitly computes a maximum rate at which it can send and regulates
itself accordingly. ABR provides three mechanisms for signaling
congestion-related information from the switches to the receiver:

• EFCI bit. Each data cell contains an EFCI (explicit forward
congestion-indication) bit. A congested network switch can set the
EFCI bit in a data cell to 1 to signal congestion to the destination
host. The destination must check the EFCI bit in all received data
cells. When an RM cell arrives at the destination, if the most recently
received data cell had the EFCI bit set to 1, then the destination sets
the congestion-indication bit (the CI bit) of the RM cell to 1 and
sends the RM cell back to the sender. Using the EFCI in data cells
and the CI bit in RM cells, a sender can thus be notified about
congestion at a network switch.

• CI and NI bits. As noted above, sender-to-receiver RM cells are
interspersed with data cells. The rate of RM cell interspersion is a
tunable parameter, with one RM cell every 32 data cells being the
default value. These RM cells have a CI (congestion indication) bit
and an NI (no increase) bit that can be set by a congested-network
switch. Specifically, a switch can set the NI bit in a passing RM cell
to 1 under mild congestion and can set the CI bit to 1 under severe
congestion conditions. When a destination host receives an RM cell,
it will send the RM cell back to the sender with its CI and NI bits
intact (except that CI may be set to 1 by the destination as a result of
the EFCI mechanism described above).

• ER setting. Each RM cell also contains a two-byte ER (explicit rate)
field. A congested switch may lower the value contained in the ER
field in a passing RM cell. In this manner, the ER field will be set to
the minimum supportable rate of all switches on the source-to-
destination path.

An ATM ABR source adjusts the rate at which it can send cells as a
function of the CI, NI, and ER values in a returned RM cell. The rules for
making this rate adjustment are rather complicated and a bit tedious. The
interested reader is referred to] for details.

Online Book

3.7: TCP Congestion Control
In this section we return to our study of TCP. As we learned in Section 3.5,
TCP provides a reliable transport service between two processes running
on different hosts. Another extremely important component of TCP is its
congestion-control mechanism. As we indicated in the previous section,
TCP must use end-to-end congestion control rather than network-assisted
congestion control, since the IP layer provides no explicit feedback to the
end systems regarding network congestion. Before diving into the details of
TCP congestion control, let’s first get a high-level view of TCP’s congestion-
control mechanism, as well as the overall goal that TCP strives for when
multiple TCP connections must share the bandwidth of a congested link.

A TCP connection controls its transmission rate by limiting its number of
transmitted-but-yet-to-be-acknowledged segments. Let us denote this
number of permissible unacknowledged segments as w, often referred to
as the TCP window size. Ideally, TCP connections should be allowed to
transmit as fast as possible (that is, to have as large a number of
outstanding unacknowledged segments as possible) as long as segments
are not lost (dropped at routers) due to congestion. In very broad terms, a
TCP connection starts with a small value of w and then "probes" for the
existence of additional unused link bandwidth at the links on its end-to-end
path by increasing w. A TCP connection continues to increase w until a
segment loss occurs (as detected by a timeout or duplicate
acknowledgments). When such a loss occurs, the TCP connection reduces
w to a "safe level" and then begins probing again for unused bandwidth by
slowly increasing w.

An important measure of the performance of a TCP connection is its
throughput--the rate at which it transmits data from the sender to the
receiver. Clearly, throughput will depend on the value of w. If a TCP sender
transmits all w segments back to back, it must then wait for one round-trip
time (RTT) until it receives acknowledgments for these segments, at which
point it can send w additional segments. If a connection transmits w
segments of size MSS bytes every RTT seconds, then the connection’s
throughput, or transmission rate, is (w · MSS)/RTT bytes per second.

Suppose now that K TCP connections are traversing a link of capacity R.
Suppose also that there are no UDP packets flowing over this link, that
each TCP connection is transferring a very large amount of data and that
none of these TCP connections traverse any other congested link. Ideally,
the window sizes in the TCP connections traversing this link should be such
that each connection achieves a throughput of R/K. More generally, if a

connection passes through N links, with link n having transmission rate Rn

and supporting a total of Kn TCP connections, then ideally this connection
should achieve a rate of Rn/Kn on the nth link. However, this connection’s
end-to-end average rate cannot exceed the minimum rate achieved at all of
the links along the end-to-end path. That is, the end-to-end transmission
rate for this connection is r = min{R1/K1, . . ., RN/KN}. We could think of the
goal of TCP as providing this connection with this end-to-end rate, r. (In
actuality, the formula for r is more complicated, as we should take into
account the fact that one or more of the intervening connections may be
bottlenecked at some other link that is not on this end-to-end path and
hence cannot use their bandwidth share, Rn/Kn. In this case, the value of r
would be higher than min{R1/K1, . . . , RN/KN}. See [Bertsekas 1991].)

3.7.1: Overview of TCP Congestion Control
In Section 3.5 we saw that each side of a TCP connection consists of a
receive buffer, a send buffer, and several variables (/DVW%\WH5HDG� 5FY:LQ,
and so on.) The TCP congestion-control mechanism has each side of the
connection keep track of two additional variables: the congestion window
and the threshold. The congestion window, denoted &RQJ:LQ, imposes an
additional constraint on how much traffic a host can send into a connection.
Specifically, the amount of unacknowledged data that a host can have
within a TCP connection may not exceed the minimum of &RQJ:LQ and
5FY:LQ, that is:

/DVW%\WH6HQW���/DVW%\WH$FNHG� PLQ^&RQJ:LQ��5FY:LQ`

The threshold, which we discuss in detail below, is a variable that affects
how &RQJ:LQ grows.
Let us now look at how the congestion window evolves throughout the
lifetime of a TCP connection. In order to focus on congestion control (as
opposed to flow control), let us assume that the TCP receive buffer is so
large that the receive window constraint can be ignored. In this case, the
amount of unacknowledged data that a host can have within a TCP
connection is solely limited by &RQJ:LQ. Further let’s assume that a sender
has a very large amount of data to send to a receiver.
Once a TCP connection is established between the two end systems, the
application process at the sender writes bytes to the sender’s TCP send
buffer. TCP grabs chunks of size MSS, encapsulates each chunk within a
TCP segment, and passes the segments to the network layer for
transmission across the network. The TCP congestion window regulates
the times at which the segments are sent into the network (that is, passed
to the network layer). Initially, the congestion window is equal to one MSS.
TCP sends the first segment into the network and waits for an
acknowledgment. If this segment is acknowledged before its timer times
out, the sender increases the congestion window by one MSS and sends
out two maximum-size segments. If these segments are acknowledged
before their timeouts, the sender increases the congestion window by one

MSS for each of the acknowledged segments, giving a congestion window
of four MSS, and sends out four maximum-sized segments. This procedure
continues as long as (1) the congestion window is below the threshold and
(2) the acknowledgments arrive before their corresponding timeouts.
During this phase of the congestion-control procedure, the congestion
window increases exponentially fast. The congestion window is initialized to
one MSS; after one RTT, the window is increased to two segments; after
two round-trip times, the window is increased to four segments; after three
round-trip times, the window is increased to eight segments, and so forth.
This phase of the algorithm is called slow start because it begins with a
small congestion window equal to one MSS. (The transmission rate of the
connection starts slowly but accelerates rapidly.)
The slow-start phase ends when the window size exceeds the value of
WKUHVKROG. Once the congestion window is larger than the current value of
WKUHVKROG, the congestion window grows linearly rather than exponentially.
Specifically, if w is the current value of the congestion window, and w is
larger than WKUHVKROG, then after w acknowledgments have arrived, TCP
replaces w with w + 1. This has the effect of increasing the congestion
window by 1 in each RTT for which an entire window’s worth of
acknowledgments arrives. This phase of the algorithm is called congestion
avoidance.
The congestion-avoidance phase continues as long as the
acknowledgments arrive before their corresponding timeouts. But the
window size, and hence the rate at which the TCP sender can send, cannot
increase forever. Eventually, the TCP rate will be such that one of the links
along the path becomes saturated, at which point loss (and a resulting
timeout at the sender) will occur. When a timeout occurs, the value of
WKUHVKROG is set to half the value of the current congestion window, and the
congestion window is reset to one MSS. The sender then again grows the
congestion window exponentially fast using the slow-start procedure until
the congestion window hits the threshold.
In summary:

• When the congestion window is below the threshold, the congestion
window grows exponentially.

• When the congestion window is above the threshold, the congestion
window grows linearly.

• Whenever there is a timeout, the threshold is set to one-half of the
current congestion window and the congestion window is then set to
1.

If we ignore the slow-start phase, we see that TCP essentially increases its
window size by 1 each RTT (and thus increases its transmission rate by an
additive factor) when its network path is not congested, and decreases its
window size by a factor of 2 each RTT when the path is congested. For this
reason, TCP is often referred to as an additive-increase, multiplicative-

decrease (AIMD) algorithm.
The evolution of TCP’s congestion window is illustrated in Figure 3.49. In
this figure, the threshold is initially equal to 8 • MSS. The congestion
window climbs exponentially fast during slow start and hits the threshold at
the third transmission. The congestion window then climbs linearly until loss
occurs, just after transmission 7. Note that the congestion window is 12 •
MSS when loss occurs. The threshold is then set to 0.5 • &RQJ:LQ = 6 •
MSS and the congestion window is set 1. And the process continues. This
congestion-control algorithm is due to V. Jacobson [Jacobson 1988]; a
number of modifications to Jacobson's initial algorithm are described in
Stevens (1994) and in RFC 2581.

Figure 3.49: Evolution of TCP’s congestion window
We note briefly here that the description of TCP slow start is an idealized
one. An initial window of up to two MSS's is a proposed standard [RFC
2581] and it is actually used in some implementations.
A Trip to Nevada: Tahoe, Reno, and Vegas
The TCP congestion-control algorithm just described is often referred to as
Tahoe. One problem with the Tahoe algorithm is that, when a segment is
lost, the sender side of the application may have to wait a long period of
time for the timeout. For this reason, a variant of Tahoe, called Reno, is
implemented by most operating systems. Like Tahoe, Reno sets its
congestion window to one segment upon the expiration of a timer.

However, Reno also includes the fast retransmit mechanism that we
examined in Section 3.5. Recall that fast retransmission triggers the
transmission of a dropped segment if three duplicate ACKs for a segment
are received before the occurrence of the segment’s timeout. Reno also
employs a fast-recovery mechanism that essentially cancels the slow-start
phase after a fast retransmission. The interested reader is encouraged to
see [Stevens 1994] and in [RFC 2581] for details. [Cela 2000] provides
interactive animations of congestion avoidance, slow start, fast retransmit,
and fast recovery in TCP.
Most TCP implementations currently use the Reno algorithm. There is,
however, another algorithm in the literature, the Vegas algorithm, that can
improve Reno’s performance. Whereas Tahoe and Reno react to
congestion (that is, to overflowing router buffers), Vegas attempts to avoid
congestion while maintaining good throughput. The basic idea of Vegas is
to (1) detect congestion in the routers between source and destination
before packet loss occurs and (2) lower the rate linearly when this imminent
packet loss is detected. Imminent packet loss is predicted by observing the
round-trip times. The longer the round-trip times of the packets, the greater
the congestion in the routers. The Vegas algorithm is discussed in detail in
[Brakmo 1995]; a study of its performance is given in [Ahn 1995]. As of
1999, Vegas is not a part of the most popular TCP implementations.
We emphasize that TCP congestion control has evolved over the years,
and is still evolving. What was good for the Internet when the bulk of the
TCP connections carried SMTP, FTP, and Telnet traffic is not necessarily
good for today’s Web-dominated Internet or for the Internet of the future,
which will support who-knows-what kinds of services.
Does TCP Ensure Fairness?
In the above discussion, we noted that a goal of TCP’s congestion-control
mechanism is to share a bottleneck link’s bandwidth evenly among the TCP
connections that are bottlenecked at that link. But why should TCP’s
additive-increase, multiplicative-decrease algorithm achieve that goal,
particularly given that different TCP connections may start at different times
and thus may have different window sizes at a given point in time? [Chiu
1989] provides an elegant and intuitive explanation of why TCP congestion
control converges to provide an equal share of a bottleneck link’s bandwidth
among competing TCP connections.
Let’s consider the simple case of two TCP connections sharing a single link
with transmission rate R, as shown in Figure 3.50. We’ll assume that the
two connections have the same MSS and RTT (so that if they have the
same congestion window size, then they have the same throughput), that
they have a large amount of data to send, and that no other TCP
connections or UDP datagrams traverse this shared link. Also, we’ll ignore
the slow-start phase of TCP and assume the TCP connections are
operating in congestion-avoidance mode (additive-increase, multiplicative-
decrease) at all times.

Figure 3.50: Two TCP connections sharing a single bottleneck link
Figure 3.51 plots the throughput realized by the two TCP connections. If
TCP is to equally share the link bandwidth between the two connections,
then the realized throughput should fall along the 45-degree arrow ("equal
bandwidth share") emanating from the origin. Ideally, the sum of the two
throughputs should equal R. (Certainly, each connection receiving an
equal, but zero, share of the link capacity is not a desirable situation!) So
the goal should be to have the achieved throughputs fall somewhere near
the intersection of the "equal bandwidth share" line and the "full bandwidth
utilization" line in Figure 3.51.

Figure 3.51: Throughput realized by TCP connections 1 and 2
Suppose that the TCP window sizes are such that at a given point in time,
connections 1 and 2 realize throughputs indicated by point A in Figure 3.51.
Because the amount of link bandwidth jointly consumed by the two
connections is less than R, no loss will occur, and both connections will
increase their window by 1 per RTT as a result of TCP’s congestion-

avoidance algorithm. Thus, the joint throughput of the two connections
proceeds along a 45-degree line (equal increase for both connections)
starting from point A. Eventually, the link bandwidth jointly consumed by the
two connections will be greater than R and eventually packet loss will
occur. Suppose that connections 1 and 2 experience packet loss when they
realize throughputs indicated by point B. Connections 1 and 2 then
decrease their windows by a factor of two. The resulting throughputs
realized are thus at point C, halfway along a vector starting at B and ending
at the origin. Because the joint bandwidth use is less than R at point C, the
two connections again increase their throughputs along a 45-degree line
starting from C. Eventually, loss will again occur, for example, at point D,
and the two connections again decrease their window sizes by a factor of
two, and so on. You should convince yourself that the bandwidth realized
by the two connections eventually fluctuates along the equal bandwidth
share line. You should also convince yourself that the two connections will
converge to this behavior regardless of where they are in the two-
dimensional space! Although a number of idealized assumptions lay behind
this scenario, it still provides an intuitive feel for why TCP results in an
equal sharing of bandwidth among connections.
In our idealized scenario, we assumed that only TCP connections traverse
the bottleneck link, and that only a single TCP connection is associated with
a host-destination pair. In practice, these two conditions are typically not
met, and client/ server applications can thus obtain very unequal portions of
link bandwidth.
Many network applications run over TCP rather than UDP because they
want to make use of TCP’s reliable transport service. But an application
developer choosing TCP gets not only reliable data transfer but also TCP
congestion control. We have just seen how TCP congestion control
regulates an application’s transmission rate via the congestion-window
mechanism. Many multimedia applications do not run over TCP for this very
reason--they do not want their transmission rate throttled, even if the
network is very congested. In particular, many Internet telephone and
Internet video conferencing applications typically run over UDP. These
applications prefer to pump their audio and video into the network at a
constant rate and occasionally lose packets, rather than reduce their rates
to "fair" levels at times of congestion and not lose any packets. From the
perspective of TCP, the multimedia applications running over UDP are not
being fair--they do not cooperate with the other connections nor adjust their
transmission rates appropriately. A major challenge in the upcoming years
will be to develop congestion-control mechanisms for the Internet that
prevent UDP traffic from bringing the Internet’s throughput to a grinding
halt, [Floyd 1999].
But even if we could force UDP traffic to behave fairly, the fairness problem
would still not be completely solved. This is because there is nothing to stop
an application running over TCP from using multiple parallel connections.
For example, Web browsers often use multiple parallel TCP connections to

transfer a Web page. (The exact number of multiple connections is
configurable in most browsers.) When an application uses multiple parallel
connections, it gets a larger fraction of the bandwidth in a congested link.
As an example, consider a link of rate R supporting nine ongoing
client/server applications, with each of the applications using one TCP
connection. If a new application comes along and also uses one TCP
connection, then each application gets approximately the same
transmission rate of R/10. But if this new application instead uses 11
parallel TCP connections, then the new application gets an unfair allocation
of more than R/2. Because Web traffic is so pervasive in the Internet,
multiple parallel connections are not uncommon.
Macroscopic Description of TCP Dynamics
Consider sending a very large file over a TCP connection. If we take a
macroscopic view of the traffic sent by the source, we can ignore the slow-
start phase. Indeed, the connection is in the slow-start phase for a relatively
short period of time because the connection grows out of the phase
exponentially fast. When we ignore the slow-start phase, the congestion
window grows linearly, gets chopped in half when loss occurs, grows
linearly, gets chopped in half when loss occurs, and so on. This gives rise
to the saw-tooth behavior of TCP [Stevens 1994] shown in Figure 3.49.
Given this saw-tooth behavior, what is the average throughput of a TCP
connection? During a particular round-trip interval, the rate at which TCP
sends data is a function of the congestion window and the current RTT.
When the window size is w • MSS and the current round-trip time is RTT,
then TCP's transmission rate is (w • MSS)/RTT. During the congestion-
avoidance phase, TCP probes for additional bandwidth by increasing w by
one each RTT until loss occurs. (Denote by W the value of w at which loss
occurs.) Assuming that RTT and W are approximately constant over the
duration of the connection, the TCP transmission rate ranges from

These assumptions lead to a highly simplified macroscopic model for the
steady-state behavior of TCP. The network drops a packet from the
connection when the connection's window size increases to W • MSS; the
congestion window is then cut in half and then increases by one MSS per
round-trip time until it again reaches W. This process repeats itself over and
over again. Because the TCP throughput increases linearly between the
two extreme values, we have:

Average throughput of a connection =
Using this highly idealized model for the steady-state dynamics of TCP, we
can also derive an interesting expression that relates a connection's loss
rate to its available bandwidth [Mahdavi 1997]. This derivation is outlined in
the homework problems.

3.7.2: Modeling Latency: Static Congestion Window
Many TCP connections transport relatively small files from one host to
another. For example, with HTTP/1.0, each object in a Web page is
transported over a separate TCP connection, and many of these objects
are small text files or tiny icons. When transporting a small file, TCP
connection establishment and slow start may have a significant impact on
the latency. In this section we present an analytical model that quantifies
the impact of connection establishment and slow start on latency. For a
given object, we define the latency as the time from when the client
initiates a TCP connection until the time at which the client receives the
requested object in its entirety.
The analysis presented here assumes that the network is uncongested, that
is, that the TCP connection transporting the object does not have to share
link bandwidth with other TCP or UDP traffic. (We comment on this
assumption below.) Also, in order to not obscure the central issues, we
carry out the analysis in the context of the simple one-link network as
shown in Figure 3.52. (This link might model a single bottleneck on an end-
to-end path. See also the homework problems for an explicit extension to
the case of multiple links.)

Figure 3.52: A simple one-link network connecting a client and a server
We also make the following simplifying assumptions:

• The amount of data that the sender can transmit is solely limited by
the sender’s congestion window. (Thus, the TCP receive buffers are
large.)

• Packets are neither lost nor corrupted, so that there are no
retransmissions.

• All protocol header overheads--including TCP, IP, and link-layer
headers--are negligible and ignored.

• The object (that is, file) to be transferred consists of an integer
number of segments of size MSS (maximum segment size).

• The only packets that have non-negligible transmission times are
packets that carry maximum-size TCP segments. Request
messages, acknowledgments, and TCP connection establishment
segments are small and have negligible transmission times.

• The initial threshold in the TCP congestion-control mechanism is a
large value that is never attained by the congestion window.

We also introduce the following notation:

• The size of the object to be transferred is O bits.

• The MSS (maximum size segment) is S bits (for example, 536
bytes).

• The transmission rate of the link from the server to the client is R
bps.

• The round-trip time is denoted by RTT.

In this section we define the RTT to be the time elapsed for a small packet
to travel from client to server and then back to the client, excluding the
transmission time of the packet. It includes the two end-to-end propagation
delays between the two end systems and the processing times at the two
end systems. We shall assume that the RTT is also equal to the roundtrip
time of a packet beginning at the server.
Although the analysis presented in this section assumes an uncongested
network with a single TCP connection, it nevertheless sheds insight on the
more realistic case of multilink congested network. For a congested
network, R roughly represents the amount of bandwidth received in steady
state in the end-to-end network connection, and RTT represents a round-
trip delay that includes queuing delays at the routers preceding the
congested links. In the congested network case, we model each TCP
connection as a constant-bit-rate connection of rate R bps preceded by a
single slow-start phase. (This is roughly how TCP Tahoe behaves when
losses are detected with triple duplicate acknowledgments.) In our
numerical examples, we use values of R and RTT that reflect typical values
for a congested network.
Before beginning the formal analysis, let us try to gain some intuition. Let us
consider what would be the latency if there were no congestion-window
constraint; that is, if the server were permitted to send segments back-to-
back until the entire object is sent. To answer this question, first note that
one RTT is required to initiate the TCP connection. After one RTT, the
client sends a request for the object (which is piggybacked onto the third
segment in the three-way TCP handshake). After a total of two RTTs, the
client begins to receive data from the server. The client receives data from
the server for a period of time O/R, the time for the server to transmit the
entire object. Thus, in the case of no congestion-window constraint, the
total latency is 2 RTT + O/R. This represents a lower bound; the slow-start
procedure, with its dynamic congestion window, will of course elongate this
latency.
Static Congestion Window
Although TCP uses a dynamic congestion window, it is instructive to first
analyze the case of a static congestion window. Let W, a positive integer,
denote a fixed-size static congestion window. For the static congestion
window, the server is not permitted to have more than W unacknowledged
outstanding segments. When the server receives the request from the

client, the server immediately sends W segments back-to-back to the client.
The server then sends one segment into the network for each
acknowledgment it receives from the client. The server continues to send
one segment for each acknowledgment until all of the segments of the
object have been sent. There are two cases to consider:

1. WS/R > RTT + S/R. In this case, the server receives an
acknowledgment for the first segment in the first window before the
server completes the transmission of the first window.

2. WS/R < RTT + S/R. In this case, the server transmits the first
window’s worth of segments before the server receives an
acknowledgment for the first segment in the window.

Let us first consider case 1, which is illustrated in Figure 3.53. In this figure
the window size is W = 4 segments.

Figure 3.53: The case that WS/R > RTT + S/R
One RTT is required to initiate the TCP connection. After one RTT, the
client sends a request for the object (which is piggybacked onto the third
segment in the three-way TCP handshake). After a total of two RTTs, the
client begins to receive data from the server. Segments arrive periodically
from the server every S/R seconds, and the client acknowledges every
segment it receives from the server. Because the server receives the first
acknowledgment before it completes sending a window’s worth of
segments, the server continues to transmit segments after having
transmitted the first window’s worth of segments. And because the
acknowledgments arrive periodically at the server every S/R seconds from

the time when the first acknowledgment arrives, the server transmits
segments continuously until it has transmitted the entire object. Thus, once
the server starts to transmit the object at rate R, it continues to transmit the
object at rate R until the entire object is transmitted. The latency therefore is
2 RTT + O/R.
Now let us consider case 2, which is illustrated in Figure 3.54. In this figure,
the window size is W = 2 segments.

Figure 3.54: The case that WS/R < RTT + S/R
Once again, after a total of two RTTs, the client begins to receive segments
from the server. These segments arrive periodically every S/R seconds,
and the client acknowledges every segment it receives from the server. But
now the server completes the transmission of the first window before the
first acknowledgment arrives from the client. Therefore, after sending a
window, the server must stall and wait for an acknowledgment before
resuming transmission. When an acknowledgment finally arrives, the server
sends a new segment to the client. Once the first acknowledgment arrives,
a window’s worth of acknowledgments arrive, with each successive
acknowledgment spaced by S/R seconds. For each of these
acknowledgments, the server sends exactly one segment. Thus, the server
alternates between two states: a transmitting state, during which it transmits
W segments, and a stalled state, during which it transmits nothing and
waits for an acknowledgment. The latency is equal to 2 RTT plus the time
required for the server to transmit the object, O/R, plus the amount of time
that the server is in the stalled state. To determine the amount of time the
server is in the stalled state, let K = O/WS; if O/WS is not an integer, then
round K up to the nearest integer. Note that K is the number of windows of
data there are in the object of size O. The server is in the stalled state

between the transmission of each of the windows, that is, for K - 1 periods
of time, with each period lasting RTT - (W - 1)S/R (see Figure 3.54). Thus,
for case 2,

Latency = 2 RTT + O/R + (K - 1) [S/R + RTT - WS/R]
Combining the two cases, we obtain

Latency = 2 RTT + O/R + (K - 1) [S/R + RTT - WS/R]+

where [x]+ = max(x,0).
This completes our analysis of static windows. The following analysis for
dynamic windows is more complicated, but parallels that for static windows.

3.7.3: Modeling Latency: Dynamic Congestion Window
We now investigate the latency for a file transfer when TCP’s dynamic
congestion window is in force. Recall that the server first starts with a
congestion window of one segment and sends one segment to the client.
When it receives an acknowledgment for the segment, it increases its
congestion window to two segments and sends two segments to the client
(spaced apart by S/R seconds). As it receives the acknowledgments for the
two segments, it increases the congestion window to four segments and
sends four segments to the client (again spaced apart by S/R seconds).
The process continues, with the congestion window doubling every RTT. A
timing diagram for TCP is illustrated in Figure 3.55.

Figure 3.55: TCP timing during slow start

Note that O/S is the number of segments in the object; in the above
diagram, O/S = 15. Consider the number of segments that are in each of
the windows. The first window contains one segment, the second window
contains two segments, and the third window contains four segments. More
generally, the kth window contains 2k-1 segments. Let K be the number of
windows that cover the object; in the preceding diagram, K = 4. In general,
we can express K in terms of O/S as follows:

After transmitting a window’s worth of data, the server may stall (that is,
stop transmitting) while it waits for an acknowledgment. In Figure 3.55, the
server stalls after transmitting the first and second windows, but not after
transmitting the third. Let us now calculate the amount of stall time after
transmitting the kth window. The time the server begins to transmit the kth
window until the time when the server receives an acknowledgment for the
first segment in the window is S/R + RTT. The transmission time of the kth
window is (S/R) 2k-1. The stall time is the difference of these two quantities,
that is,

[S/R + RTT - 2k-1 (S/R)]+.
The server can potentially stall after the transmission of each of the first k -
1 windows. (The server is done after the transmission of the kth window.)
We can now calculate the latency for transferring the file. The latency has
three components: 2 RTT for setting up the TCP connection and requesting
the file, O/R, the transmission time of the object, and the sum of all the
stalled times. Thus,

The reader should compare the above equation for the latency equation for
static congestion windows; all the terms are exactly the same except that
the term WS/R for static windows has been replaced by 2k-1(S/R) for
dynamic windows. To obtain a more compact expression for the latency, let
Q be the number of times the server would stall if the object contained an
infinite number of segments:

The actual number of times the server stalls is P = min{Q,K-1}. In Figure
3.55, P = Q = 2. Combining the above two equations gives

We can further simplify the above formula for latency by noting

Combining the above two equations gives the following closed-form
expression for the latency:

Thus to calculate the latency, we simply must calculate K and Q, set P =
min {Q,K-1}, and plug P into the above formula.
It is interesting to compare the TCP latency to the latency that would occur
if there were no congestion control (that is, no congestion window
constraint). Without congestion control, the latency is 2 RTT + O/R, which
we define to be the minimum latency. It is a simple exercise to show that

We see from the above formula that TCP slow start will not significantly
increase latency if RTT << O/R, that is, if the round-trip time is much less
than the transmission time of the object. Thus, if we are sending a relatively
large object over an uncongested high-speed link, then slow start has an
insignificant effect on latency. However, with the Web, we are often
transmitting many small objects over congested links, in which case slow
start can significantly increase latency (as we’ll see in the following
subsection).
Let us now take a look at some example scenarios. In all the scenarios we
set S = 536 bytes, a common default value for TCP. We’ll use an RTT of
100 msec, which is not an atypical value for a continental or intercontinental

delay over moderately congested links. First consider sending a rather
large object of size O = 100 Kbytes. The number of windows that cover this
object is K = 8. For a number of transmission rates, the following table
examines the effect of the slow-start mechanism on the latency.
R
O/R
P
Minimum Latency: O/R + 2 RTT
Latency with slow start

28 Kbps
28.6 sec
1
28.8 sec
28.9 sec

100 Kbps
8 sec
2
8.2 sec
8.4 sec

1 Mbps
800 msec
5
1 sec
1.5 sec

10 Mbps
80 msec
7
0.28 sec
0.98 sec

We see from the above chart that for a large object, slow-start adds
appreciable delay only when the transmission rate is high. If the
transmission rate is low, then acknowledgments come back relatively
quickly, and TCP quickly ramps up to its maximum rate. For example, when
R = 100 Kbps, the number of stall periods is P = 2 whereas the number of
windows to transmit is K = 8; thus the server stalls only after the first two of
eight windows. On the other hand, when R = 10 Mbps, the server stalls
between each window, which causes a significant increase in the delay.
Now consider sending a small object of size O = 5 Kbytes. The number of
windows that cover this object is K = 4. For a number of transmission rates,
the following table examines the effect of the slow-start mechanism.
R
O/R
P
Minimum latency: O/R + 2 RTT
Latency with slow start

28 Kbps
1.43 sec

1
1.63 sec
1.73 sec

100 Kbps
0.4 sec
2
0.6 sec
0.757 sec

1 Mbps
40 msec
3
0.24 sec
0.52 sec

10 Mbps
4 msec
3
0.20 sec
0.50 sec

Once again, slow start adds an appreciable delay when the transmission
rate is high. For example, when R = 1 Mbps, the server stalls between each
window, which causes the latency to be more than twice that of the
minimum latency.
For a larger RTT, the effect of slow start becomes significant for small
objects for smaller transmission rates. The following table examines the
effect of slow start for RTT = 1 second and O = 5 Kbytes (K = 4).
R
O/R
<STRONGP
Minimum latency: O/R + 2 RTT
Latency with slow start

28 Kbps
1.43 sec
3
3.4 sec
5.8 sec

100 Kbps
0.4 sec
3
2.4 sec
5.2 sec

1 Mbps
40 msec
3
2.0 sec
5.0 sec

10 Mbps

4 msec
3
2.0 sec
5.0 sec

In summary, slow start can significantly increase latency when the object
size is relatively small and the RTT is relatively large. Unfortunately, this is
often the scenario when sending objects over the World Wide Web.
An Example: HTTP
As an application of the latency analysis, let’s now calculate the response
time for a Web page sent over nonpersistent HTTP. Suppose that the page
consists of one base HTML page and M referenced images. To keep things
simple, let us assume that each of the M + 1 objects contains exactly O
bits.
With nonpersistent HTTP, each object is transferred independently, one
after the other. The response time of the Web page is therefore the sum of
the latencies for the individual objects. Thus

Note that the response time for nonpersistent HTTP takes the form:
Response time = (M + 1)O/R + 2(M + 1)RTT + latency due to TCP slow-

start
for each of the M + 1 objects.

Clearly, if there are many objects in the Web page and if RTT is large, then
non-persistent HTTP will have poor response-time performance. In the
homework problems, we will investigate the response time for other HTTP
transport schemes, including persistent connections and nonpersistent
connections with parallel connections. The reader is also encouraged to
see [a related analysis.

Online Book

3.8: Summary
We began this chapter by studying the services that a transport-layer
protocol can provide to network applications. At one extreme, the
transport-layer protocol can be very simple and offer a no-frills service to
applications, providing only the multiplexing/demultiplexing function for
communicating processes. The Internet’s UDP protocol is an example of
such a no-frills transport-layer protocol. At the other extreme, a transport-
layer protocol can provide a variety of guarantees to applications, such as
reliable delivery of data, delay guarantees, and bandwidth guarantees.
Nevertheless, the services that a transport protocol can provide are often

constrained by the service model of the underlying network-layer protocol.
If the network-layer protocol cannot provide delay or bandwidth
guarantees to transport-layer segments, then the transport-layer protocol
cannot provide delay or bandwidth guarantees for the messages sent
between processes.

We learned in Section 3.4 that a transport-layer protocol can provide
reliable data transfer even if the underlying network layer is unreliable. We
saw that providing reliable data transfer has many subtle points, but that
the task can be accomplished by carefully combining acknowledgments,
timers, retransmissions, and sequence numbers.

Although we covered reliable data transfer in this chapter, we should keep
in mind that reliable data transfer can be provided by link, network,
transport, or application-layer protocols. Any of the upper four layers of the
protocol stack can implement acknowledgments, timers, retransmissions,
and sequence numbers and provide reliable data transfer to the layer
above. In fact, over the years, engineers and computer scientists have
independently designed and implemented link, network, transport, and
application-layer protocols that provide reliable data transfer (although
many of these protocols have quietly disappeared).

In Section 3.5 we took a close look at TCP, the Internet’s connection-
oriented and reliable transport-layer protocol. We learned that TCP is
complex, involving connection management, flow control, round-trip time
estimation, as well as reliable data transfer. In fact, TCP is actually more
complex than our description--we intentionally did not discuss a variety of
TCP patches, fixes, and improvements that are widely implemented in
various versions of TCP. All of this complexity, however, is hidden from
the network application. If a client on one host wants to reliably send data
to a server on another host, it simply opens a TCP socket to the server
and then pumps data into that socket. The client/server application is
blissfully unaware all of TCP’s complexity.

In Section 3.6 we examined congestion control from a broad perspective, and in Section 3.7 we showed how TCP implements
congestion control. We learned that congestion control is imperative for the
network can easily become gridlocked, with little or no data being transported end-to-end. In Section 3.7 we learned that TCP
implements an end-to-end congestion-control mechanism that additively increases its transmission rate when the TCP
connection’s path is judged to be congestion-free, and multiplicatively decreases its transmission rate when loss occurs. This
mechanism also strives to give each TCP connection passing through a congested link an equal share of the link bandwidth. We
also examined in some depth the impact of TCP connection establishment and slow start on latency. We observed that in many
important scenarios, connection establishment and slow start significantly contribute to end-to-end delay. We emphasize once
more that while TCP congestion control has evolved over the years, it remains an area of intensive research, and will likely
continue to evolve in the upcoming years.

In Chapter 1 we said that a computer network can be partitioned into the
"network edge" and the "network core." The network edge covers
everything that happens in the end systems. Having now covered the

application layer and the transport layer, our discussion of the network
edge is now complete. It is time to explore the network core! This journey
begins in the next chapter, where we’ll study the network layer, and
continues into Chapter 5, where we’ll study the link layer.

