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 תקציר
 

גדול קלט בתוך גרף , (Network Motifs)רשת -גם מוטיבי המכונים, גרפים קטנים-מציאת תת

 יםתיאורטי בשל שימושיה בתחומיםבתורת הגרפים ובמדעי המחשב ידועה ונחקרת היא בעיה , יותר

בעבודה  .בהקשר של מערכות מבוזרות הטרם נחקר בעיהלמיטב ידיעתנו ה, זאת למרות. כאחד יםומעשי

יהי : זו אנחנו בוחנים את השאלה במודל הבא ,G V E על  גרףn ויהי , קודקודיםdM  גרף עלd

עבור , קודקודים 1d O האם  .כלשהוdMגרף של -הוא תתG? אנו בוחנים שאלה זו במודל מבוזר ,

וכל הודעה מכילה לכל היותר , המעבדים מקושרים אלו לאלו nאשר בו כל  logO n בעבודה . ביטים

)פותר את הבעיה בתוך אשר פשוט מתואר אלגוריתם דטרמיניסטי  2)/( / log )d dnO n סיבובי תקשורת .

מוצג אלגוריתם הסתברותי אשר תוחלת סיבובי התקשורת , הוא משולש dMעבור המקרה הפרטי שבו 

1/3הדרושים לו היא  2/3( / ( 1))n tO  , באשרt  ובהסתברות גבוהה , הקלטהוא מספר המשולשים בגרף

1/3זמן הריצה הוא  (1השואפת פולינומית ל ) 2/3 2/3 1/3(min{ log / ( 1), })n n nO t . 

מוצג  :(Sparse)מתוארים אלגוריתמים דטרמיניסטיים המותאמים לגרפים דלילים , בנוסף

)1ב  Dמסוגל למצוא את כל תתי הגרפים בקוטר אלגוריתם ש / )DO n  סיבובי תקשורת בכל גרף שבו

מבוסס על אנו מציגים אלגוריתם ה, עבור המקרה הפרטי של משולשים. הדרגה המקסימלית היא 

וסיבוכיות סיבובי התקשורת היא , של גרף הקלט (arboricity) תוּיּצ  פרמטר הע  

2(( ) / log ) (| | / log )O A n n O E n n   , באשרA  היא העציות שלG. 
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Abstract

Let G = (V,E) be an n-vertex graph and Md a d-vertex graph, for some con-

stant d. Is Md a subgraph of G? We consider this problem in a model where

all n processes are connected to all other processes, and each message contains up

to O(log n) bits. A simple deterministic algorithm that requires O(n(d−2)/d/ log n)

communication rounds is presented. For the special case that Md is a triangle,

we present a probabilistic algorithm that requires an expected O(n1/3/(t2/3 + 1))

rounds of communication, where t is the number of triangles in the graph, and

O(min{n1/3 log2/3 n/(t2/3 + 1), n1/3}) with high probability.

We also present deterministic algorithms specially suited for sparse graphs. In

any graph of maximum degree ∆, we can test for arbitrary subgraphs of diameter

D in O(∆D+1/n) rounds. For triangles, we devise an arboricity-based algorithm,

featuring a round complexity of O((A2)/n + log n) ⊆ O(|E|/n + log n), where A

denotes the arboricity of G.
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1
Introduction

In distributed computing, it is common to represent a distributed system as a graph

whose nodes are computational devices (or, more generally, any kind of agents) and

whose edges indicate which pairs of devices are locally connected. Since its infancy,

the area has been arduously studying the so-called local model (cf. [17]), where

the devices try to jointly compute some combinatorial structure, such as a maximal

matching or a node coloring of this communication graph. In its most pure form,

the local model is concerned with one parameter only: the locality of a problem, i.e.,

the number of hops up to which nodes need to learn the topology and local portions

of the input in order to compute their local parts of the output—for example this

could be whether or not an outgoing edge is in the maximal matching or the color

of the node.

Considerable efforts have been made to understand the effect of bounding the

amount of communication across each edge. In particular, the congest model

that demands that in each time unit, at most O(log n) bits are exchanged over each

edge, has been studied intensively. However, to the best of our knowledge, all known

lower bounds rely on “bottlenecks” [10, 12, 18], i.e., small edge cuts that severely

constrain the total number of bits that may be communicated between different parts

of the graph. In contrast, very little is known about the possibilities and limitations

in case the communication graph is a clique, i.e., the communication bounds are

symmetric and independent of the structure of the problem we need to solve. The

few existing works show that, as one can expect, such a distributed system model

is very powerful: A minimum spanning tree can be found in O(log log n) time [13],

with randomization nodes can send and receive up to O(n) messages of size O(log n)

in O(1) rounds, without any initial knowledge of which nodes hold messages for

which destinations [11], and, using the latter routine, they can sort n2 keys in O(1)

rounds (where each node holds n keys and needs to learn their index in the sorted

sequence) [16]. In general, none of these tasks can be performed fast in the local

model, as the communication graph might have a large diameter.



In the current paper, we examine a question that appears to be hard even when

the communication graph is a clique, if message size is constrained to be O(log n).

Given that each node initially knows its neighborhood in an input graph, the goal is

to decide whether this graph contains some subgraph on d ∈ O(1) vertices. In the

local model, this can be trivially solved by each node learning the topology up to

a constant distance;1 in our setting, this simple strategy might result in a running

time of Ω(n/ log n), as some (or all) nodes may have to learn about the entire graph

and thus need to receive Ω(n2) bits. We devise a number of algorithms that achieve

much better running times. These algorithms illustrate that efficient algorithms in

the contemplated model need to strive for balancing the communication load, and

we show some basic strategies to do so.

Detailed Contributions. In Chapter 4, we start out by giving a family of

deterministic algorithms that decide whether the graph contains a d-vertex subgraph

within O(n(d−2)/d) rounds. In fact, these algorithms find all copies of this subgraph

and therefore could be used to count the exact number of occurrences. They split

the task among the nodes such that each node is responsible for checking an equal

number of subsets of d vertices for being the vertices of a copy of the targeted

subgraph. This partition of the problem is chosen independently of the structure

of the graph. Note that even the trivial algorithm that lets each node collect its

D-hop neighborhood and test it for instances of the subgraph in question does not

satisfy this property. Still, it exhibits a structure that is simple enough to permit a

deterministic implementation of running time O(∆D+1/n), where ∆ is the maximum

degree of the graph, given in Chapter 5. For the special case of triangles, we present

a more intricate way of checking neighborhoods that results in a running time of

O(A2/n + log2+n/A2 n) ⊆ O(|E|/n + log n), where the arboricity A of the graph

denotes the minimal number of forests into which the edge set can be decomposed.

While always A ≤ ∆, it is possible that A ∈ O(1), yet ∆ ∈ Θ(n) (e.g., in a graph that

is a star). Moreover, any family of graphs excluding a fixed minor has A ∈ O(1) [6],

demonstrating that the arboricity is a much less restrictive parameter than ∆. Note

also that the running time bound in terms of |E| is considerably weaker than the

one in terms of A. For example, a graph of uniform degree
√
n has arboricity at

most
√
n, but n3/2/2 edges.

All our deterministic algorithms systematically check for subgraphs by either

considering all possible combinations of d nodes or following the edges of the graph.

If there are many copies of the subgraph available, it can be much more efficient to

1In the local model, one is satisfied with at least one node detecting a respective subgraph.
Requiring that the output is known by all nodes results in the diameter being a trivial lower
bound for any meaningful problem.
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randomly inspect small portions of the graph. In Chapter 6, we present a triangle-

finding algorithm that does just that, yielding that for every ε ≥ 1/n and a graph

containing t ≥ 1 triangles, a triangle will be found with probability at least 1 − ε
within O((n1/3 log2/3 ε−1)/t2/3 + log n) rounds; we show this analysis to be tight.

All of the algorithms presented are uniform, i.e., they require no prior knowledge

of parameters such as t or A. Interleaving them will result in an asymptotic running

time that is bounded by the minimum of all the individual results.
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2
Related Work

Apart from shedding more light on the power of the considered model, the detec-

tion of small subgraphs, sometimes referred to as graphlets or network motifs, is

of interest in its own right. Recently, this topic received growing attention due to

the importance of recurring patterns in man-made networks as well as natural ones.

Certain subgraphs were found to be associated with neurobiological networks, oth-

ers with biochemical ones, and others still with human-engineered networks [15].

Detecting network motifs is an important part of understanding, for instance, bio-

logical networks, as they play a key role in information processing mechanisms of

biological regulation networks.

Even motifs as simple as triangles are of interest to the biological research com-

munity as they appear in gene regulation networks, where what a graph theorist

would call a directed triangle is often referred to as a Feed-Forward Loop. In recent

years, the network motifs approach to studying networks lead to development of

dedicated algorithms and software tools. Being of highly applicative nature, algo-

rithms used in such context are usually researched from an experimental point of

view, using naturally generated data sets [9].

Triangles and triangle-free graphs also play a central role in combinatorics. For

example, planar triangle-free graphs are long since known to be 3-colorable [8]. The

implications of triangle finding and triangle-freeness motivated extensive research of

algorithms, as well as lower bounds, in the centralized model. Most of the work done

on these problems falls into one of two categories: subgraph listing and property

testing.

2.1 Subgraph Listing

In subgraph listing, the aim is to list all copies of a given subgraph. Such is the

usual approach adopted in the aforementioned biological applications. The number

of copies in the graph, that may be as high as Θ (n3) for triangles, sets an obvious



lower bound for the running time of such algorithms, rendering instances with many

triangles harder in some sense. It has been shown by Chiba and Nishizeki in [4]

that a graph with bounded arboricity contains O(n) copies of cliques of a given size.

They further describes a linear-time algorithm to list them all, as do Chrobak and

Eppstein (though by a different algorithm) in [5].

2.2 Property Testing

Property testing algorithms, as opposed to subgraph listing, distinguish with some

probability between graphs that are triangle-free and graphs that are far from being

triangle-free, in the sense that a constant fraction of the edges has to be removed

in order for the graph to become triangle-free [1, 2]. Although soundly motivated

by stability arguments, the notion of measuring the distance from triangle-freeness

by the minimal number of edges that need to be removed seems less natural than

counting the number of triangles in the graph. Consider for instance the case of a

graph with n nodes comprised of n − 2 triangles, all sharing the same edge. From

the property testing point of view, this graph is very close to being triangle free,

although it contains a linear number of triangles.

2.3 State of the art

It is hard to compare the approach we adopt with ones used in the centralized

model, as we may employ n processors in parallel, whereas the main restriction we

adher to is the communication volume. The approach that most resembles ours, is

that of query-based algorithms, that are allowed to sample edges or degrees. The

query complexity is a plausible analogue of messages passed between processors.

Instead of the hamming distance, as used in the Property Testing paradigm, the

number of triangles in the graph is the significant parameter. Some such query

based algorithms were suggested in the centralized model, where the parameter to

determine is the number of triangles in the graph. Sadly, the lower bounds for such

algorithms assume restrictions on the type of queries1 that cannot be justified in

our model [7]. In conclusion, though extensive work has been done in the field of

finding small subgraphs in a larger graph, to the best of our knowledge little to none

of it was in the field of distributed computing, at least partly due to the triviality

of this question in the local model. We hope that exploring these seemingly simple

problems in the congest model, would not only contribute to understanding the

1For instance, in [7] the query model requires that edges are sampled uniformly at random.

8



problem itself, but also illustrate some generally applicable techniques of distributing

a computational task in a highly symmetric way, such that the communication load

is adequately balanced.

9





3
Model and Problem

3.1 Model

Our model separates the computational problem from the communication model.

Let V = {1, . . . , n} represent the nodes of a distributed system. With respect to

communication, we adhere to the synchronous congest model as described in [17]

on the complete graph on the node set V , i.e., in each computational round, each

node may send (potentially different) O(log n) bits to each other node. We do not

consider the amount of computation performed by each node, however, for all our

algorithms it will be polynomially bounded. Instead, we measure complexity in the

number of rounds until an algorithm terminates.1 Let G = (V,E) be an arbitrary

graph on the same vertex set, representing the computational problem at hand.

Initially, every node i ∈ V has the list Ni := {j ∈ V | {i, j} ∈ E} of its neighbors in

G, but no further knowledge of G.

3.2 Problem

The computational problem we are going to consider throughout this paper is the

following. Given a graph Md on d ∈ O(1) vertices, we wish to (i) discover whether

Md is a subgraph of G and (ii) characterize the trade-off between the number s of

copies of Md that are present in G and the time required to decide on (i).

1Note that it is trivial to make all nodes terminate in the same round due to the full connectivity.
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4
Deterministic Algorithms for General

Graphs

During our exposition, we will discuss the issues of what to communicate and how

to communicate it separately. That is, given sets of O(log n)-sized messages at all

nodes satisfying certain properties, we provide subroutines that deliver all messages

quickly, and use these subroutines in our algorithms. We start out by giving a very

efficient deterministic scheme provided that origins and destinations of all messages

are initially known to all nodes. We then will show that this scheme can be utilized

to find all triangles or other constant-sized subgraphs in sublinear time.

4.1 Full-Knowledge Message Passing

For a certain limited family of algorithms that we call oblivious algorithms, it is

possible to exploit the full capacity of the communication system, i.e., provided that

no node sends or receives more than n messages, all messages can be delivered in

two rounds.

Definition 4.1. A distributed algorithm A in our model is said to be oblivious if

the sources and destinations of all messages are determined in advance, regardless

of the input graph G, and each source can determine the content of its messages

from its input.

For instance, the rather trivial AllNeighbors algorithm (see Algorithm 1) is obliv-

ious and results in all nodes having complete knowledge of the structure of G.

Algorithm 1: AllNeighbors at node i.

1 for j ∈ V do
2 send Ni to j

13



As communication is peer-to-peer, in actuality, all iterations of the For loop can

be executed in parallel. If all nodes execute the above routine, after n rounds every

node gets all lists of immediate neighbors of nodes, and can therefore reconstruct

the graph locally. We will see later on, in Chapter 5, that a similar algorithm can

be realized more efficiently using a more evolved communication strategy.

We now turn to describing our communication pattern for oblivious algorithms.

To this end, we will need the following claim that is a corollary of Hall’s marriage

theorem.

Claim 4.2. Every d-regular bipartite multigraph is a disjoint union of d perfect

matchings.

Proof. By induction on d. For d = 1 the graph is a perfect matching by definition.

Assume that the claim holds for some d, and letH = (L,R,E) be a (d+1)-regular

bipartite graph. Let S ⊆ L be some set of vertices, and define Γ(S) := {u ∈ R :

∃v ∈ S s.t. (v, u) ∈ E}. By regularity, the sum of degrees in S is exactly (d+ 1)|S|,
and by the pigeonhole principle and regularity |Γ(S)| ≥ (d + 1)|S|/(d + 1) = |S|,
satisfying Hall’s marriage condition thus implying that a perfect matching exists.

Removing the perfect matching found from the graph leaves a d-regular bipartite

graph that is a disjoint union of d perfect matchings by the induction hypothesis.

Adding those d perfect matchings to the one just obtained completes the proof.

Lemma 4.3. Given a bulk of messages, such that:

1. The source and destination of each message is known in advance to all nodes,

and each source knows the contents of the messages to sent.

2. No node is the source of more than n messages.

3. No node is the destination of more than n messages.

A routing scheme to deliver all messages within 2 rounds can be found efficiently.

Proof. WLOG we assume every node is the source of exactly n messages, and it is

the destination of exactly n messages as well (having a node “sending message to

itself” is not a problem). We will label every message to node i with a different

j ∈ {1, ..., n} and denote the messages to node i according to this labeling by

mi,1,mi,2, ...,mi,n.

We define a good labeling to be such that no node initially holds two messages

labeled mj,k and ml,k for some l, j, k with l 6= j. Assuming we start with a good

labeling, we argue that the message passing algorithm whose pseud-code is given

in Algorithm 2 terminates successfully after two rounds. We will later show that a

good labeling is always attainable.

14



Algorithm 2: Deterministic Message Passing at node i holding message set
S.
1 S ′ := ∅, S ′′ := ∅
2 // first stage (distribution)
3 for mj,k ∈ S do
4 send mj,k to node k
5 for received message m do
6 S ′ := S ′ ∪ {m}
7 // second stage (delivery)
8 for mj,k ∈ S ′ do
9 send mj,k to node j

10 for received message m do
11 S ′′ := S ′′ ∪ {m}
12 return S ′′

If our labeling is indeed good, then during the first stage every node sends at

most a single message to each of the other nodes, and therefore can dispose of all the

messages in S within the first round. Due to the unique labeling of the messages,

after the first stage node i holds all messages of type mk,i, and since there is at most

one such message for each k, all of them are emitted within a single round in the

second stage. Clearly, the labeling also ensures that the returned set S ′′ will contain

exactly the messages whose destination is i.

It remains to show that we can find a good labeling. Recall that sources and

destinations are known in advance to all nodes, so each node can compute the

labeling locally. If all nodes use the same deterministic algorithm, this will result in

all nodes using the exact same labeling.

Let B = (L,R,E) be a bipartite multigraph, where |L| = |R| = n. We denote

L = {l1, ..., ln} and R = {r1, ..., rn}. For every message in the initial bulk with

source i and destination k we add an edge (li, rk) to E. B is clearly an n-regular

multigraph, and by Claim 4.2 it is a disjoint union of n perfect matchings. We now

choose a perfect matching in this graph, remove its edges and label the messages

represented by those edges thus: for every edge (li, rk) in the matching we label its

corresponding message mk,1. After removing those edges we find another perfect

matching, and for every edge (li, rk) in it we label the corresponding message mk,2

and so on, until we remove the nth perfect matching from the graph. Since a perfect

matching is easy to find (using maximal-flow algorithms), a good labeling can be

found efficiently.

Corollary 4.4. An oblivious algorithm in which each node sends and receives at

most T (n) messages can be completed within 2dT (n)/ne rounds, by repeatedly using

15



the message passing routine described above.

4.2 TriPartition - Finding triangles deterministically

Next, we present an algorithm that finds whether there are triangles in G. The

algorithm is not oblivious, since in the final step every node broadcasts whether it

found a triangle or not to all other nodes. This last broadcast message is obviously

dependent on other messages transferred throughout the algorithm, therefore it

violates the obliviousness requirement that the order of the messages will not matter.

However, having every node broadcast its results takes a single round only. The first

part of the algorithm is oblivious, allowing us to apply the message passing algorithm

previously stated to it. As the oblivious part of the algorithm terminates, we run

the final broadcasting round.

Let S ⊆ 2V be a partition of V into equally sized subsets of cardinality n2/3.

We write S = {S1, ..., Sn1/3}. To each node i ∈ V we assign a distinct (ordered)

triplet from S denoted Si,1, Si,2, Si,3 (where repetitions are admitted). Clearly, for

any subset of three nodes there is a triplet such that each node is element of one of

the subsets in the triplet, showing the following claim.

Claim 4.5. For each triangle {t1, t2, t3} in G, there is some node i such that t1 ∈
Si,1, t2 ∈ Si,2, and t3 ∈ Si,3.

Proof. Each node checks for triangles that are contained in its triplet of subsets by

executing TriPartition, whose pseudo-code is given in Algorithm 3.

Algorithm 3: TriPartition at node i.

1 Ei := ∅
2 for 1 ≤ j < k ≤ 3 do
3 for l ∈ Si,j do
4 retrieve Nl ∩ Si,k
5 for m ∈ Nl ∩ Si,k do
6 Ei := Ei ∪ {l,m}
7 if there exists a triangle in Gi := (V,Ei) then
8 send “triangle” to all nodes
9 if received “triangle” from some node then

10 return true
11 else
12 return false

16



Theorem 4.6. Using Deterministic Message Passing algorithm as communication

subroutine, TriPartition determines correctly whether there exists a triangle in G

within O(n1/3) rounds.

Proof. Correctness follows from Claim 4.5, as node i collects exactly the edges be-

tween pairs of subsets in its triplet. The round complexity is deduced as follows.

Since the assignment of set triplets is static, each node i knows which nodes need to

learn about which of its neighbors. Since there are n1/3 subsets of size n2/3, each of

which participates in n1/3 triplets involving the subset containing i, the node needs

to transmit at most n4/3 messages.1 On the other hand, each node needs to learn

about less than
(
3
2

)
n4/3 edges, one for each pair of nodes from two of its subsets. By

Corollary 4.4, this information can thus be communicated within O(n1/3) rounds.

The algorithm terminates one additional round later, completing the proof.

Remark 4.7. The partial obliviousness of TriPartition allows us to avoid sending

IDs of nodes. That is, instead of encoding the respective sublist of neighbors by

listing their IDs, nodes just send a 0 − 1 array of bits indicating whether a node

from the respective set from S is or is not a neighbor in G. The receiving node can

decode the message because it is already known in advance which bit stands for which

pair of nodes. Repeating the argument from the proof of Theorem 4.6 we may hence

improve the round complexity of TriPartition to O(n1/3/ log n).

4.3 Generalization for d-cliques

TriPartition generalizes easily to an algorithm we call dClique0 that finds d-cliques

(as well as any other subgraph on d-vertices). We choose S to be a partition of V

into equal size subsets of cardinality n(d−1)/d, resulting in S = {S1, ..., Sn1/d}. Each

node now examines the edges between all pairs of some d-sized multisubset of S (as

we did for d = 3 in TriPartition). Since there are exactly |S|d = n such multisets,

all possible d-cliques are examined. Every node needs to receive the list of edges

for all
(
d
2

)
pairs, each containing at most (n(d−1)/d)2 edges, thus every node needs to

send and receive at most O(n(2d−2)/d) messages.

Theorem 4.8. dClique0 determines correctly whether there exists a d-clique (or any

given d-vertex graph) in G within O(n(d−2)/d/ log n) rounds.

Proof. Similarly to the 3-vertex case, we apply Corollary 4.4, and due to oblivious-

ness, we may assume all messages are sequences of bits as in Remark 4.7.

1Clearly, a neighbor can be encoded using log n bits.
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5
Deterministic Algorithms for Sparse

Graphs

In graphs that have o(n2) edges, one might hope to obtain faster algorithms. How-

ever, the algorithms from the previous section have congestion at the node level, i.e.,

even if there are few edges in total, some nodes may still have to send or receive lots

of messages. Hence, we need different strategies for sparse graphs. In this section,

we derive bounds depending on parameters that reflect the sparsity of graphs.

5.1 Bounded degree

We start with a simple value, the maximum degree ∆ := maxi∈V δi, where the degree

of node i δi := |Ni|. If ∆ is relatively small, the trivial TriNeighbors algorithm, whose

pseudo-code is given in Algorithm 4 may be much faster than dClique0 algorithm.

Algorithm 4: TriNeighbors at node i.

1 Ei := ∅
2 for j ∈ V s.t. (i, j) ∈ E do
3 retrieve Nj
4 for k ∈ Nj do
5 Ei := Ei ∪ {j, k}
6 if there exists a triangle in Gi := (V,Ei) then
7 send “triangle” to all nodes
8 if received “triangle” from some node then
9 return true

10 else
11 return false

Since potentially all vertices may have degree ∆, the message complexity per

node is in O(∆2 + n). We use an elegant message-passing technique, suggested

by Shiri Chechik [3]. Assuming that (i) no node is source of more than n mes-
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sages in total, (ii) no node is destination of more than n messages, and (iii) every

node sends the exact same messages to all of the destinations for its messages, it

delivers all messages in 3 rounds. Given for each node i the sets of its messages

Mi = {mi,1, . . . ,mi,k(i)} and destinations Di, the algorithm’s pseudo-code is given

in Algorithm 5.

Algorithm 5: Round-Robin-Messaging at node i.

1 R := ∅ // collects output
2 S := ∅ // collects source nodes and #messages for i
3 for j ∈ V do
4 send mi,jmod k(i) to j
5 if j ∈ Di then
6 send “notify k(i)” to j

7 for “notify k(j)” received from j do
8 S := S ∪ (j, k(j))
9 l := 1

10 for (j, k(j)) ∈ S do
11 for k ∈ {1, . . . , k(j)} do
12 send “request message from j” to l
13 l := l + 1

14 for received “request message from j” do
15 send mj,imod k(j) to j
16 for received message m do
17 R := R ∪ {m}
18 return R

Lemma 5.1. Given a bulk of messages in which:

1. Every node is the source of at most n messages.

2. Every node is the destination of at most n messages.

3. Every source node sends exactly the same information to all of its destination

nodes and knows the content of its messages.

Round-Robin-Messaging delivers all messages in 3 rounds.

Proof. In the first loop of the algorithm every node sends one message to every other

node; note that it is feasible to send both the message mi,jmod k(i) and a potential

notification at the same time. The cyclic nature of the message distribution in this

first loop assures that any consecutive k(i) nodes together hold all k(i) messages

of node i, exactly one at each node. By Condition 1, k(i) ≤ n for each node i,

i.e., each node indeed sends out all its messages. By Condition 2, for each node

the querying loop will request at most one message from each node. Since exactly

k(j) messages are requested from a node j, the set of messages retrieved in the
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second last loop contains Mj. By Condition 3 and due to the previous notification

of destination nodes, this is exactly the set of messages to be received from j.

This shows correctness of the algorithm. As we also argued that in total three

communication rounds are required, this shows the statement of the lemma.

Algorithm TriNeighbors satisfies all the conditions of Lemma 5.1. We conclude

that, employing Round-Robin-Messaging, the round complexity of TriNeighbors be-

comes O(∆2/n). If ∆ ∈ O(
√
n) then the round complexity is O(1), and clearly

optimal. More generally, any subgraph of diameter1 D ∈ O(1) can be detected by

each node exploring its D-hop neighborhood.

Corollary 5.2. We can test for subgraphs of diameter D in O(∆D+1/n) rounds.

5.2 Bounded arboricity

The arboricity A of G is defined to be the minimum number of forests on V such

that their union is G. Note that always A ≤ ∆, and for many graphs A� ∆. The

arboricity bounds the number of edges in any subgraph of G in terms of its nodes.

We exploit this property to devise an arboricity-based algorithm for triangle finding

that we call TriArbor.

5.2.1 An overview of the TriArbor algorithm

We wish to employ the same strategy used by the naive TriNeighbors, that is

“asking neighbors for their neighbors”, in a more careful manner, so as to avoid

having high degree nodes send their entire neighbor list to many nodes. This is

achieved by having all nodes with degree at most 4A send their neighbor list to

their neighbors and then shut down. In the next iteration, the nodes that have a

degree at most 4A in the graph induced by the still active nodes do the same and

shut down. As 2An′ uniformly bounds the sum of degrees of any subgraph of G

containing n′ nodes, in each iteration at least half of the remaining nodes is shut

down. Hence, the algorithm will terminate within O(log n) iterations. In order to

control the number of messages sent in each iteration, we consider triangles involving

at least one node of low degree (in the induced subgraph of the still active nodes).

As we will find a triangle once any of its nodes’ degrees becomes smaller than 4A,

all triangles are will be detected.

Obviously, no node of low degree will have to send more than 4A messages in this

scheme. However, it may be the case that a node receives more than 4A messages

1The diameter of the graph is the maximum shortest path length over all pairs of nodes.
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in case it has many low-degree neighbors. To remedy that, low-degree nodes avoid

sending their neighbor list to their high-degree neighbors directly, and instead send

them to intermediate nodes we call delegates. The delegates share the load of testing

their associated high-degree node’s neighborhood for triangles involving a low-degree

node.

Note that in the presented form, the algorithm is not uniform, i.e., it is assumed

that A is known. We will later discuss how to remove this assumption and slightly

improving its round complexity at the same time.

5.2.2 TriArbor algorithm

Choosing delegates

In each iteration, every delegate node will be assigned to a unique high-degree node,

i.e., a node of degree larger than 4A in the subgraph induced by the nodes that

are still active. In the following, we will discuss a single iteration of the algorithm.

Denote by G′ := (V ′, E ′) some subgraph of G on n′ nodes, where WLOG V ′ =

{1, . . . , n′}. Define δ′i, ∆′, N ′i , etc. analogously to the respective values without a

prime, but with respect to G′ instead of G. We would like to assign to each node

i exactly dδ′i/(4A)e delegates such that each delegate is responsible for up to 4A of

the respective high-degree node’s neighbors.

Claim 5.3. At least n′/2 of the nodes have degree at most 4A and the number of

assigned delegates is bounded by n′.

Proof. We have that

|{i ∈ V ′ | δ′i > 4A}| ≤ 1

4A

∑
i∈V ′

δ′i ≤
|E ′|
2A

<
n′

2
.

Therefore,

∑
i∈V ′
δ′i>4A

⌈
δ′i
4A

⌉
≤ n′

2
+

1

4A

n′∑
i=1

δ′i ≤
n′

2
+
|E ′|
2A

< n′,

i.e., less than n′ delegates are required.

Moreover, the assignment of delegates to high-degree nodes can be computed

locally using a predetermined function of the degrees δ′i. Thus, if every node com-

municates its degree δ′i, all nodes can determine locally the assignment of delegates

to high-degree nodes in a consistent manner.
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The algorithm

Algorithm 6 shows the pseudocode of one iteration of TriArbor. The complete

algorithm iterates until for all nodes δ′i = 0 and outputs “true” if in one of the

iterations a triangle was detected and “false” otherwise.

Algorithm 6: One iteration of TriArbor at node i.

1 // compute delegates
2 send δ′i to all other nodes
3 compute assignment of delegates to high-degree nodes and neighbor sublists
4 // high-degree nodes distribute their neighborhood
5 if δ′i > 4A then
6 partition N ′i into dδ′i/4Ae lists of length at most 4A
7 send each sublist to the computed delegate
8 for j ∈ N ′i do
9 notify j of the delegate assigned to it // only i knows the order of N ′i ,

hence communication required
10 // let all delegates learn about N ′j
11 if i is delegate of some node j then
12 denote by Dj the set of delegates of j
13 denote by Lj,i ⊂ N ′j the sublist of neighbors received from j

14 for k ∈ Dj do
15 send Lj,i to k
16 for received sublist Lj,k do
17 N ′j := N ′j ∪ Lj,k
18 // low-degree nodes distribute their neighborhoods
19 if δ′i ≤ 4A then
20 for j ∈ N ′i do
21 if δ′j ≤ 4A then
22 send N ′i to j // low-degree nodes can handle load themselves
23 else
24 send N ′i to the delegate of j assigned to i

25 // check for triangles
26 for received N ′j (from j with δ′j ≤ 4A) do
27 if N ′i ∩N ′j 6= ∅ then
28 send “triangle found” to all nodes // detected triangles involving two

low-degree nodes
29 else if i is delegate of k and N ′j ∩N ′k 6= ∅ then
30 send “triangle found” to all nodes // detected triangle involving one

low-degree node
31 if received “triangle found” then
32 return true
33 else
34 return false
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Claim 5.4. TriArbor terminates within dlog ne iterations.

Proof. Follows directly from Claim 5.3, as in each iteration at least half of the nodes

are eliminated.

Lemma 5.5. TriArbor correctly decides whether the graph contains a triangle or

not.

Proof. Clearly, there are no false positives, as in each iteration, nodes will only claim

that a triangle is found if they learned about an edge connecting two nodes in the

same neighborhood (either their own or the node whose delegate they are).

Recall that by Claim 5.3, there are sufficiently many delegates available, and we

observed that the assignment can be computed as the same function of the (current)

degrees.

Now, assume the graph contains some triangle {i1, i2, i3}. There must be some

iteration in which one of the nodes, say i1, has degree δ′i1 ≤ 4A and the triangle is

still in the subgraph induced by active nodes: By Claim 5.4, eventually all nodes get

eliminated, while each edge connecting two high-degree nodes will still be present

in the subgraph induced by the active nodes of the next iteration.

We distinguish two cases. If in the respective iteration it also holds that δ′i2 ≤ 4A,

then i1 will send i2 its neighbor list (with respect to the induced subgraph), and i2

will detect the triangle. Otherwise, i1 will send its current neighbor list to one of i2’s

delegates. As i2 splits its neighbor list and distributes it among its delegates, which

share their sublist with all other delegates, this delegate will detect the triangle.

Hence, in both cases, the triangle will eventually be discovered, this information be

spread among the nodes, and all nodes will compute the correct output.

Round Complexity of TriArbor

We examine the time complexity of one iteration of the algorithm. Obviously, an-

nouncing degrees takes a single round only.

Claim 5.6. The distribution of high-degree nodes’ neighborhoods can be performed

in two rounds.

Proof. Every node i with δ′i > 4A partitions its neighbor list and sends it, totalling

in at most δ′i < n′ messages. As each node is delegate of at most one node, no more

than 4A messages need to be received. Observe that since all nodes are aware of

the assignment of delegates as well as all node degrees, we can apply Lemma 4.3 to

see that all messages can be delivered in two rounds. Notifying neighbors of their
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assigned delegates takes one message for each neighbor. However, both tasks are

independent, therefore we can merge the respective messages, resulting in a total of

two rounds.

Claim 5.7. Exchanging neighborhood sublists between delegates can be implemented

in four rounds.

Proof. Every delegate holds a sublist of at most 4A of the neighbors of the node i

it has been assigned to. Hence, it needs to send at most dδ′i/4Ae4A < 2δ′i < 2n′

messages. Similarly, it receives less than 2n′ messages. As delegates are aware of

the number of messages to exchange, Lemma 4.3 shows that we can implement this

communication in four rounds.

Claim 5.8. The distribution of low-degree nodes’ neighborhoods can be performed

in 3d32A2/ne rounds.

Proof. Every node i with δ′i ≤ 4A sends δ′i messages to each of its low-degree neigh-

bors and to one delegate of each high-degree neighbor, i.e., at most 16A2 mes-

sages. Similarly, both low-degree nodes and delegates receive at most 16A2 mes-

sages. As the low-degree nodes send their entire neighborhood to all destinations,

applying Lemma 5.1 repeatedly yields that this communication can be performed in

3d32A2/ne rounds (note that nodes may have to receive 32A2/n messages because

they may have low degree and be delegate at the same time).

Finally, announcing a found triangle takes one more round. All in all, we get the

following result.

Theorem 5.9. Algorithm TriArbor is correct. Using our Deterministic Message

Passing and Round-Robin-Messaging algorithms, it can be implemented with a run-

ning time of O(dA2/ne log n) rounds.

Proof. Correctness was shown in Lemma 5.5. Combining Claims 5.6, 5.7, and 5.8,

we see that a single iteration of the algorithm can be implemented with running time

O(A2/n). By Claim 5.4, the total running time is thus bounded by O(dA2/ne log n)

rounds.

Corollary 5.10. The iterations of TriArbor can be parallelized, reducing the round

complexity to O(A2/n+ log n).

Proof. We first let all nodes execute the a short announcement phase, whose pseudo-

code is given in Algorithm 7, storing all received values.
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Algorithm 7: QuickDecomposition at node i.

1 V ′ := V
2 for dlog ne iterations do
3 send δ′i := |Ni ∩ V ′| to all nodes
4 V ′ := V ′ \ {j ∈ V ′ | δ′j ≤ 4A}

The aim of this “announcement phase” is that for all iterations, the nodes will

know in advance which nodes are of high degree, which are of low degree, and which

nodes are the delegates of which other nodes. As all this information can be inferred

from the degree distributions at the beginning of each iteration, which by itself is

also a function of the degrees in the previous iteration, the above routine performs

this task.

Our goal is now to show that we can “merge” the further communication of all

iterations such that the total running time is bounded by O(A2/n). Note that nodes

satisfy up to three roles during the execution of the algorithm: they may act as (i)

high-degree nodes, (ii) delegates, and (iii) low-degree nodes. However, according

to Claim 5.3, during the entire execution of the algorithm, the total number of

delegates is bounded by
∞∑
i=1

n

2i−1
= 2n.

We conclude that we can assign delegates in a way such that each node acts as

delegate in at most two iterations. Furthermore, each node is a low-degree node in

exactly one iteration, as afterwards it is eliminated from the subgraph induced by ac-

tive nodes. Therefore, the asymptotic bounds from Claims Claim 5.7 and Claim 5.8

can be shown analogously also for the merged execution. Regarding Claim 5.6 ob-

serve that since the number of active nodes decreases exponentially, no node sends

more than 2n messages in its role as high-degree node during the course of the algo-

rithm. Overall, we obtain the same asymptotic running time bound of O(A2/n) for

the communication performed by all iterations of the algorithm as we did before for

a single one. Adding the initial O(log n) rounds for determining the active nodes in

each iteration, the claimed running time bound follows.

Furthermore, we can utilize the “excess capacity” of the communication system

in case A2 � n to further reduce the number of iterations.

Corollary 5.11. TriArbor can be modified to run in O(A2/n+ log2+n/A2 n) rounds.

Proof. Instead of choosing the threshold for low-degree nodes to be 4A, we pick

max{4A, d
√
ne}. If 4A ≥ d

√
ne the algorithm behaves as before. Otherwise, we
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have that in each iteration at most

1√
n

∑
i∈V ′

δ′i ≤
2An′√
n

remain active, implying that all nodes are eliminated in O(log2+n/A2 n) rounds.

It remains to show that if d
√
ne ≥ 4A, all iterations can be executed in parallel in

O(1) rounds. Observe that Claims 5.6 and 5.7 hold for any choice of the threshold.

Hence, as the number of nodes decreases exponentially also if d
√
ne ≥ 4A, the

distribution of high-degree nodes’ neighborhoods and the communication among

delegates can be performed in O(1) rounds in total. Regarding the messages sent

by low-degree nodes, in total less than d
√
ne2 ≤ 2n (instead of 16A2) messages need

to be conveyed, and each delegate receives at most d
√
ne2 ≤ 2n messages. As each

node is delegate at most twice, this requires O(1) rounds as well. Hence, taking into

account Theorem 5.9 and Corollary 5.10, the statement follows.

It remains to remove the dependence of the algorithm on knowledge on A.

Corollary 5.12. A variant of TriArbor can be executed successfully in O(A2/n +

log2+n/A2 n) rounds with no prior knowledge of A.

Proof. Denote by δ̄′ := (
∑

i∈V ′ δ
′
i)/n

′ the average degree of the graph of currently ac-

tive nodesG′. Instead of setting the threshold for high-degree nodes to max{4A, d
√
ne}

as in Corollary 5.11, we pick max{2δ̄′, d
√
ne}. We have that

1

2δ̄′

∑
i∈V ′

δ′i =
n′

2
,

i.e., still at least half of the active nodes are eliminated in each iteration. Moreover,

2δ̄′ =
2

n′

∑
i∈V ′

δ′i ≤ 4A,

hence, arguing analogously to Corollary 5.10, we can perform all iterations together

in O(A2/n) rounds.

Finally, we can bound the running time of the algorithm in terms of the number

of edges of G.

Corollary 5.13. The uniform algorithm from Corollary 5.12 successfully decides

whether G contains a triangle within O(|E|/n+ log n) rounds.

Proof. In [4] it is shown that, for any graph, A ∈ O(
√
|E|+ n). Plugging this bound

into the running time guaranteed by Corollary 5.12 yields the claim.
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6
Randomized Algorithm for General

Graphs

Our randomized algorithm does not exhibit an as well-structured communication

pattern as the presented deterministic solutions, hence it is difficult to efficiently or-

ganize the exchange of information by means of a deterministic subroutine. There-

fore, we make use of a randomized routine from [11].

Theorem 6.1 ([11]). Given a bulk of messages such that:

1. No node is the source of more than n messages.

2. No node is the destination of more than n messages.

3. Each source knows the content of its messages.

For any predefined constant c > 0, all messages can be delivered in O(1) rounds with

high probability (w.h.p.), i.e., with probability at least 1− 1/nc.

We try to give some intuition on why this theorem is true. A key idea is that,

using randomization, it is possible to first distribute a fairly large fraction of the

messages in a roughly balanced manner, i.e., such that n − o(n) messages for each

destination can be delivered by each node sending at most O(1) messages to the

respective destination. Subsequently, we can make “more effort” to distribute the

remaining o(n2) messages evenly. To this end, these messages are duplicated and

sent redundantly to different randomly chosen relay nodes. The number of copies is

limited in order to not overload the network. This results in an exponentially am-

plified probability to succeed in delivering each message. Hence, after one iteration

of this scheme, we will have much less messages to deliver, enabling to increase the

number of redundant copies used for each message further, and so on. Repeated

application results in delivery of all messages in O(1) rounds.
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6.1 The Algorithm

When sampling randomly for triangles, we would like to use the available information

as efficiently as possible. To this end, the algorithm samples induced subgraphs of

increasing size. Checking a subgraph of size s requires to learn about O(s2), while

it tests for Θ(s3) potential triangles. If s ∈ Θ(
√
n), it thus takes a linear number of

messages to collect the induced subgraph at some node and test for triangles. Using

the subroutine from Theorem 6.1, each node can sample such a graph in parallel

in O(1) rounds. Intuitively, this means to sample Θ(n5/2) subsets of three vertices

in constant time. As |
(
V
3

)
| ∈ Θ(n3), one therefore can expect to find a triangle

quickly if at least Ω(
√
n) triangles are present in G. If less triangles are in the

graph, we need to sample more. In order to do this efficiently, it makes sense to

increase s instead of just reiterating the routine with the same set size: The time

complexity grows quadratically, whereas the number of sampled 3-vertex-subsets

grows cubically. Finally, once the running time of an iteration hits n1/3, we will

switch to deterministic searching to guarantee termination within O(n1/3) rounds.

Interestingly, the set size of s = n2/3 corresponding to this running time ensures

that even a single triangle in the graph is found with constant probability.

Algorithm 8: TriSample at node i.

1 s :=
√
n while s < n1/3 do

2 choose a uniformly random subset of s nodes Ci
3 for j ∈ Ci do
4 send the member list of Ci to j
5 for received member list Cj from j do
6 send Ni ∩ Cj to j
7 Ei := ∅
8 for received Nj ∩ Ci from j do
9 for k ∈ Nj ∩ Ci do

10 Ei := Ei ∪ {j, k}
11 if Gi := (V,Ei) contains a triangle then
12 send “triangle found” to all nodes
13 if received “triangle found” then
14 return true
15 else
16 s := 2s

17 run TriPartition and return its output // switch to deterministic strategy
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6.2 Round complexity

Our first observation is that the last iteration dominates the running time of the

algorithm.

Lemma 6.2. If TriSample terminates after m iterations, the round complexity is

in O(22m) with high probability.

Proof. Let sk denote s in the kth iteration, hence s1 =
√
n, s2 = 2

√
n, ..., sm =

2m−1
√
n. Clearly, in the kth iteration, every node i sends out exactly s2k messages

to nodes j informing them about Ci. Since the sets Ci are chosen independently,

by Chernoff’s bound with high probability every node j in the kth iteration is a

member of O(sk) sets Ci, and therefore receives O(sk) such subsets. It follows that,

w.h.p., it will respond with in total at most O(s2k) messages telling the respective

nodes i about Nj ∩ Ci. The recipients of this messages will have to bear a load of

at most |Ci|2 = s2k. By Theorem 6.1, these message exchanges may be accomplished

in O(s2k/n) rounds w.h.p. If the algorithm terminates after the mth iteration, the

overall round complexity is therefore in O(
∑m

k=1 s
2
k/n) = O(s2m).

Corollary 6.3. If TriSample is guaranteed to find a triangle with probability 1−ε/2
once s passes some threshold s(ε), then the round complexity to find a triangle with

probability 1− ε is O(s(ε)2/n).

Proof. By Lemma 6.2 and the union bound.

Remark 6.4. Note that sm ≤ n2/3 by the loop condition and afterwards the al-

gorithm simply executes TriPartition. The round complexity is therefore always in

O(n1/3) with high probability.

6.2.1 Proof overview

Our aim is to bound the number of iterations needed to detect a triangle with

probability at least 1 − ε, as a function of the number of triangles in the graph.

Let T ⊂
(
V
3

)
denote the set of triangles in G, where |T | = t. WLOG, assume that

t ∈ o(n2/3) (otherwise we consider only a subset of T ).

On an intuitive level, the triangles are either scattered (i.e., rarely share edges)

or clustered. If the triangles are scattered, then applying the inclusion-exclusion

principle of the second order will give us a sufficiently strong bound on the proba-

bility of success. If the triangles are clustered, then there exists an edge that many

of them share. Finding that specific edge is more likely than finding any specific
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triangle, and given this edge is found, the probability to find at least one of the

triangles it participates in is large.

6.2.2 Bounding the probability of success using the inclusion-

exclusion principle

We know by the inclusion-exclusion principle that

Pr[a triangle is found] ≥ t · Pr[exactly one triangle is found]

−
∑
a6=b∈T

Pr[at least a and b are found].

�� ��6.1

For every a 6= b ∈ T there are three cases to consider:

1. a and b are disjoint, that is a ∩ b = ∅.
2. a and b share a single vertex, |a ∩ b| = 1.

3. a and b share an edge, |a ∩ b| = 2.

Observe that for every constant r and set of vertices V0 s.t. |V0| = r, it holds that:

(sm/(n−sm+r))r ≤ Pr
[
V0 is chosen in the mth iteration

]
≤ (sm/(n−sm))r.

�� ��6.2

Definition 6.5. Tr ∈
(
T
2

)
is the set of pairs of distinct triangles in G that have

together exactly r vertices. Denoting tr = |Tr|, clearly t4 + t5 + t6 =
(
t
2

)
= |
(
T
2

)
|.

For brevity we denote pm = Pr[a specific node found a triangle in the mth iteration].

For symmetry reasons this probability is the same for each individual node executing

TriSample. We also denote Pm = Pr[a triangle is found in the mth iteration].

Claim 6.6. For 0 < ε < 2, if pm ≥ ln(2/ε)/n then Pm ≥ 1− ε/2.

Proof. Recall that each node i chooses Ci independently. Consequently, the proba-

bility of no triangle being found in the mth iteration is at most

(
1− ln(2/ε)

n

)n
=

((
1− 1

n ln−1(2/ε)

)n ln−1(2/ε)
)ln(2/ε)

≤ e− ln(2/ε)

=
ε

2
.
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With the above notations, we combine Equality
�� ��6.2 with the inclusion-exclusion

principle to obtain:

pm ≥ t ·
(

sm
n− sm + 3

)3

−
6∑

k=4

tk ·
(

sm
n− sm

)k
.

�� ��6.3

We distinguish between the cases of “scattered” and “clustered” triangles. We

now give these expressions a formal meaning via a threshold for t4 in terms of t and

a critical value s(ε) of sm that is s(ε) := max{2n2/3t−1/3 ln1/3(2/ε), 2
√
n ln(2/ε)}.

The critical value stems from either of the following cases:

1. Scattered triangles - we wish to sample as many triangles as possible, and the

number of triangles sampled grows cubically in sm. The n2/3 factor in the

numerator reflects the fact that sm = n2/3 would imply that each triangle is

sampled with constant probability.1 Clearly having a lot of triangles in general

improves the probability of success, hence the division by t−1/3.

2. Clustered triangles - it may be the case that all triangles share a single edge,

hence we must sample this edge with probability at least 1−ε/2. For sm =
√
n

each node samples Θ(n) edges, hence each edge is sampled with constant

probability.

6.2.3 Scattered triangles

Assume t4 ≤ tn/(2s(ε)).

Lemma 6.7. If t4 ≤ tn/(2s(ε)) and n is sufficiently large, then a triangle will be

found with probability at least 1− ε/2 in any iteration where sm ≥ s(ε).

Proof. We rewrite Equality
�� ��6.3 as

pm ≥
t · s3m(n− sm)3 − t4 · s4m · (n− sm)2 − t5s5m · (n− sm)− t6s6m

(n− sm)6
.

Due to the loop condition in TriSample, sm ≤ n2/3 ∈ (1− o(1))n, therefore

pm ≥
(1− o(1))ts3mn

3 − t4s4mn2 − t5s5mn− t6s6m
n6

=
s3m((1− o(1))tn3 − t4smn2 − t5s2mn− t6s3m)

n6
.

1Observe that TriPartition samples exactly n2/3 vertices per node in a way covering all subsets
of 3 nodes.

33



As t4 ≤ tn/(2s(ε)) ≤ tn/(2sm), this can be estimated further by

pm ≥
s3m((1

2
− o(1))tn3 − t5s2mn− t6s3m)

n6
.

By definition, t4 + t5 + t6 =
(
t
2

)
≤ t2/2, therefore there exist β, γ ≥ 0 such that

t5 = βt2, t6 = γt2 and β + γ ≤ 1/2. Using this notation,

pm ≥
s3m((1

2
− o(1))tn3 − βt2s2mn− γt2s3m)

n6

=
s3mt((

1
2
− o(1))n3 − βts2mn− γts3m)

n6
.

By the loop condition in TriSample, sm ≤ n2/3. Recalling that we assume t ∈
o(n2/3), this becomes

pm ≥
s3mt((

1
2
− o(1))n3 − βtn 7

3 − γtn2)

n6

≥
s3mt(

1
2
− o(1))n3

n6
.

Given that sm ≥ s(ε) ≥ 2n2/3 ln1/3(2/ε)/t1/3 and, we have for sufficiently large n

that

pm ≥
s3mt(

1
2
− o(1))n3

n6

=
(1
2
− o(1))s3mt

n3

≥ 2tn2 ln(2/ε)

tn3

=
2 ln(2/ε)

n
.

By Claim 6.6 this implies that the probability of finding a triangle in iteration m is

at least 1− ε/2.

6.2.4 Clustered triangles

Assume t4 > t · n(2 · sm). The strategy employed here is to show that due to

the bound on t4, there exists an edge shared by many triangles. Subsequently the

analysis focuses on this edge, showing that the probability to sample this edge and

find a triangle containing it is sufficiently large.

Definition 6.8. For each edge e ∈ E, define ∆e = |{Ti : e ⊆ Ti}|. In other words,
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∆e is the number of triangles that e participates in. Denote ∆max = maxe∈E ∆e.

Lemma 6.9. ∆max ≥ 2t4/3t.

Proof. Consider a figure consisting of two triangles sharing an edge (this is basically

K4 with one edge removed). We count the occurrences of this figure in G in two

different ways:

1. Observe that t4 counts just that.

2. Pick one of the t triangles from T , choose one of its 3 edges, denote it e. Choose

one of the other ∆e − 1 triangles that share e to complete the figure. Note

that this counts every figure exactly twice, since we may pick either of the two

triangles in the figure to be the first one. By definition ∆e − 1 ≤ ∆max − 1,

hence we count at most 3t(∆max − 1)/2 occurrences.

By comparing 1. and 2. we conclude that t4 ≤ 3t(∆max − 1)/2, completing the

proof.

Remark 6.10. The tightness of this bound can be confirmed by examining a complete

graph.

Lemma 6.11. If t4 > tn/(2 · s(ε)) then a triangle will be found with probability at

least 1− ε/2 in any iteration where sm ≥ s(ε).

Proof. Assume WLOG that emax = {x, y} is an edge shared by ∆max triangles. The

probability of a node choosing both endpoints of emax is sm(sm − 1)/(n(n − 1)) ≥
0.99s2m/n

2 (for large values of n, as sm ≥
√
n). Given that this edge is chosen, the

probability of missing all of the ∆max vertices that complete a triangle with emax is

at most (1−∆max/n)sm−2. By Lemma 6.9 and our assumption on t4, we deduce that

∆max ≥ n/(3sm), therefore the probability of a specific node missing all triangles

comprising emax, conditional to emax being chosen, is at most (1 − 1/(3sm))sm−2 ≤
e−1/3/0.99 (for large values of n). Fixing some node i, we obtain that

pm ≥ Pr [i finds a triangle with emax|x, y ∈ Ci] · Pr[x, y ∈ Ci]

≥ (0.99− e−1/3)s2m
n2

≥ s(ε)2

4n2

≥ ln(2/ε)

n
.

Applying Claim 6.6, we conclude Pm ≥ 1− ε/2.
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6.2.5 Deriving the Bound on the Round Complexity

Definition 6.12. m(n, t, ε) is the minimal integer such that sm(n,t,ε) ≥ s(ε).

Corollary 6.13. Given that G contains at least t triangles, for every ε > 0, with

probability at least 1− ε/2 TriSample terminates at the latest in iteration m(n, t, ε).

Proof. Combine Lemmas 6.7 and 6.11.

Theorem 6.14. Given that G contains at least t triangles, for every ε ≥ 1/n, with

probability at least 1 − ε TriSample terminates within O(min{n1/3t−2/3 ln2/3 ε−1 +

ln ε−1, n1/3}) rounds. It always outputs the correct result.

Proof. By Corollary 6.13, the algorithm terminates with probability 1−ε/2 after no

more than m(n, t, ε) iterations. By Corollary 6.3, it thus terminates with probability

1− ε within O(22m(n,t,ε) rounds. By Remark 6.4 the round complexity is always in

O(n1/3) with high probability, altogether showing the stated bound.

Correctness follows from the fact that the algorithm terminates if it either finds a

triangle, or after executing TriPartition, according to Theorem 4.6 with the correct

output.

Corollary 6.15. Algorithm TriSample terminates within O(n1/3/t2/3) rounds in

expectation and within O(max{n1/3 ln2/3 n/t2/3 + lnn, n1/3}) rounds w.h.p.

Remark 6.16. We can make sure the algorithm always terminates within O(n1/3)

rounds by stopping it after n1/3 rounds and switching to TriPartition even if sm <

n2/3.

Corollary 6.17. For every ε ≥ 1/nO(1), it is possible to distinguish with probability

1 − ε between the cases that G is triangle-free and that G has at least t0 triangles

within O(t
−2/3
0 n1/3 ln2/3(1/ε) + ln(1/ε)) rounds.

Proof. Set s ≤ 2 max{t−1/30 2n2/3 ln1/3(1/ε), 2
√
n ln(1/ε)} to be the loop condition

TriSample. If no triangle has been found during the loop, we output that G is

triangle-free. The running time bound follows from Corollary 6.3, and correctness

with probability 1− ε is due to Theorem 6.14.

6.3 Tightness of the Analysis

Consider a graph G with t < n− 2 triangles, all sharing a specific edge e0. To find a

triangle, some node must sample both ends of e0, and this happens with probability
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sm(sm − 1)/(n(n − 1)) per node. The probability that all nodes miss e0 is at least

(1 − sm(sm − 1)/(n(n − 1)))n. If sm ∈ o(
√
n ln(1/ε)) then this probability is in

1− ω(ε).

Consider a graph G with t disjoint triangles t < n/3. The probability of a specific

node to miss a specific triangle is at least 1−(sm(sm−1)(sm−2))/(n(n−1)(n−2)) ≥
1− ((sm−2)/n)3. By the union bound, the probability of a specific node missing all

triangles is at least 1−t((sm−2)/n)3. The probability that all nodes miss all triangles

is therefore at least (1−t((sm−2)/n)3)n. Assuming that sm ∈ o(t−1/3n2/3 ln1/3(1/ε)),

this is in (1− o(n−1 ln(1/ε))n ⊆ ω(ε).
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√
logn) Bit Rounds. In IPDPS, 2006.

39



[11] C. Lenzen and R. Wattenhofer. Tight Bounds for Parallel Randomized Load

Balancing. In Proc. 43rd Symposium on Theory of Computing (STOC), pages

11–20, 2011.

[12] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed MST for Constant Diam-

eter Graphs. Distributed Computing, 18(6), 2006.

[13] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. MST Construction in

O(loglogn) Communication Rounds. In Proc. 15th Symposium on Parallel Al-

gorithms and Architectures (SPAA), pages 94–100, 2003.

[14] B. McKay (mathoverflow.net/users/9025). If many triangles share edges, then

some edge is shared by many triangles. MathOverflow. http://mathoverflow.

net/questions/83939 (version: 2011-12-20).

[15] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.

Network Motifs: Simple Building Blocks of Complex Networks. Science,

298(5594):824–827, 2002.

[16] B. Patt-Shamir and M. Teplitsky. The Round Complexity of Distributed Sort-

ing: Extended Abstract. In PODC, pages 249–256, 2011.

[17] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for

Industrial and Applied Mathematics, 2000.

[18] A. D. Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan,

D. Peleg, and R. Wattenhofer. Distributed Verification and Hardness of Dis-

tributed Approximation. In 43rd Symposium on Theory of Computing (STOC),

2011.

40

http://mathoverflow.net/questions/83939
http://mathoverflow.net/questions/83939

	Introduction
	Related Work
	Subgraph Listing
	Property Testing
	State of the art

	Model and Problem
	Model
	Problem

	Deterministic Algorithms for General Graphs
	Full-Knowledge Message Passing
	TriPartition - Finding triangles deterministically
	Generalization for d-cliques

	Deterministic Algorithms for Sparse Graphs
	Bounded degree
	Bounded arboricity
	An overview of the TriArbor algorithm
	TriArbor algorithm


	Randomized Algorithm for General Graphs
	The Algorithm
	Round complexity
	Proof overview
	Bounding the probability of success using the inclusion-exclusion principle
	Scattered triangles
	Clustered triangles
	Deriving the Bound on the Round Complexity

	Tightness of the Analysis


